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The Einstein-Hilbert Action

The Einstein-Hilbert Action gives us the Einstein Field Equations
o R
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- Risthe only independent scalar which we can construct (up to
second derivatives) of the metric

- The metric is split up as g, = 1, + hy, to find the wave
equation



Why Modify General Relativity?

General Relativity is the simplest theory coupling spacetime
curvature to matter

Good reason to look at modified theories

- Interaction with quantum matter, should be a limit from any
quantum theory of gravity

We can consider modified theories by adding terms to the Hilbert
action, as long as they

- Are diffeomorphism invariant, scalar, etc
- Limit correctly to GR, and Newtonian gravity

What effect do these modifications have?

- Must look at strong gravity
- = Binary Systems are an ideal testing ground



The Post-Newtonian Formalism

The Post-Newtonian (PN) formalism is an iterative expansion scheme
in v/c, for arbitrarily precise solutions to the Einstein field equations

- Requires slow moving, weakly stressed sources (valid for
inspiralling binary black holes up to v/c = 0.5)

- Naturally includes non-linearity and higher multipole
characteristics

- Convention is to just track 1/c", and call those terms "ZPN order”

OPN order is called the "Newtonian” order, and GR only affects
dynamics at higher orders
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Project Aim

To investigate gravitational waves from binary systems in the early

inspiral phase, given by an effective field theory applicable only in
the low energy/curvature regime
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Figure 1: The orange section illustrates the early inspiral phase [1]



We can modify GR by adding in all independent terms up to 4th
derivatives of the metric [2]

S= /d‘*x\/ [ + BR? + YRR,

- These are unavoidable from one-loop renormalisation of matter
with semi-classical gravity



We can interpret the extra degrees of freedom from the quadratic
terms as a massive spin-0 field ¢, and a massive spin-2 field mus. SO
essentially the quadratic terms can be rewritten as
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Modelling The Binary Inspiral

We introduce a source term that models a binary system of two
point particles with masses mg, and 4-velocities v4
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where the metric is conformally constructed as
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Linearised Equations Of Motion

Finding the linearised field equations for ¢, and ,,, gives
Yukawa-like solutions, and the GR solution is what we expect
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The solutions look just like the regular GR potential, expect they
have a exponential mass suppression. Note the signs, where the
spin-0 field is attractive, while the spin-2 field is repulsive.



The Conservation Equation

In order to calculate the waveform we can invoke the conservation
equation
V. =0

Then the relative acceleration to Newtonian order is
=2 GM ., —Mer —Maxr
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where r = |, — ¥»|, and A = (i, — ¥)/r. The spin-0 field is indeed
attractive, while the spin-2 field is repulsive.




Energy Balance Equation

Using the acceleration we find the energy
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We see that the spin-0 field takes away energy, while the spin-2 field
gives energy to the black hole.

Since energy lost from the black hole is what we observe, we assume

the balance equation
dE

=7

The far-field flux will be highly suppressed for the massive fields.



The Stationary Phase Approximation

We can assume a GW signal with amplitude A(t), and phase ®(t)
takes the form [5]
h(t) = 2A(t) cos ®(t)

In the Stationary Phase Approximation (SPA), the frequency domain
signal is given by the following
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where the parameter tf is given by the time when d®(t)/dt = 2xf.
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The Inspiral Waveform

Using the energy balance equation the leading corrections to the GR
waveform phase of the binary inspiral is given as
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where x = (GMQ)% is a frequency-related parameter, and v = T2 is
the symmetric mass ratio.

Inside the bracket, the terms with x° are associated with the
Newtonian (quadrupole) order, whereas the x~" are associated with
the dipole order.



The Fourier Coefficients

Following the SPA prescription we obtain the relation for &(ty)
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In GR the -1PN order coefficient is zero, however in our modified
case it is not zero
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Parameters of Quadratic Gravity

The absolute deviation of the -1PN phase has been constrained from
gravitational wave data to be |§p_1py| < 1072
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Taking the typical values f = 75Hz, and M = 30M,, the masses should
satisfy the inequalities separately
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Rewritten as limits on the original dimensionless parameters of
quadratic gravity
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We were able to recast the quadratic gravity degrees of freedom as a
massive spin-0 and spin-2 field alongside the usual massless spin-2
graviton, and derived linear, lowest order field equations

To Newtonian order, they respectively act as attractive, and repulsive
Yukawa potentials

Found the -1PN correction to the GW phase of an inspiralling binary
system in quadratic gravity

Placed constraints on quadratic gravity from GW observations from
the LIGO, and Virgo Collaborations
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Definition Of Terms

The mass terms are

i, —
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The © term is defined as
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The symmetric mass ratio terms are
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Quadratic Gravity As An Effective Field Theory

We cutoff our Lagrangian at quadratic order to avoid non
renormalisability at the 2-loop level

Stelle [2] noted the negative norm states of the massive spin-2 field
- We must interpret this as an effective field theory
Quick calculation to show realm of validity
/Vlf)R > qRIvad - /\/lép2 > ap*(In momentum space)
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We can then see that far-field plane waves eiwt=F) are suppressed
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Recasting The Lagrangian

S= / d*xv/=g [ + BR? +7R“”RW}
Setting S, = R — 19wk and a = B+ 7
- fans[f o

Using Lagrange multipliers, and the following conformal
transformation

gjpu = nguu Qz = (1 + \/ﬂgb)
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Separating 7 from h#v we obtain the final result
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Details On The Waveform Calculations

We start from the balance equation

dE

=7

Using the chain rule our energy balance equation becomes
dE dx dp d©

xdpdedt = 7
We can calculate the third term by
de o de _ 5 3/2
-t T deT
The usual GR flux in terms of x
F = £V2X5
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Details On The Fourier Calculations

To get ¢ as a function of time t from x, we rewrite x as a function of
time

x(t) = f(e(y))
= ¢(t) = 9(8(1))

To find tf we take derivatives

do(t) _
-
R0
= tf = ...

Insert everything back into v (f) to obtain the Fourier coefficients
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Details On The Fourier Calculations
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Cao el al. had a constraint of | 3] oc 108°. Our results being 3 orders of
magnitude stronger.

The method they used was to consider an f(R) gravity theory which
then can be simplified down to a coupled Einstein-Klein-Gordon
equation. The numerical analysis was done to obtain the bounds on
the coefficient.
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