Contribution ID: 36

B-meson anomalies and the Triplet vector boson model.

Monday 14 November 2022 15:00 (15 minutes)

The triplet vector boson (TVB) is a simplified new physics model involving massive vector bosons transforming as a weak triplet vector, which it has been proposed as a combined explanation to the anomalous $b \to s\mu^+\mu^-$ and $b \to c\tau\bar{\nu}_{\tau}$ data (the so-called *B* meson anomalies). In this work, we carry out an updated view of the TVB model, including the Belle II perspectives. We perform a global fit to explore the allowed parameter space by the most current $b \to s\mu^+\mu^-$ and $b \to c\tau\bar{\nu}_{\tau}$ data, by considering all relevant low-energy flavor observables. Our results are confronted with the most recent LHC constraints. We also incorporate in our study the first measurement on the ratio $R(\Lambda_c) = \text{BR}(\Lambda_b \to \Lambda_c\tau\bar{\nu}_{\tau})/\text{BR}(\Lambda_b \to \Lambda_c\mu\bar{\nu}_{\mu})$ very recently obtained by LHCb. In particular, we show that the TVB model can provide an explanation to the *B* meson anomalies; however, this framework is in strong tension with LHC bounds. In respect to future flavor measurements at Belle II, our results suggest that a small new physics window would be allowed to solely explain the $b \to c\tau\bar{\nu}_{\tau}$ data in agreement with LHC constraints. Furthermore, the implications of our phenomenological analysis of the TVB model to some known flavor parametrizations are also discussed.

Poster fallback option for rejected abstracts for parallel oral presentations

Authors: ROJAS, Eduardo; MUÑOZ, José Herman (Universidad del Tolima); Prof. CABARCAS, José Miguel (Universidad Santo Tomás); QUINTERO POVEDA, Nestor (Universidad Santiago de Cali)

Presenter: ROJAS, Eduardo

Session Classification: Parallel session A

Track Classification: Beyond the Standard Model physics