AIP summer meeting 2025

Contribution ID: 156 Type: Contributed Oral

Resource estimates for the open-system simulation of chemical reactions

Thursday 4 December 2025 17:25 (15 minutes)

Open quantum systems evolving under time-dependent Lindbladian simulations dynamics arise in diverse contexts, yet efficient algorithms for large-scale, time-dependent Lindbladian dynamics remain underexplored. In the fault-tolerant setting, the time required to propagate a state by a complex, time-dependent Hamiltonian is prohibitive. We circumvent this issue by introducing a discretization-and-thermalization framework for simulating such dynamics, followed by detailed numerical analysis and resource estimation for chemically reactive systems undergoing environment-influenced reaction pathways. The inclusion of T-gate and logical qubit counts offers practical guidance for future implementations, making this framework relevant to a broad range of applications, including fermionic, spin, and chemically reactive systems.

Author: SARKAR, Soumya (University of Technical Sydney)

Co-authors: Dr NGUYEN, Nam (Boeing Research & Technology); Dr ELMAN, Samuel; Mr WATTS, Thomas

(University of Technical Sydney, HRL)

Presenter: SARKAR, Soumya (University of Technical Sydney)Session Classification: Quantum Science and Technology

Track Classification: Topical Groups: Quantum Science and Technology