

Thermal production of axions

Giovanni Pierobon

In collaboration with F. D'Eramo and A. Notari

Università degli Studi di Padova The University of New South Wales Sydney Meeting 2020

Motivations

Sydney Meeting 2020

Motivations

Sydney Meeting 2020

Motivations

Cosmological populations

Results in thermal production

$$\mathscr{L}=-rac{1}{4}G^a_{\mu
u}G^{\mu
u}_a+ar{q}(i\not\!\!D-m_q)q+$$

$$\mathscr{L} = -\frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a} + \bar{q} (i \not\!\!D - m_q) q + \underbrace{\frac{\alpha_s}{8\pi} \theta G^{a}_{\mu\nu} \tilde{G}^{\mu\nu}_{a} - (\bar{q}_R e^{i\theta_Y} m_q q_L + \text{h.c.})}_{\text{CP violating}}$$

$$\mathscr{L} = -\frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a} + \bar{q} (i\not\!\!D - m_q)q + \underbrace{\underbrace{\frac{\alpha_s}{8\pi} \theta G^{a}_{\mu\nu} \tilde{G}^{\mu\nu}_{a} - (\bar{q}_R e^{i\theta_Y} m_q q_L + \text{h.c.})}_{\text{CP violating}}$$

- Instantons contribute because of complexity of QCD vacuum, effect $\sim e^{-8\pi^2/g_s^2}$
- Physical parameter $\bar{\theta} = \theta + N_f \theta_Y$

$$\mathscr{L} = -\frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a} + \bar{q} (i\not{D} - m_{q})q + \underbrace{\underbrace{\frac{\alpha_{s}}{8\pi} \theta G^{a}_{\mu\nu} \tilde{G}^{\mu\nu}_{a} - (\bar{q}_{R}e^{i\theta_{Y}}m_{q}q_{L} + \text{h.c.})}_{\text{CP violating}}$$

- Instantons contribute because of complexity of QCD vacuum, effect $\sim e^{-8\pi^2/g_s^2}$
- Physical parameter $\bar{\theta} = \theta + N_f \theta_Y$
- Neutron EDM induced $d_N = \bar{\theta} \times 10^{-16} e$ cm
- Experimentally never observed

$$|d_n| < 2.9 \times 10^{-26} \ e \ {
m cm}$$

Svdnev Meeting 2020

$$|ar{ heta}| < 10^{-10}$$

New global axial symmetry $U(1)_{PQ}$

New global axial symmetry $U(1)_{PQ}$

• Spontaneously broken by the vacuum

$$V(\varphi) = \lambda \left(|\varphi|^2 - \frac{f_a^2}{2} \right)^2 \quad \varphi(x) = \rho(x) e^{i\phi(x)/f_a}$$

New global axial symmetry $U(1)_{PQ}$

• Spontaneously broken by the vacuum

$$V(\varphi) = \lambda \left(|\varphi|^2 - \frac{f_a^2}{2} \right)^2 \quad \varphi(x) = \rho(x) e^{i\phi(x)/f_a}$$

- Classical shift symmetry $\phi \to \phi + {\rm const}$

$$\mathscr{L}_{\phi} = rac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + rac{\phi(x)}{f_{a}} rac{lpha_{s}}{8\pi} G \tilde{G} + \mathscr{L}_{int}$$

New global axial symmetry $U(1)_{PQ}$

• Spontaneously broken by the vacuum

$$V(\varphi) = \lambda \left(|\varphi|^2 - \frac{f_a^2}{2} \right)^2 \quad \varphi(x) = \rho(x) e^{i\phi(x)/f_a}$$

- Classical shift symmetry $\phi \to \phi + {\rm const}$

$$\mathscr{L}_{\phi} = rac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + rac{\phi(x)}{f_{a}} rac{lpha_{s}}{8\pi} G \tilde{G} + \mathscr{L}_{int}$$

• Explicitly broken (at quantum level) by $G\tilde{G}$ and instantons at Λ_{QCD}

New global axial symmetry $U(1)_{PQ}$

• Spontaneously broken by the vacuum

$$V(\varphi) = \lambda \left(|\varphi|^2 - \frac{f_a^2}{2} \right)^2 \quad \varphi(x) = \rho(x) e^{i\phi(x)/f_a}$$

- Classical shift symmetry $\phi \to \phi + {\rm const}$

$$\mathscr{L}_{\phi} = rac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + rac{\phi(x)}{f_{a}} rac{lpha_{s}}{8\pi} G \tilde{G} + \mathscr{L}_{int}$$

- Explicitly broken (at quantum level) by $G\tilde{G}$ and instantons at Λ_{QCD}
- $\bar{\theta} \to \bar{\theta}(x) = \phi(x)/f_a$ Minimum is CP conserving

Properties and models

The QCD potential sources a mass term for low *E*, below Λ_{QCD} :

$$\phi \cdots 1/f_a$$
 $\phi \cdots p_a -1/f_a$ $m_a^2 \simeq \frac{m_\pi^2 f_\pi^2}{f_a^2}, \quad m_a \sim 6 \text{ meV} \frac{10^9 \text{ GeV}}{f_a}$

The QCD potential sources a mass term for low *E*, below Λ_{QCD} :

$$\phi \cdots 1/f_a \cdots \phi \qquad m_a^2 \simeq \frac{m_\pi^2 f_\pi^2}{f_a^2}, \quad m_a \sim 6 \text{ meV} \frac{10^9 \text{ GeV}}{f_a}$$
Invisible axions: $f_a >> v_{EW}$

Sydney Meeting 2020

The QCD potential sources a mass term for low *E*, below Λ_{QCD} :

$$\phi \cdots f_a$$
 $m_a^2 \simeq \frac{m_\pi^2 f_\pi^2}{f_a^2}, \quad m_a \sim 6 \text{ meV} \frac{10^9 \text{ GeV}}{f_a}$

Invisible axions: $f_a >> v_{EW}$

I) DFSZ model

- Two Higgs doublets model H_u, H_d
- SM fermions carry PQ charge c_{ψ}

$$\frac{\partial_{\mu}\phi}{2f_{a}}c_{\psi}\bar{\psi}\gamma^{\mu}\gamma_{5}\psi$$

The QCD potential sources a mass term for low *E*, below Λ_{QCD} :

$$\phi \cdots 1/f_a$$
 $m_a^2 \simeq \frac{m_\pi^2 f_\pi^2}{f_a^2}, \quad m_a \sim 6 \text{ meV} \frac{10^9 \text{ GeV}}{f_a}$

Invisible axions: $f_a >> v_{EW}$

- Two Higgs doublets model H_u, H_d
- SM fermions carry PQ charge c_{ψ}

$$\frac{\partial_{\mu}\phi}{2f_{a}}c_{\psi}\bar{\psi}\gamma^{\mu}\gamma_{5}\psi$$

- New heavy quarks Q^*
- The new quarks carry PQ charge

$$\frac{\partial_{\mu}\phi}{2f_{a}}c_{Q^{\star}}\bar{Q^{\star}}\gamma^{\mu}\gamma_{5}Q^{\star}$$

Cosmological populations

- Thermal axions
- Non-thermal axions: misalignment and topological defects
 → Important to relate f_a to the scale on inflation!

- Thermal axions
- Non-thermal axions: misalignment and topological defects
 - \rightarrow Important to relate f_a to the scale on inflation!

Vacuum realignment

We study the evolution of the ϕ field

$$\ddot{\phi} + 3H\dot{\phi} + m_a^2\phi = 0$$

- At high *T* the axion field has a random initial value, and is *frozen*
- When $m_a(T_{osc}) \approx 3H(T_{osc})$ it starts oscillating

$$T_{osc} = 1.18 \left(rac{10^{12} \ {
m GeV}}{f_a}
ight)^{0.185} \ {
m GeV}$$

• The field coherently oscillates producing a non-relativistic population of axions

$$ho_\phi \propto R^{-3}$$

Hot axions: dark radiation

- Thermal production: $x_1 + x_2 \leftrightarrow x_3 + \phi$
- Solve Boltzmann equation
- Axions contribute to N_{eff}

$$\frac{dn_{\phi}}{dt} + 3Hn_{\phi} = \Gamma(n_{\phi}^{eq} - n_{\phi}) \qquad \Delta N_{eff} = N_{eff} - N_{eff}^{(SM)} \propto \frac{\rho_{\phi}}{\rho_{\gamma}}$$

Hot axions: dark radiation

- Thermal production: $x_1 + x_2 \leftrightarrow x_3 + \phi$
- Solve Boltzmann equation
- Axions contribute to $N_{\rm eff}$

$$\frac{dn_{\phi}}{dt} + 3Hn_{\phi} = \Gamma(n_{\phi}^{eq} - n_{\phi}) \qquad \Delta N_{eff} = N_{eff} - N_{eff}^{(SM)} \propto \frac{\rho_{\phi}}{\rho_{\gamma}}$$

- $\Delta N_{
 m eff} \propto g_{*s}^{-4/3}$
- We focus on $T_d \sim T_{EW}$
- CMB-S4 will reach sensitivity $\Delta N_{\rm eff} \sim 0.01$

Cold axions

• Non-thermal production mechanisms

$$\begin{split} \Omega_a h^2 &\sim 0.15 \left(\frac{f_a}{10^{11} \text{ GeV}}\right)^{1.18} \bar{\theta}_i^2 \\ \text{Scenario A: } f_a &> T_R \\ f_a &\gtrsim 10^{10} \text{ GeV} \\ \text{Scenario B: } f_a < T_R, \quad \langle \bar{\theta}_i \rangle \sim \mathcal{O}(1) \\ \text{Scenario B: } f_a &\leq 10^{11} \text{ GeV} \\ \text{Scenario B: } f_a &\leq 10^{11$$

Hot thermal axions

• Production in our DFSZ and KSVZ models

Results in thermal production

$$\mathscr{L} = \mathscr{L}_{SM} + \frac{1}{2} (\partial_{\mu} \phi)^{2} + \frac{\phi}{f_{a}} \sum_{X} \frac{\alpha_{X}}{8\pi} C_{XX} \operatorname{tr} X_{\mu\nu} \tilde{X}^{\mu\nu} + \frac{\partial_{\mu} \phi}{2f_{a}} \sum_{\psi} c_{\psi} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi$$

$$\mathscr{L} = \mathscr{L}_{SM} + \frac{1}{2} (\partial_{\mu} \phi)^{2} + \frac{\phi}{f_{a}} \sum_{X} \frac{\alpha_{X}}{8\pi} C_{XX} \text{tr} X_{\mu\nu} \tilde{X}^{\mu\nu} + \frac{\partial_{\mu} \phi}{2f_{a}} \sum_{\psi} c_{\psi} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi$$

Axion couplings

• Model independent $\phi G \tilde{G}$ operator,

subdominant w.r.t. y_t

• Derivative \rightarrow Yukawa

$$\frac{ic_{\psi}m_{\psi}}{f_{a}}\phi\bar{\psi}\gamma_{5}\psi$$

• Leading top-axion operator at the EW scale $tX \rightarrow t\phi$

$$\mathscr{L} = \mathscr{L}_{SM} + \frac{1}{2} (\partial_{\mu} \phi)^{2} + \frac{\phi}{f_{a}} \sum_{X} \frac{\alpha_{X}}{8\pi} C_{XX} \operatorname{tr} X_{\mu\nu} \tilde{X}^{\mu\nu} + \frac{\partial_{\mu} \phi}{2f_{a}} \sum_{\psi} c_{\psi} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi$$

Axion couplings

• Model independent $\phi G \tilde{G}$ operator,

subdominant w.r.t. y_t

$$\bullet \ \ \mathsf{Derivative} \to \mathsf{Yukawa}$$

 $\frac{ic_{\psi}m_{\psi}}{f_{a}}\phi\bar{\psi}\gamma_{5}\psi$

• Leading top-axion operator at the EW scale $tX \rightarrow t\phi$

$$\mathscr{L} = \mathscr{L}_{SM} + \frac{1}{2} (\partial_{\mu} \phi)^{2} + \frac{\phi}{f_{a}} \sum_{X} \frac{\alpha_{X}}{8\pi} C_{XX} \operatorname{tr} X_{\mu\nu} \tilde{X}^{\mu\nu} + \frac{\partial_{\mu} \phi}{2f_{a}} \sum_{\psi} c_{\psi} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi$$

SM couplings

- $X = \{g, \gamma, W^{\pm}, Z, h\}$
- $g_s > y_t > g_W > e$

• $tg \rightarrow t\phi + \text{EW corr.}$

Axion couplings

• Model independent $\phi G \tilde{G}$ operator,

subdominant w.r.t. y_t

• Derivative
$$\rightarrow$$
 Yukawa

$$\frac{ic_{\psi}m_{\psi}}{f_{a}}\phi\bar{\psi}\gamma_{5}\psi$$

• Leading top-axion operator at the EW scale $tX \rightarrow t\phi$

Numerical results

Comoving axion abundances for $f_a/c_t = 10^8$ GeV:

Numerical results

Sydney Meeting 2020

Axion parameter space

 $6 \times 10^8 \text{ GeV} \lesssim f_a^{\mathsf{DFSZ}} \lesssim 2 \times 10^9 \text{ GeV} \qquad 5 \times 10^8 \text{ GeV} \lesssim f_a^{\mathsf{KSVZ}} \lesssim 2 \times 10^{10} \text{ GeV}$

Svdnev Meeting 2020

Sydney Meeting 2020

Backup slides: nEDM

- The nEDM is a measure for the distribution of positive and negative charge inside the neutron
- Under *T*, μ_N changes its direction, whereas d_N stays unchanged
- Under *P*, the d_N changes its direction but not μ_N

• Measurable with Larmor precession of the neutron spin inside a parallel and anti-parallel **E** and **B** fields

$$h\nu = 2\mu_N B \pm 2d_N E, \qquad d_n = \frac{h\Delta\nu}{4E}$$

Backup slides: axion CDM

Scenario A: $f_a > T_R$

- Only vacuum realignment contribution
- Crucially depends on the initial angle

$$\left(\Omega_a h^2 \sim 0.15 \left(rac{f_a}{10^{11} \; {
m GeV}}
ight)^{1.18} ar{ heta}_i^2
ight)$$

• Wide range of possible scales: $f_a\gtrsim 10^{10}~{\rm GeV}$

Scenario B: $f_a < T_R$

- Vacuum realignment and topological defects contributions
- The initial angle value is averaged over different causal patches

$$\fbox{$\Omega_a h^2 \sim 0.7 \left(\frac{f_a}{10^{11} \text{ GeV}}\right)^{1.18}$}$$

• Limited window: $10^9~{\rm GeV} \lesssim f_a \lesssim 10^{11}~{\rm GeV}$