$B^0 \to \pi^- \ell^+ \nu_\ell$ with Hadronic Tagging at the Belle II Experiment

Nadia Toutounji

The University of Sydney

Third Sydney Meeting, February 19th, 2021

→

1/13

= nar

- The Belle II Experiment
- Why $B \to \pi \ell \nu$?
- Tagged analyis techniques
- Results from early Belle II data

The Belle II Experiment

- Successor to the Belle Experiment, one of two experiments to first observe CP-violation in neutral *B*-mesons *arXiv:hep-ex/0107061*
- SuperKEKB accelerator collides asymmetric e⁺e⁻ beams at the Υ(4S) (bb̄) resonance, producing pairs of B-mesons

N. Toutounii

Primary aim is to study rare decays in the search for new physics, with an expected data-set of 50× that of Belle
 90 fb⁻¹ of data recorded so far (over 80 million collisions!)

Sydney Meeting 19.02.21

3/13

The Belle II Detector

ELE DQC

$B^0 \rightarrow \pi^- \ell^+ \nu_\ell$: Motivation

- $B^0 \to \pi^- \ell^+ \nu_\ell$ decay involves a $b \to u$ quark transition, characterised by CKM matrix element $|V_{ub}|$
- With expected size of Belle II data-set, aim to improve the precision of $|V_{ub}|$ measurements from rare decays including $B^0 \to \pi^- \ell^+ \nu_\ell$
- Investigate the current tension between inclusive and exclusive measurements of |V_{ub}|

 $B^0 \to \pi^- \ell^+ \nu_\ell$ where $\ell = e, \mu$ N. Toutounii Sydney Meeting 19.02.21 5/13

Reconstructing B-mesons - Tagged Analysis

- One *B*-meson from an $\Upsilon(4S)$ decay acts as a tag, can be reconstructed in multiple decay channels
- Select a signal *B*-meson, B_{sig} , with required decay mode for analysis. e.g. $B^0 \rightarrow \pi^- \ell^+ \nu_\ell$
- Since the initial state of the Υ(4S) is well-known, the reconstruction of B_{tag} provides kinematic information for B_{sig}

 $\Upsilon(4S) \rightarrow \bar{B}^0_{tag} B^0_{sig}$

Credit: Markus Prim

< ≧ ▶6 / 13

Hadronic Tagging

- *B_{tag}* decay is purely hadronic. Can completely reconstruct tag-side with high purity
- \blacksquare Neutrinos are not detected by Belle II \rightarrow can determine 4-momentum of a neutrino present on signal side through momentum conservation

$$M_{\rm miss}^2 = |p_{B\rm sig} - p_\pi - p_\ell|^2$$

Full Event Interpretation (FEI)

- Machine learning algorithm that reconstructs over 4000 *B*-meson decay chains for tagging, training a multi-variate classifier for each
- Each B_{tag} built has an associated classifier output, the SignalProbability, which lies between 0 (background-like) and 1 (signal-like)

Credit: Thomas Keck, William Sutcliffe

 Hierarchical approach that builds *B*-mesons from final-state particles

Full Event Interpretation (FEI)

- Reconstruction efficiency of the FEI is higher for simulated data (Monte Carlo) than real data
- Algorithm can be calibrated by comparing the relative number of correctly reconstructed events in data and MC for a specific signal mode
- Choose signal mode with high branching fraction, $B^0 \rightarrow X \ell \nu$, where X is any hadronic system

$B^0 ightarrow \pi^- \ell^+ u_\ell$ in Early Belle II Data

Looked at M²_{miss} comparison between data and MC after selections (back-up)
 MC has been scaled down by the hadronic FEI calibration factor, 0.83

Cut on FEI classifier to reduce background: SignalProbability > 0.001

Various backgrounds involved:

arXiv:2008.08819 [hep-ex]

- Cross-feed from other semi-leptonic decays to a hadronic system containing a u quark, $B \rightarrow X_u \ell \nu$
- Other BB decays
- Continuum events, where $e^+e^- \to u\bar{u}, d\bar{d}, s\bar{s}$ or $c\bar{c}_{\Box \to A} = A = A = A = A = A$

N. Toutounji Sydney	Meeting 19.02.21	10 / 13
---------------------	------------------	---------

$B^0 ightarrow \pi^- \ell^+ u_\ell$ in Early Belle II Data

- Performed a 2-dimensional fit to the $M^2_{\rm miss}$ distribution to extract the yield of our signal $B^0 \to \pi^- \ell^+ \nu_\ell$ events
- Signal and background MC distributions are used as templates to fit the data to, and fit is performed by maximising the likelihood

We see 20.79 \pm 5.68 $B^0 \rightarrow \pi^- \ell^+ \nu_\ell$ events in 34.6 fb⁻¹ of Belle II data with a 5.69 σ significance!

Branching Fraction Measurement, $B^0 \rightarrow \pi^- \ell^+ \nu_\ell$

Branching fraction measurement based on 34.6 fb⁻¹:

$$\mathcal{B}(B^0 o \pi^- \ell^+
u_\ell) = rac{N_{
m sig}^{
m data}(1+f_{+0})}{4 imes {
m CF}_{
m FEI} imes N_{Bar{B}} imes \epsilon} ~,$$

 $N_{
m sig}^{
m data}$: Fitted signal yield from data f_{+0} : Ratio of BFs for $\Upsilon(4S) \rightarrow B^+B^- / B^0 \overline{B}^0$ $m CF_{
m FEI}$: FEI calibration factor $N_{B\overline{B}}$: Number of total $B\overline{B}$ pairs in data-set ϵ : Signal reconstruction efficiency

 $\mathcal{B}(B^0 o \pi^- \ell^+
u_\ell)~(1.58 \pm 0.43_{
m stat} \pm 0.07_{
m sys}) imes 10^{-4}$

In agreement with current world average: (1.50 \pm 0.06) imes10⁻⁴

- Belle II aims to search for new physics, particularly through the study of rare decays
- One specific goal is improving our precision on measurements of CKM matrix elements e.g. |V_{ub}|
- \blacksquare Improved software for performing tagged analyses at Belle II \rightarrow the Full Event Interpretation
- Using hadronic tagging via the FEI, we were able to re-discover the decay $B^0 \rightarrow \pi^- \ell^+ \nu_\ell$ in early Belle II data (with a > 5 σ significance!)
- As more data is recorded, we will improve the precision on the branching fraction measurement and extract $|V_{ub}|$

▲□> < E> < E> EIE のQQ

13/13

Analysis Selections

Event	visibleEnergyOfEventCMS $>$ 4 GeV, foxWolframR2 $<$ 0.4		
	2 GeV $<$ E _{ECL} $<$ 7 GeV, E_{miss} $>$ 0.3 GeV		
	nCleanedTracks($ z0 < 2.0$ cm, $ d0 < 0.5$ cm, $p_t > 0.1$ GeV) \geq 3		
	nCleanedECLClusters(0.296706 $< heta <$ 2.61799, E $>$ 0.1 GeV) \geq 3		
	No additional tracks in event		
B _{tag}	SignalProbability > 0.001 or dmID $= 23(25)$ for $B^0(B^+)$		
	$M_{bc}>5.27$ GeV, $ \Delta E <0.2$ GeV		
	One B_{tag} per event with highest SignalProbability		
e (µ)	dr < 2 cm, $ dz < 5$ cm, 0.297 $< heta < 2.618$		
	electronID(muonID) > 0.9		
	$p_{lab} > 0.3 { m GeV} (p_{lab} > 0.6 { m GeV})$		
	One lepton per event with highest leptonID		
π^{\pm}	dr $<$ 2 cm, $ dz $ $<$ 4 cm, pionID $>$ 0.5, nCDCHits $>$ 20 and		
	0.297 < heta < 2.618		
π^0	May 2020 stdPi0s <i>eff40</i> list		
B_{sig}^0	$-3 < cos heta_{BY} <$ 3, $E_{residual} <$ 1.0 GeV, $ z_\ell - z_\pi <$ 1 mm		
B_{sig}^+	$-3 < cos heta_{BY} <$ 3, $E_{residual} <$ 0.6 GeV, $cos \psi_{\gamma\gamma} >$ 0.25		
Υ(4S)	One $\Upsilon(4S)$ per event with lowest $M^2_{ m miss}$		

Source of systematic uncertainty	% of ${\cal B}$
f_{+0}	1.70
FEI calibration	3.45
N _{BB}	1.60
Reconstruction efficiency ϵ	0.46
Tracking	1.60
Lepton ID	1.05
Total	4.61

Dominant systematic uncertainty from FEI calibration