AIP summer meeting 2025

Contribution ID: 138

Beyond Mean-Field: Modelling Atom Interactions in Compact Rotation Sensors

Thursday 4 December 2025 10:40 (30 minutes)

Type: Invited/Keynote talk

Atomic matter-wave interferometers have demonstrated exceptional long-term stability in precision rotation sensing under controlled laboratory conditions [1]. Translating this performance to compact, mobile platforms could revolutionise navigation technologies. Guided matter-wave gyroscopes, which confine ultracold atomic gases in optical potentials, offer a promising route toward miniaturisation and ruggedisation [2]. However, the tight confinement required for portability inherently enhances interatomic interactions—introducing complex many-body effects that are absent in free-space configurations [3].

To assess the feasibility of such devices, it is essential to quantify how atom-atom interactions degrade interferometric sensitivity. In this work, we present a detailed numerical characterisation using the multi-mode truncated Wigner (TW) method [4], which captures quantum fluctuations and spontaneous scattering processes beyond the scope of mean-field Gross-Pitaevskii treatments [5]. We also perform an analytical analysis using a simple few mode ansatz in order to fully understand the underlying mechanisms by which the atom-atom interactions cause significant degradation.

By isolating and characterising the degradation due to phase diffusion and four-wave mixing, we identify optimal operating regimes and design parameters for guided matter-wave gyroscopes. This work lays the foundation for compact, high-precision rotation sensors suitable for mobile platforms, and highlights the necessity of many-body quantum modelling in the development of practical cold atom technologies.

- [1] R. Geiger et al. AVS Quantum Sci. 2, 024702 (2020).
- [2] M. M. Beydler et al. AVS Quantum Sci. 6,014401 (2024).
- [3] T. L. Gustavson et al. Class. Quantum Grav. 17, 2385 (2000).
- [4] S. A. Haine, New J. Phys. 20, 033009 (2018).
- [5] J. L. Helm et al. Phys. Rev. Lett. 114, 134101 (2015).

Author: EASTMAN, Jessica (Australian National University)

Co-authors: ZHENG, Ellen; Dr SZIGETI, Stuart; HAINE, Simon

Presenter: EASTMAN, Jessica (Australian National University)

Session Classification: Atomic and Molecular Physics

Track Classification: Topical Groups: Atomic and Molecular Physics