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Intro: MACHOs @

MACHQOs: Motivation

> MAssive Compact Halo Objects
> Black holes (BHs) definitely! exist

» LIGO BHs (30 Mg) don't have clear astrophysical origin
» Primordial Black Holes? (PBHs)

> Hope?
> Haven't seen any other DM yet (except for inside one mountain in

Italy)
> If they're very small- they'd have to be nearby!

» Constraints have more wiggle room than people realize

10K, probably, but probably definitely

Zachary S. C. Picker, University of Sydney
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MACHQO Constraints

» Microlensing: MACHOs pass in
front of distant stars, increasing
brightness

> Microlensing timescale depends
on mass, distance, etc
» SMC and LMC are commonly
used, also M31 -

> =100 days for 1M,
> = years for > 10M

» Uncertainties:

> Halo model: local DM - T e ' ¢
! 0g,o[M/M,)
density, DM speed, halo
shape

Figure 1: DM fraction f as function of

» .
MACHO power spectrum: ) (i mass M. (Green 2017)

“monochromatic” usually

assumed
Zachary S. C. Picker, University of Sydney 4
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Astrophysical Constraints

» Dwarf galaxy mass segregation
constraint
> Tightest star cluster

» Dynamical heating puffs up
stellar systems in dwarf
galaxies

> CMB constraints
> Screw with ionization history
= CMB anisotropies
» Ali-Haimoud, Kovetz, and
Kamionkowski 2017 claim these
don't apply to LIGO mass
PBHSs

Zachary S. C. Picker, University of Sydney

log,[M/M,]

Figure 2: DM fraction f as function of
MACHO mass M. (Green 2017)
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Binary Formation Constraints

> LIGO binary merger rates are

consistent with 100% DM

> If binaries form in galaxy
halos

» PBH Binaries might decouple

from Hubble flow in early
universe

» = Orders of magnitude more

events than LIGO sees

Zachary S. C. Picker, University of Sydney
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Figure 3: DM fraction f as function of
MACHO mass M. (Ali-Haimoud,
Kovetz, and Kamionkowski 2017)
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Microlensing in Detail

Source plane Lens plane

____________________ Observer

| Ds |

Figure 4: Microlensing geometry in the thin lens approximation. Sasaki et al.
2018

Zachary S. C. Picker, University of Sydney
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Finding the Photon Metric

Begin with some gravity theory:

A= /d4x\/—g [f(invariants) + Loaiter) (1)
Roughly comparing kinetic energy and potential energy of gravitating
bodies,

)  GM

r

v

()

If one is interested in Post-Newtonian (PN) corrections to body
dynamics, we can expand in this parameter:

goo =1+ 9(()%)) +04),  9u=003), gij=—0;+ gﬁ) +0(4)
(3)

Zachary S. C. Picker, University of Sydney 8



Microlensing in Detail co®
Finding the Photon Metric
Assuming some extra symmetry, we can define
9 =206, o) =20 (4)
So to lowest order, the invariant is
ds? = (14 2®)dt* — (1 — 2V)d;;dx"dx’ (5)
Finally we should write this in Schwarzschild-like coordinates:
r? = x's [1 —2U( x’ajz)} (6)

Then expanding to lowest order in r5/r = 2GM /r, you will finally find,
with some suitable redefinitions,

ds? =0 = (1 - Ea(r)) dt? — (1 + %A(T)) dr? — 129, (7)

r

Zachary S. C. Picker, University of Sydney 9
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Deflection Angle

Our photon metric is symmetric in time and rotation, so we have two
constants of motion

= differential equation for r
Then the deflection angle is just

¢fin o0 ¢
E—7T—|—/ d¢:—7r+2/ = dr (8)
0 0 +

7

We have the condition 74|,, = 0, where r¢ is impact parameter, allowing
us to remove the constants of motion and find:

o0 V1+ A
a:—w+2/ dr ) 9)
ro
”

Have fun solving this! | know some tricks so if you want help, you know
where to find me...

Zachary S. C. Picker, University of Sydney
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Microlensing in Detail

Source plane Lens plane

____________________ Observer

| Ds |

Figure 5: Microlensing geometry in the thin lens approximation. Sasaki et al.
2018

Zachary S. C. Picker, University of Sydney 11



Microlensing in Detail °

Einstein Radius

If you're a particle physicist, you can probably figure out a way to make
your gravity theory into extra (maybe massive) modes. In which case,
your answer to the above integral is likely:

a=2" (1+a+be ™), (10)
7o
From the geometry,
520—04DL/D5', Hzro/DL (1]_)
2rsD
= 0=0%—-0% (1 +a+ be*’"’geDL> — B0, 6p =y T (12)
DrDg

When m, << rg, and the sources are aligned, this is easy to solve, and
we have our (modified) Einstein Radius:

Ry" ~ RgvV1+a+b, Rp =0pDr. (13)

Zachary S. C. Picker, University of Sydney 12
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Event Rate

» For microlensing, the Einstein Radius is unresolvable
> But, the source gets brighter for the time it takes the lens to move

past the source
> Larger Einstein Radius = longer increase in brightness

The total number of expected microlensing events is
Nexp = Nstars F(m) tobs E(m) (14)

If a choice of f, m predict >3 events, and none are seen, we can reject
them with 95% confidence. (Griest 1991)

Zachary S. C. Picker, University of Sydney 13
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Event Rate

The microlensing event rate I' depends on the halo model and Einstein
Radius (Griest 1991):

vvyyvyy v

v

M. Dg dD; Rnew
F:\/?T(‘povchn@UT/ LDED2 (15)
L L
o (A+BB+ D—%)
R%cw 0.6 RE = 27'57DL(DD§S_DL)

> Peaks at Dy, = $Dg
po: Local DM density
Ve Sun's circular velocity
f: MACHO DM fraction
ur: slightly corrects Einstein Radius for the microlensing tube an
experiment can actually see
denominator in integral: accounts for Earth's position and a halo
model with a Galactic core

Zachary S. C. Picker, University of Sydney 14
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Modifications of Gravity

» RV < Rp=1""<T
» = One can proportionately lift the constraints on f
> In Bekenstein and Sanders 1994, they predicted any scalar-tensor
gravity theory would decrease lensing
» For m = 1M MACHOs, the impact parameter 7 is about 1 Au, at
1
DL - EDS
> Need significant modification on this scale
> Must still comply with constraints, eg solar system bounds, LIGO
bounds, etc.

Zachary S. C. Picker, University of Sydney 15
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Modifications of Gravity

We looked at two particular modifications so far:
» Quadratic Gravity: f(invariants) = R+ SR? + YR R,

» Does in fact decrease the Einstein Radius
» But- its short range and well constrained by binary inspirals (Kim,
Kobakhidze, and Picker 2019)

> (Don't believe referees 1 and 3...)
» Bimetric Gravity: Two coupled metrics
> Generalization of ghost-free massive gravity- originally the Fierz-Pauli

theory
» Veinshtein screening mechanism
» Mixing angle parameter opens up constraints

Zachary S. C. Picker, University of Sydney 16
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Bimetric Gravity

» Bimetric gravity is still young- not a lot of consensus yet, even on
basic calculations
» Deflection angle was calculated in Platscher et al. 2018
> abimetric/aGR =7 + %ﬁe—mgr
» mgr << 1 for usual microlensing regime
> y+35>1
> ... So gravity is stronger instead
> Need very large impact parameter to make gravity weaker
> Larger distance to source (eg M31, but this seems to be insufficient
still)
» Or, larger mass lenses
> Need to argue astrophysical constraints don't apply

> Maybe!
> Cosmological bounds are much more complicated though...

Zachary S. C. Picker, University of Sydney 17



Research Summary

Future Work + End

> Instead of modifying gravity, can add an extra U(1) to charge BHs
> A lot less messy than bimetric cosmology...

» Abandon all hope and look at axions instead

Thanks for listening!

Zachary S. C. Picker, University of Sydney 18
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