Electroweak monopoles and electroweak baryogenesis 12

Suntharan Arunasalam

T.D. Lee Institute, Shanghai Jiaotong University

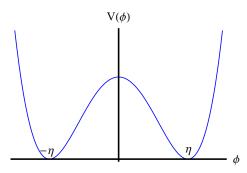
Sydney Particle Physics and Cosmology

¹SA & A. Kobakhidze, 1702.04068 Eur. Phys. J. C (2017) 77: 444 ²SA, Daniel Collison and Archil Kobakhidze, [arXiv:1810.10696]

- Motivation
- The nature of the monopoles
 - Topological Stability
 - Monopole Mass
- Monopoles and cosmology
 - The Electroweak Phase transition
 - Monopole production
 - Sphaleron Processes
 - Big Bang Nucleosynthesis
- Baryogenesis

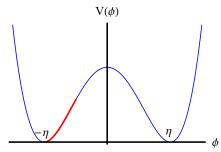
- Motivation
- The nature of the monopoles
 - Topological Stability
 - Monopole Mass
- Monopoles and cosmology
 - The Electroweak Phase transition
 - Monopole production
 - Sphaleron Processes
 - Big Bang Nucleosynthesis
- Baryogenesis

Motivation

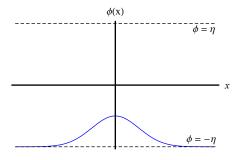

- There is an asymmetry between the matter and antimatter abundances in the universe
- Sakharov conditions must be satisfied
- Sphaleron washout processes must be suppressed in the broken phase
- We propose a mechanism for generating the asymmetry through the production of electroweak monopoles in a Born-Infeld extension to the standard model.

- Motivation
- The nature of the monopoles
 - Topological Stability
 - Monopole Mass
- Monopoles and cosmology
 - The Electroweak Phase transition
 - Monopole production
 - Sphaleron Processes
 - Big Bang Nucleosynthesis
- Baryogenesis

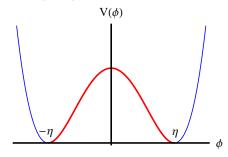
- Motivation
- The nature of the monopoles
 - Topological Stability
 - Monopole Mass
- Monopoles and cosmology
 - The Electroweak Phase transition
 - Monopole production
 - Sphaleron Processes
 - Big Bang Nucleosynthesis
- Baryogenesis


Consider a 1D potential:

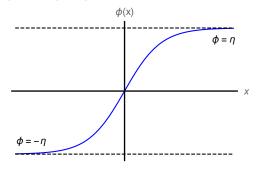
$$V(\phi) = \frac{\lambda}{4} \left(\phi^2 - \eta^2\right)^2$$


• For $\int_{-\infty}^{\infty} V(\phi) dx < \infty, \phi(\pm \infty) \to \pm \eta$

• Suppose $\phi(\infty) = \phi(-\infty) = -\eta$


Decays to the constant solution

• Suppose $\phi(\infty) = \phi(-\infty) = -\eta$


Decays to the constant solution

• Suppose $\phi(\infty) = -\phi(-\infty)$

- Heuristically requires an infinite amount of energy to transition to constant solution.
- Topological stability from disconnected vacuum manifold
- $\pi_0(M_{vac}) \neq 0$.

• Suppose $\phi(\infty) = -\phi(-\infty)$

- Heuristically requires an infinite amount of energy to transition to constant solution.
- Topological stability from disconnected vacuum manifold
- $\pi_0(M_{vac}) \neq 0$.

Monopoles

- Monopoles are an extension of this idea to 3 spatial dimensions
- Spatial infinity is described by a 2-sphere
- Finite energy requires $\phi: S^2_{\infty'} \to M_{vac}$.
- Topologically non-trivial solutions exist when $\pi_2(\textit{M}_{\textit{vac}}) \neq 0$
- For the standard model, $M_{\text{vac}} = (SU(2)_L \times U(1)_Y)/U(1)_{EM}$
- $\pi_2(M_{\text{vac}}) = \pi_2(S^3) = 0$
- No electroweak monopoles?

The Ansatz

 Cho and Maison (1997) found electroweak monopoles through the ansatz:

$$\phi = \frac{1}{\sqrt{2}} \rho \xi$$

$$\rho = \rho(r)$$

$$\xi = i \begin{pmatrix} \sin(\theta/2) e^{-i\varphi} \\ -\cos(\theta/2) \end{pmatrix}$$

$$A_{\mu} = \frac{1}{g} A(r) \partial_{\mu} t \hat{r} + \frac{1}{g} (f(r) - 1) \hat{r} \times \partial_{\mu} \hat{r}$$

$$B_{\mu} = -\frac{1}{g'} B(r) \partial_{\mu} t - \frac{1}{g'} (1 - \cos\theta) \partial_{\mu} \varphi$$

Why is this stable?

$$\xi = i inom{\sin(heta/2)e^{-iarphi}}{-\cos(heta/2)}$$
 $B_{\mu} = -rac{1}{g'}(1-\cos heta)\partial_{\mu}arphi$

- Gauge invariance under U(1)_Y implies that the vacuum manifold is defined up to a phase.
- String singularities in both fields at $\theta = \pi$
- Can be removed using a Wu-Yang construction
- Each hemisphere maps onto C¹
- By definition, this corresponds to the Riemann sphere, \mathbb{CP}^1
- $\pi_2(M_{\text{vac}}) = \mathbb{Z}$

- Motivation
- The nature of the monopoles
 - Topological Stability
 - Monopole Mass
- Monopoles and cosmology
 - The Electroweak Phase transition
 - Monopole production
 - Sphaleron Processes
 - Big Bang Nucleosynthesis
- Baryogenesis

The energy

$$\begin{split} E &= E_0 + E_1 \\ E_0 &= 4\pi \int_0^\infty \frac{dr}{2r^2} \left\{ \frac{1}{g'^2} + \frac{1}{g^2} (f^2 - 1)^2 \right\} \\ E_1 &= 4\pi \int_0^\infty dr \left\{ \frac{1}{2} (r\dot{\rho})^2 + \frac{1}{g^2} \left(\dot{f}^2 + \frac{1}{2} (r\dot{A})^2 + f^2 A^2 \right) \right. \\ &+ \frac{1}{2g'^2} (r\dot{B})^2 + \frac{\lambda r^2}{8} (\rho^2 - \rho_0^2)^2 \\ &+ \frac{1}{4} f^2 \rho^2 + \frac{r^2}{8} (B - A)^2 \rho^2 \right\} \end{split}$$

• The first term of E_0 is divergent at the origin.

Regularisation

Cho, Kim and Yoon(2015) proposed a regularisation of the form:

$$g' o rac{g'}{\sqrt{\epsilon}}$$

$$\epsilon = \left(\frac{\phi}{\phi_0}\right)^n$$

- However, g' becomes non-peturbative as $\phi \to 0$.
- This is undesirable in an EFT framework.
- We instead propose a Born-Infeld modification for the U(1)_Y kinetic term.

Born-Infeld modification

• We regularise the $U(1)_Y$ kinetic term by replacing it with:

$$eta^2 \left[1 - \sqrt{-\det\left(\eta_{\mu
u} + rac{1}{eta}B_{\mu
u}
ight)}
ight]$$

$$= eta^2 \left[1 - \sqrt{1 + rac{1}{2eta^2}B_{\mu
u}B^{\mu
u} - rac{1}{16eta^4}(B_{\mu
u} ilde{B}^{\mu
u})^2}
ight]$$

- As $\beta \to \infty$, the SM is recovered.
- The corresponding energy is

$$\begin{split} \int_0^\infty dr \beta^2 \left[\sqrt{(4\pi r^2)^2 + \left(\frac{4\pi}{g'\beta}\right)^2} - 4\pi r^2 \right] \\ &= \frac{4\pi^{5/2}}{3\Gamma\left(\frac{3}{4}\right)^2} \sqrt{\frac{\beta}{g'^3}} \approx 72.8\sqrt{\beta} \end{split}$$

Hence, β acts as a mass parameter for the monopoles.

 Extend the SU(2) sector as well with an independent Born-Infeld term:

$$\beta_1^2 \left[1 - \sqrt{-\det\left(\eta_{\mu\nu} + \frac{1}{\beta_1}B_{\mu\nu}\right)}\right] + \beta_2^2 \left[1 - \sqrt{-\det\left(\eta_{\mu\nu} + \frac{1}{\beta_2}F_{\mu\nu}\right)}\right]$$

Constrained by light by light scattering results (Ellis et al. 2017):

$$\sqrt{eta_{\it EM}} = rac{\sqrt{eta_2}}{\sqrt[4]{\sin^4 heta_W + \cos^4 heta_W ig(rac{eta_2}{eta_1}ig)^2}} \gtrsim 100 {
m GeV}$$

• For $\beta_2 >> \beta_1$ (perturbative unitarity) gives a lower bound for monopole mass of $\sim 9-11 \text{TeV}$

- Motivation
- The nature of the monopoles
 - Topological Stability
 - Monopole Mass
- Monopoles and cosmology
 - The Electroweak Phase transition
 - Monopole production
 - Sphaleron Processes
 - Big Bang Nucleosynthesis
- Baryogenesis

- Motivation
- The nature of the monopoles
 - Topological Stability
 - Monopole Mass
- Monopoles and cosmology
 - The Electroweak Phase transition
 - Monopole production
 - Sphaleron Processes
 - Big Bang Nucleosynthesis
- Baryogenesis

The Electroweak Phase transition

SM high temperature effective potential:

$$V(\phi, T) = D(T^2 - T_0^2)\phi^2 - ET\phi^3 - \frac{1}{4}\lambda_T\phi^4$$

- curvature at the origin changes at $T=T_0$
- the nature of the transition depends on the values of the SM parameters.

First order phase transition

- The minima become degenerate before T₀
- Bubbles of the broken phase form
- collisions lead to gravitational waves, baryogenesis etc.

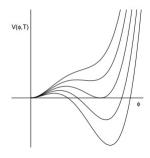


Figure: First order phase transition (Petropoulos, 2003)

Second order phase transition

- The minima never become degenerate
- the universe rolls homogeneously into the broken phase
- predicted by SM parameters

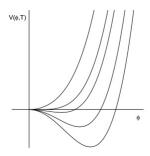
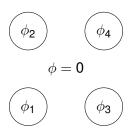
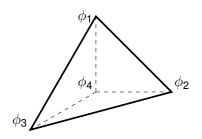



Figure: Second order phase transition (Petropoulos, 2003)

- Motivation
- The nature of the monopoles
 - Topological Stability
 - Monopole Mass
- Monopoles and cosmology
 - The Electroweak Phase transition
 - Monopole production
 - Sphaleron Processes
 - Big Bang Nucleosynthesis
- Baryogenesis

The Kibble Mechanism (Kibble, 1976)

- At $T = T_c$, domains of the broken phase will appear
- The higgs field in each domain takes independent directions on the vacuum manifold


The Kibble mechanism (Kibble, 1976)

- As the Higgs field is continuous, it must be interpolated at the intersections.
- Consider an intersection of four of these domains:

The Kibble mechanism (Kibble, 1976)

- In field space, these points form the vertices of a tetrahedron.
- This tetrahedron should be shrunk to a point at the intersection.
- If these cannot be shrunk to a point continuously, a topological defect in the form of a monopole which continuously joins the two minima.
- The tetrahedron is homotopically equivalent to S^2 .
- Therefore, $\pi_2(\mathbb{CP}^1) = \mathbb{Z}$ implies the existence of monopoles

- Motivation
- 2 The nature of the monopoles
 - Topological Stability
 - Monopole Mass
- Monopoles and cosmology
 - The Electroweak Phase transition
 - Monopole production
 - Sphaleron Processes
 - Big Bang Nucleosynthesis
- Baryogenesis

Sphaleron Processes

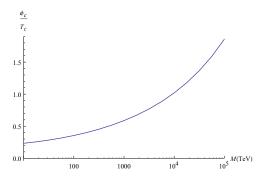
- Sphaleron mediated scattering processes occur in the unbroken phase
- They violate B+L in units of $\Delta B=\Delta L=3$
- If unsuppressed, they washout any pre-existing baryon number.
- Supression in the broken phase requires a 1st order EWPT with $\frac{\phi_c}{T_c}\gtrsim 1$.

The electroweak phase transition

• The Gibbs free energy:

$$G_{\it u} = V(0) \ G_{\it b} = V(\phi_{\it c}(T)) + E_{\it monopoles}$$

• At the critical temperature:


$$V(0) = V(\phi_c(T_c)) + E_{\text{monopoles}}$$

• Assuming T << M,the monopoles are decoupled and $E_{monopoles} = M \times n_M$

The initial density

- $n_M \approx \frac{1}{d^3}$ where *d* is the separation of two uncorrelated monopoles.
- This is chosen to be the Coulomb capture distance.
- Hence, $n_M \approx \left(\frac{4\pi}{h^2}\right)^3 T^3$

Results

• Sphaleron processes are suppressed for $M > 0.9 \cdot 10^4$ TeV.

- Motivation
- The nature of the monopoles
 - Topological Stability
 - Monopole Mass
- Monopoles and cosmology
 - The Electroweak Phase transition
 - Monopole production
 - Sphaleron Processes
 - Big Bang Nucleosynthesis
- Baryogenesis

The constraint

- The monopole density should not dominate the universe at the time of helium synthesis. This implies:
- $\frac{n}{T^3}\Big|_{T=1\text{MeV}} < \frac{1\text{MeV}}{M}$
- Hence, the evolution of the number density over time must be considered:

$$\frac{dn_M}{dt} = -Dn_M^2 - 3Hn_M$$

• This constrains the mass of the monopole to $M \lesssim 2.3 \cdot 10^4$ TeV.

- Motivation
- The nature of the monopoles
 - Topological Stability
 - Monopole Mass
- Monopoles and cosmology
 - The Electroweak Phase transition
 - Monopole production
 - Sphaleron Processes
 - Big Bang Nucleosynthesis
- Baryogenesis

Sakharov conditions

- In 1967, Andrei Sakharov proposed three conditions for baryogenesis to occur:
 - Baryon number violation
 - C and CP violation
 - Departure from thermal equilibrium- Heavy monopoles.

C and CP-violation

• Consider the θ - terms:

$$\mathcal{L}_{ heta} = heta_2 F^a_{\mu
u} ilde{F}^{a\mu
u} + heta_1 B_{\mu
u} ilde{B}^{\mu
u}$$

- In the ususal case:
 - hypercharge sector is topologically trivial, and hence, θ₁ is unphysical
 - θ₂ can be rotated away by a B + L-rotation of quarks and leptons.
 - no CP-violation

C and CP-violation

• Consider the θ - terms:

$$\mathcal{L}_{ heta} = heta_2 F^a_{\mu
u} ilde{F}^{a\mu
u} + heta_1 B_{\mu
u} ilde{B}^{\mu
u}$$

- In the ususal case:
 - hypercharge sector is topologically trivial, and hence, θ₁ is unphysical
 - θ₂ can be rotated away by a B + L-rotation of quarks and leptons.
 - no CP-violation

- With electroweak monopoles:
 - Monopoles gain an electric charge through the Witten effect
 - Supports θ₁
 - Only one can be rotated away
 - a new source of CP violation

B + L-violation

$$\mathcal{L}_{ heta} = heta_{ extsf{ew}} extsf{F}^{ extsf{a}}_{\mu
u} ilde{ extsf{F}}^{ extsf{a}\mu
u} \; ,$$

• Topologically inequivalent vacuum configurations related by large gauge transformations $g \in SU(2)_L$ give rise to the θ_{ew} -vacuum structure.

$$|M, \theta_{ew}\rangle = \sum_{n=-\infty}^{n=+\infty} e^{in\theta_{ew}} (U[g])^n |M, 0\rangle.$$

- monopole-antimopole pair that carries $\Delta n = 1$ topological charge, would annihilate into 9 quarks and 3 leptons, giving rise to $\Delta B = \Delta L = 3$.
- not suppressed even at zero temperature (Callan, 1982) (Rubakov, 1981)

Baryon asymmetry of the universe

$$\frac{d\bar{n}_B}{dt} = -\kappa \theta \frac{dn_M}{dt}$$

- \(\bar{n}_B\) is the difference in the number densities of matter and antimatter
- κ describes the asymmetry generated in each collision
- for monopoles, $n_{M0} >> n_{Mf}$.
- Hence,

$$\bar{n}_B \approx \kappa \theta n_0 = \kappa \theta \alpha_{EM}^3 T_c^3$$

Baryon asymmetry of the universe

• The asymmetry parameter, η_B , can now be evaluated:

$$\eta_B = rac{ar{n}_B}{s} = \kappa heta rac{45lpha_{\mathsf{EM}}^3 T_c^3}{2\pi^2 g_\star T_f^3}$$

- $1.6 \times 10^{-8} \kappa \theta < \eta_B < 2.5 \times 10^{-7} \kappa \theta$.
- Empirical values for the asymmetry parameter $\eta_B \approx 10^{-10}$ can be accommodated for with $\kappa \theta_{ew} \sim 10^{-3} 10^{-2}$.

Conclusion

- Finite energy monopoles exist in the Standard model with a Born-Infeld extension.
- The mass is related to the Born-Infeld parameters
- Sphaleron mediated processes can be made ineffective in the broken phase while remaining under the nucleosynthesis constraints.
- This occurs for monopoles with a mass of $(0.9 2.3) \cdot 10^4$ TeV.
- Baryon asymmetry of the universe can be accounted for through this mechanism