

Leptonic and Semi-leptonic Decays at the Belle II Experiment

Nadia Toutounji

USyd-UNSW Meeting, 21.02.2020

Overview

- The Belle II Experiment
- Prospects and motivation for (semi-)leptonic decays at Belle II
- Analysis strategies and software
- Recent physics results

The Belle II Experiment

- Successor to Belle first observation of CP-violation in neutral *B*-mesons, along with BaBar in Stanford. *arXiv:hep-ex/0107061*
- SuperKEKB accelerator collides asymmetric beams of 4.0 GeV positrons e⁺ and 7.0 GeV electrons e⁻
- Center-of-mass energy of collision at Y(4S) (bb) resonance → produces a pair of B-mesons > 96% of the time. Chin.Phys.C,40,100001
- Primary aim is to measure the branching fractions of rare decays in the search for new physics
- First collisions April 2018!

Phys. Rev. Accel. Beams 19, 121001

SuperKEKB

- Collected over 10 fb^{-1} of data so far equivalent to more than 10 million $B\bar{B}$ pairs
- Target total integrated luminosity of 50 ab^{-1} 50 times larger than Belle

The Belle II Detector

Why Study (Semi-)Leptonic Decays at Belle II?

Probe rare decays with sensitivity to new physics:

e.g. $B \rightarrow \tau v$

A charged Higgs proposed by the Two Higgs Doublet Model (2HDM) could mediate the decay instead of a W boson.

Interference between the two processes would cause a deviation in the branching fraction from SM predictions.

e.g. Tension in $B \rightarrow X_c \tau v$ measurements

Most recent combined results from Belle and BaBar show a deviation from the SM of 1.9σ and 3.3σ for R(D) and $R(D^*)$

RevModPhys.88.035008

$$R(D) = \frac{\Gamma(B \to D\tau\bar{\nu})}{\Gamma(B \to D\ell'\bar{\nu})} = 0.297 \pm 0.017,$$

$$R(D^*) = rac{\Gamma(B o D^* au ar
u)}{\Gamma(B o D^* \ell ar
u)} = 0.252 \pm 0.003.$$

SM Prediction

Why Study (Semi-)Leptonic Decays at Belle II?

Precision measurements of Standard Model Parameters:

e.g. extracting $|V_{ub}|$ from an exclusive analysis of $B \rightarrow \pi lv$ (my thesis topic)

Discovery of rare decays:

$e.g. \; B \rightarrow \mu \nu$

Recent Belle result found a 2.4 σ excess above background, with a branching fraction of $\mathcal{B}(B^- \rightarrow \mu^- \bar{v}_{\mu}) = (6.46 \pm 2.22 \pm 1.60) \times 10^{-7}$ and an upper limit of 10.7 x 10⁻⁷ at a 90% confidence interval. *Phys. Rev. Lett.* 121, 031801

Belle \rightarrow Belle II 711 fb⁻¹ \rightarrow 50 ab⁻¹

Analysing (Semi-)Leptonic Decays at Belle II

21/02/2020

Nadia Toutounji, Usyd-UNSW Meeting

$$B_{sig} \rightarrow Xev_e$$
 with Hadronic FEI Tagging

William Sutcliffe, BELLE2-NOTE-PL-2019-030 (+ cross-check by myself)

Reconstruction of an inclusive semi-leptonic signal side recoiling against a hadronic tag.

Only the B_{tag} and the electron are reconstructed in the event – the neutrino escapes and all other remaining particles are assigned to the X system.

$$M_{miss}^2 = (p_{beam} - p_{B_{tag}} - p_{\ell} - p_{\Upsilon(4S)_{ROE}})^2$$

"Re-discovery" of $B \rightarrow Xev_e$ in early Belle II data

Untagged Analysis of $B^0 \rightarrow D^* lv$

Minakshi Nayak, BELLE2-NOTE-PL-2019-008

Here, the signal-side is reconstructed from a lepton and a D^* meson with decay chain:

 $D^{*_{+}} \rightarrow D^{0}(D^{0} \rightarrow K^{-} \pi^{+})\pi^{+}$

O(1100) events are found for $B^0 \rightarrow D^*ev$, and O(1200) for $B^0 \rightarrow D^*\mu v$ (not pictured)

$$\cos \theta_{BY} = \frac{2E_B^* E_Y^* - M_B^2 - m_Y^2}{2p_B^* p_Y^*}$$
$$m_{\rm miss}^2 = \left(\frac{P_{ee}}{2} - P_Y^*\right)^2$$

"Re-discovery" of $B^0 \rightarrow D^* l v$ in early Belle II data

Summary

- The Belle II Experiment is in full swing and has already collected > 10 fb⁻¹ of data
- Upgrades to both the accelerator and detector from Belle aim to produce 50 times the Belle dataset at an improved performance
- Upgraded software tools are also available and currently being used for analysis
- Many prospects for the analysis of (semi-)leptonic decays, with an emphasis on the search for new physics beyond the Standard Model
- Exciting results with this early data-set have already been produced
 - stay tuned for more results in the coming years!