AIP summer meeting 2025

Contribution ID: 212 Type: Poster

Impact of uncertainties in CO2, HCl, and H2O cross sections on simulations of Venus atmospheric chemistry

Tuesday 2 December 2025 15:30 (1 hour)

The atmospheres of Venus and Mars are primarily CO_2 . CO_2 photolyses at wavelengths lesssim 200 nm to CO and O. Direct recombination via $CO+O+M \rightarrow CO_2+M$ is very slow so the rate of production of CO_2 to balance its loss via photolysis is controlled by the abundances of trace radicals that catalyse production of CO_2 (eg., Yung and DeMore, Icarus 51, 199, 1982). These trace radicals, such as OH and ClCO, are derived directly or indirectly from photolysis of H_2O and HCl. Previous large uncertainties in the rates of some of the key reactions that comprise these catalytic processes have been significantly reduced (eg., Mills and Allen, PSS 55, 2007; Marcq et al., Space Sci Rev 214, 10, 2018; Chao et al., AGU Fall Mtg Abst P11B-2985, 2024). In addition, several studies in the past 15 years have refined our understanding of the UV cross sections of CO_2 and H_2O (eg., Ranjan et al., Astrobio 17, 687, 2017; Schmidt et al., PNAS 110, 17691, 2013; Venot et al., A & A 609, A34, 2018; Archer et al., JQSRT 117, 88, 2013; Ranjan et al., Ap J 896, 148, 2020). Consequently, it is appropriate to examine again the impact on atmospheric simulations of the remaining uncertainties in the photolysis and extinction cross sections for CO_2 and H_2O . This poster will present the results from numerical simulations of the atmospheres of Venus and/or Mars conducted using the Caltech/JPL KINETICS photochemical model (eg., Allen et al., JGR 86, 3617, 1981).

Author: MILLS, Franklin (Australian National University)

Presenter: MILLS, Franklin (Australian National University)

Session Classification: Poster Session

Track Classification: Topical Groups: Solar Terrestrial and Space Physics