This one weird trick could solve the σ_8 tension! (You will never guess what!)

Markus R. Mosbech February 19, 2021

University of Sydney

1. Introduction

2. The Boltzmann Equation

3. Results

Introduction

Prepared for submission to JCAF

The full Boltzmann hierarchy for dark matter-massive neutrino interactions

Markus R. Mosbech,^a Celine Boehm,^a Steen Hannestad,^b Olga Mena,^c Julia Stadler,^d and Yvonne Y. Y. Wong^e

"School of Physics, University of Sydney, Camperdown, NSW 2006, Australia Sydney Consortium for Particle Physics and Cosmology

¹Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark 'IFIC, Universidad de Valencia-CSIC, 46071, Valencia, Spain

^dMax Planck Institute for Extraterrestrial Physics, Giessenbachstraße 1, 85748 Garching, Germany

'School of Physics, The University of New South Wales, Sydney NSW 2052, Australia, Sydney Consortium for Particle Physics and Cosmology

E-mail: mmos63020uni.sydney.edu.au, celine.boehm0sydney.edu.au, sth0phys.au.dk, omena0ific.uv.es, jstadler0mpe.mpg.de, yvonne.y.wong0unsw.edu.au

Abstract.

The input of dark nucleo startic sciencitions on the measurement of the cosmological matteries has been integrated in the point interaction of mainton sciencitions, Here we result in role of a matrix-indexian matter compliang in high of company cosmological index we were straightforward on the matrix and the scienci science parameters of the science of the science of the scienci science parameters of the science of the parameters of the science of the

arXiv:2011.04206v1 [astro-ph.CO] 9 Nov 2020

• Boltzmann Hierarchy

The full Boltzmann hierarchy for dark matter-massive neutrino interactions

Markus R. Mosbech,^a Celine Boehm,^a Steen Hannestad,^b Olga Mena,^c Julia Stadler,^d and Yvonne Y. Y. Wong^e

"School of Physics, University of Sydney, Camperdown, NSW 2006, Australia Sydney Consortium for Particle Physics and Cosmology

¹⁰Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark 'IFIC, Universidad de Valencia-CSIC, 46071, Valencia, Spain

^dMax Planck Institute for Extraterrestrial Physics, Giessenbachstraße 1, 85748 Garching, Germany

⁴School of Physics, The University of New South Wales, Sydney NSW 2052, Australia, Sydney Consortium for Particle Physics and Cosmology

E-mail: mmos63020uni.sydney.edu.au, celine.boehm0sydney.edu.au, sth0phys.au.dk, omena0ific.uv.es, jstadler0mpe.mpg.de, yvonne.y.wong0unsw.edu.au

Abstract.

9 Nov 2020

urXiv:2011.04206v1 [astro-ph.CO]

The input of dark nucleo startic sciencitions on the measurement of the cosmological matteries has been integrated in the point interaction of mainton sciencitions, Here we result in role of a matrix-indexian matter compliang in high of company cosmological index we were straightforward on the matrix and the scienci science parameters of the science of the science of the scienci science parameters of the science of the parameters of the science of the

CPPC-2020-17

- Boltzmann Hierarchy
- Class

arXiv:2011.04206v1 [astro-ph.CO] 9 Nov 2020

PREPARED FOR SUBMISSION TO JCAP

The full Boltzmann hierarchy for dark matter-massive neutrino interactions

Markus R. Mosbech,^a Celine Boehm,^a Steen Hannestad,^b Olga Mena,^c Julia Stadler,^d and Yvonne Y. Y. Wong^e

"School of Physics, University of Sydney, Camperdown, NSW 2006, Australia Sydney Consortium for Particle Physics and Cosmology

¹Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark 'IFIC, Universidad de Valencia-CSIC, 46071, Valencia, Spain

^dMax Planck Institute for Extraterrestrial Physics, Giessenbachstraße 1, 85748 Garching, Germany

^eSchool of Physics, The University of New South Wales, Sydney NSW 2052, Australia, Sydney Consortium for Particle Physics and Cosmology

E-mail: mmos63020uni.sydney.edu.au, celine.boehm0sydney.edu.au, sth0phys.au.dk, omena0ific.uv.es, jstadler0mpe.mpg.de, yvonne.y.wong0unsw.edu.au

Abstract.

The input of dark nucleo startic sciencitions on the measurement of the cosmological matteries has been integrated in the point interaction of mainton sciencitions, Here we result in role of a matrix-indexian matter compliang in high of company cosmological index we were straightforward on the matrix and the scienci science parameters of the science of the science of the scienci science parameters of the science of the parameters of the science of the

- Boltzmann Hierarchy
- Class
- MCMC

arXiv:2011.04206v1 [astro-ph.CO] 9 Nov 2020

PREPARED FOR SUBMISSION TO JCAP

The full Boltzmann hierarchy for dark matter-massive neutrino interactions

Markus R. Mosbech,^a Celine Boehm,^a Steen Hannestad,^b Olga Mena,^c Julia Stadler,^d and Yvonne Y. Y. Wong^e

"School of Physics, University of Sydney, Camperdown, NSW 2006, Australia Sydney Consortium for Particle Physics and Cosmology

¹Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark 'IFIC, Universidad de Valencia-CSIC, 46071, Valencia, Spain

^dMax Planck Institute for Extraterrestrial Physics, Giessenbachstraße 1, 85748 Garching, Germany

⁴School of Physics, The University of New South Wales, Sydney NSW 2052, Australia, Sydney Consortium for Particle Physics and Cosmology

E-mail: mmos63020uni.sydney.edu.au, celine.boehm0sydney.edu.au, sth0phys.au.dk, omena0ific.uv.es, jstadler0mpe.mpg.de, yvonne.y.wong0unsw.edu.au

Abstract.

The input of dark nucleo startic sciencitions on the measurement of the cosmological matteries has been integrated in the point interaction of mainton sciencitions, Here we result in role of a matrix-indexian matter compliang in high of company cosmological index we were straightforward on the matrix and the scienci science parameters of the science of the science of the scienci science parameters of the science of the parameters of the science of the

Why this?

• Why not?

- Why not?
- \cdot Cosmo parameters H_0 , σ_8

- Why not?
- \cdot Cosmo parameters H_0 , σ_8
- $\cdot\,$ Neutrinos and DM

Outcome

The Boltzmann Equation

General Boltzmann Equation

$$P^{\alpha}\frac{\partial f}{\partial x^{\alpha}} - \Gamma^{\gamma}_{\alpha\beta}P^{\alpha}P^{\beta}\frac{\partial f}{\partial P^{\gamma}} = m\left(\frac{\partial f}{\partial \tau}\right)_{\alpha}$$

General Boltzmann Equation

$$P^{\alpha}\frac{\partial f}{\partial x^{\alpha}} - \Gamma^{\gamma}_{\alpha\beta}P^{\alpha}P^{\beta}\frac{\partial f}{\partial P^{\gamma}} = m\left(\frac{\partial f}{\partial \tau}\right)_{c}$$
$$f(\mathbf{x}, \mathbf{p}, \tau) = f_{0}(p)\left[1 + \Psi(\mathbf{x}, \mathbf{p}, \tau)\right]$$

General Boltzmann Equation

$$P^{\alpha} \frac{\partial f}{\partial x^{\alpha}} - \Gamma^{\gamma}_{\alpha\beta} P^{\alpha} P^{\beta} \frac{\partial f}{\partial P^{\gamma}} = m \left(\frac{\partial f}{\partial \tau}\right)_{C}$$
$$f(\mathbf{x}, \mathbf{p}, \tau) = f_{0}(p) \left[1 + \Psi(\mathbf{x}, \mathbf{p}, \tau)\right]$$
$$\frac{\partial \Psi}{\partial \tau} + i \frac{p}{E} \left(\mathbf{k} \cdot \hat{\mathbf{n}}\right) \Psi + \frac{d \ln f^{(0)}(p)}{d \ln p} \left[\dot{\phi} - i \frac{E}{p} \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}}\right) \psi\right] = \frac{1}{f_{0}} \left(\frac{\partial f}{\partial \tau}\right)_{C}$$

$$\begin{split} \dot{\delta}_{\rm cdm} &= -\theta_{\rm cdm} + 3\dot{\phi} \\ \dot{\theta}_{\rm cdm} &= -\frac{\dot{a}}{a}\theta_{\rm cdm} + k^2\psi \end{split}$$

$$\begin{split} \dot{\delta}_{\rm cdm} &= -\theta_{\rm cdm} + 3\dot{\phi} \\ \dot{\theta}_{\rm cdm} &= -\frac{\dot{a}}{a}\theta_{\rm cdm} + k^2\psi + K_{\chi}\dot{\mu}_{\chi}\left(\theta_{\nu} - \theta_{\chi}\right) \end{split}$$

$$\begin{split} \dot{\delta}_{cdm} &= -\theta_{cdm} + 3\dot{\phi} \\ \dot{\theta}_{cdm} &= -\frac{\dot{a}}{a}\theta_{cdm} + k^2\psi + K_{\chi}\dot{\mu}_{\chi}\left(\theta_{\nu} - \theta_{\chi}\right) \\ K_{\chi} &\equiv \frac{\rho_{\nu} + P_{\nu}}{\rho_{\chi}} = \frac{(1 + w_{\nu})\rho_{\nu}}{\rho_{\chi}} \end{split}$$

$$\begin{split} \dot{\delta}_{cdm} &= -\theta_{cdm} + 3\dot{\phi} \\ \dot{\theta}_{cdm} &= -\frac{\dot{a}}{a}\theta_{cdm} + k^2\psi + K_{\chi}\dot{\mu}_{\chi}\left(\theta_{\nu} - \theta_{\chi}\right) \\ K_{\chi} &\equiv \frac{\rho_{\nu} + P_{\nu}}{\rho_{\chi}} = \frac{(1 + w_{\nu})\rho_{\nu}}{\rho_{\chi}} \\ \dot{\mu}_{\chi}\left(\theta_{\nu} - \theta_{\chi}\right) &= \frac{3}{4}k \frac{\int p^2 dp \, p f^{(0)}(p) \, C_{\chi}(p) \left(\frac{\theta_{\chi} E_{\nu}(p)}{3k f^{(0)}(p)} \frac{df^{(0)}(p)}{dp} + \Psi_1\right)}{\int p^2 dp \, p f^{(0)}(p)} \end{split}$$

$$\begin{aligned} \frac{\partial \Psi_0}{\partial \tau} &= -\frac{pk}{E_{\nu}(p)} \Psi_1 - \dot{\phi} \frac{d \ln f^{(0)}(p)}{d \ln p} \\ \frac{\partial \Psi_1}{\partial \tau} &= \frac{1}{3} \frac{pk}{E_{\nu}(p)} \left(\Psi_0 - 2\Psi_2\right) - \frac{E_{\nu}(p) k}{3p} \psi \frac{d \ln f^{(0)}(p)}{d \ln p} \\ \frac{\partial \Psi_l}{\partial \tau} &= \frac{1}{2l+1} \frac{pk}{E_{\nu}(p)} \left(l \Psi_{l-1} - (l+1) \Psi_{l+1}\right), \quad l \ge 2 \end{aligned}$$

$$\begin{aligned} \frac{\partial \Psi_1}{\partial \tau} &= [\ldots] - C_{\chi} \frac{v_{\chi} E_{\nu}(p)}{3f^{(0)}(p)} \frac{df^{(0)}(p)}{dp} - C_{\chi} \Psi_1 ,\\ \frac{\partial \Psi_2}{\partial \tau} &= [\ldots] - \frac{9}{10} C_{\chi} \Psi_2 ,\\ \frac{\partial \Psi_l}{\partial \tau} &= [\ldots] - C_{\chi} \Psi_l, \quad l \ge 3 , \end{aligned}$$

$$\begin{aligned} \frac{\partial \Psi_1}{\partial \tau} &= [\ldots] - C_{\chi} \frac{v_{\chi} E_{\nu}(p)}{3f^{(0)}(p)} \frac{df^{(0)}(p)}{dp} - C_{\chi} \Psi_1 ,\\ \frac{\partial \Psi_2}{\partial \tau} &= [\ldots] - \frac{9}{10} C_{\chi} \Psi_2 ,\\ \frac{\partial \Psi_l}{\partial \tau} &= [\ldots] - C_{\chi} \Psi_l, \quad l \ge 3 , \end{aligned}$$

$$C_{\chi} = a \, u_{\nu\chi} \, \frac{\sigma_{\mathrm{Th}} \rho_{\chi}}{100 \, \mathrm{GeV}} \frac{p^2}{E_{\nu}^2}, \qquad u_{\nu\chi} = \frac{\sigma_0}{\sigma_{\mathrm{Th}}} \left(\frac{m_{\chi}}{100 \, \mathrm{GeV}}\right)^{-1}$$

7

Results

Matter power spectrum

CMB power spectrum

CMB power spectrum

CMB power spectrum

Posteriors

	Planck +
	Lensing + BAO
100 ω _b	$2.24^{+0.03}_{-0.03}$
ω_{DM}	$0.119^{+0.002}_{-0.002}$
100 θ _s	$1.0419^{+0.0010}_{-0.0004}$
In 10 ¹⁰ A _s	$3.05^{+0.03}_{-0.03}$
ns	$0.967^{+0.007}_{-0.010}$
$ au_{reio}$	$0.057^{+0.017}_{-0.014}$
u_{χ}	$3.34 \cdot 10^{-4}$
$\sum m_{\nu}$ [eV]	0.14
H ₀ [km/s/Mpc]	67.6 ^{+1.0} -1.0
σ_8	0.81 ^{+0.01} _{-0.06}

fin