AIP summer meeting 2025

Contribution ID: 132 Type: Contributed Oral

Magnetic twists: Micromagnetic simulations to describe polarised neutron reflectometry data

Friday 5 December 2025 10:40 (30 minutes)

Magnetic thin films are important for computing technologies, where atomic-scale control of magnetic properties is required. Here, we present a 1D micromagnetic simulator (microM-ref1D) for thin film magnets with twisted magnetization profiles. Importantly, it is integrated with the Ref1D software for polarized neutron reflectometry fitting to accurately extract magnetic parameters.

Using this new software approach, we show that exchange interactions and other atomic-level magnetic parameters can be probed using neutron reflectometry. Mechanical rotation of a film in an applied magnetic field can be used to manipulate magnetization at the nanoscale, to wind a variety of distinctive 1D magnetic structures: exchange springs, propellers and solitons. Each of these structures can be identified by its unique finger print in the Q-dependent neutron spin flip signal of the reflection pattern.

A proof-of-concept experiment using the Platypus polarised reflectometer at the ACNS was conducted to explore the magnetic winding in the ferromagnetic/antiferromagnetic $Ni_{80}Fe_{20}/Fe_2O_3$ thin film system.[1] After field-cooling and rotation, the presence of a non-collinear component in the spin structure was detected using neutron spin flip analysis. The data is described well using the 1D micromagnetic model for the twist.[2]

The 1D micromagnetic simulation is general and can be widely applied in polarised neutron reflectometry fitting to constrain complex models of planar magnets. The aim is to also incorporate simulations into RefNx software at ANSTO.

This research was supported by an IEEE Magnetics Society Education Seed Grant.

- [1] D. L. Cortie et al. Phys. Rev. B 86, 054408 (2012).
- [2] B. McGrath, K. L. Livesey & R. E. Camley, Phys. Rev. B 111, 094422 (2025).

Authors: Ms MCGRATH, Brianne (University of Colorado - Colorado Springs); CORTIE, David; CAUSER, Grace L. (School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence for Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC 3800, Australia); LIVESEY, Karen (University of Newcastle & University of Colorado - Colorado Springs); Prof. LIN, Ko-Wei (National Chung Hsing University); Prof. CAMLEY, Robert (University of Colorado - Colorado Springs)

Presenter: LIVESEY, Karen (University of Newcastle & University of Colorado - Colorado Springs)

Session Classification: Condensed Matter & Materials

Track Classification: Topical Groups: Condensed Matter & Materials