T⁶LYC vs C⁶LYC: Comparison of Fast Neutron and y-Ray Detector Performance for In-Beam Neutron Scattering Measurements

Thursday 12 October 2023 10:40 (35 minutes)

Neutron and γ -ray dual mode sensitivity is a widely utilized detector capability for nuclear security applications and fundamental nuclear physics measurements, such as neutron scattering and β -delayed neutron emission. In particular, the pulse-shape discrimination (PSD) technique exploitable with Cs2⁶LiYCl₆:Ce (C⁶LYC) scintillators permits simultaneous measurements of neutrons and γ rays from inelastic neutron scattering reactions. C⁶LYC also provides a relatively broad dynamic range in neutron energy that usually requires multiple detector types to attain. Recent developments of new elpasolite scintillators has led to Tl₆⁶LiYCl₆:Ce (T⁶LYC), a variant of C⁶LYC with thallium replacing cesium ions for higher effective $Z(Z_{eff} = 69)$. This work focuses on characterizing the properties of T⁶LYC using standard γ -ray calibration sources, an unmoderated ²⁵²Cf fission chamber, and in-beam neutron scattering on ¹²C. Performance comparisons of T⁶LYC relative to C⁶LYC detectors from the Correlated Gamma-Neutron Array for sCattering (CoGNAC) at Los Alamos National Laboratory will be presented.

Author: COPP, Patrick

Co-authors: Dr O'DONNELL, J. M. (Los Alamos National Laboratory); Dr KELLY, K. J. (Los Alamos National Laboratory); Dr DEVLIN, M. (Los Alamos National Laboratory)

Presenter: COPP, Patrick

Track Classification: New Experimental Methods and Techniques