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1 Introduction: history and cosmological parameters
2 What is the Cosmic Microwave Background (CMB)?

observables: spectrum, temperature, polarization, lensing
power spectra

3 How does the CMB get its spots?

sound waves in plasma
free streaming and anisotropies today
power spectrum prediction

4 What does the CMB tell us about the contents and evolution
of the universe?

dependence of power spectrum on parameters
constraints from Planck

references: • Dodelson, Modern Cosmology; • W. Hu, background.uchicago.edu;
• Planck Mission, www.cosmos.esa.int/web/planck
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History of the Universe: Astronomer’s view

Amol Upadhye How the CMB got its spots 3



History of the Universe: Particle physicist’s view
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Cosmological parameters

Minimal (“vanilla”) cosmological parameters

“Initial” quantum fluctuations As(k/k0)ns−1

amplitude As at characteristic length scale
scale-dependence ns of amplitude (scale-invariant if 1)

Contents of the universe today

baryonic matter: density fraction Ωb

cold dark matter: density fraction Ωc

Expansion rate of universe today: H0 = 100h km/sec/Mpc

Optical depth τ to CMB

Beyond the minimal model

Spatial curvature density fraction ΩK = − κ
H2

0

Massive neutrinos: density fraction Ων

Dark energy equation of state P/ρ = w0 + (1− a)wa

Inflation: tensor:scalar ratio r , non-Gaussianity, isocurvature
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Part II: What is the CMB?
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CMB observables
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temperature map energy spectrum

polarization map lensing map



CMB foregrounds I
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CMB foregrounds II
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CMB power spectrum I
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∆T =
∞∑
`=1

∑̀
m=−`

a`mY`m(k̂) `: angular scale of variation

m: locations of peaks and troughs

∆T from quantum fluctuations: we can only predict probabilities

〈a`ma`′m′〉 = C`δ(K)
``′ δ

(K)
mm′

That is, the a`m in our universe are randomly drawn from a Gaussian
probability distribution with mean 0 and variance C`.
C` is called the power spectrum, D` = `(`+ 1)C`/(2π).



CMB power spectrum II
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CMB power spectrum II
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CMB power spectrum III
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Part III: How does the CMB get its spots?
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Overview: How the CMB got its spots

1 Before atoms form, the photons and baryons are tightly
coupled. Their density perturbations oscillate under the
competing influences of pressure and gravity.

2 A mode of wavelength λ oscillates with period λ/cs where cs
is the sound speed. Large modes oscillate slowly.

3 Atoms form at time t∗, suddenly decoupling photons and
baryons. Modes which happen to be at their peaks or troughs
at t∗ correspond to peaks in the power spectrum.

4 Afterwards, photons stream freely while baryons cluster.

5 The mapping of 3-D temperature fluctuations at t∗ to 2-D
anisotropies depends on the expansion of the universe after t∗.
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Oscillation of the baryon-photon plasma I

Balls represent baryons.

Springs represent the pressure.
The blue curve is the gravitational potential.

Colors represent photon temperature, with blue being hot.
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Oscillation of the baryon-photon plasma II

Longer-wavelength modes oscillate more slowly.
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Oscillation of the baryon-photon plasma III

Atoms form at t∗, decoupling the photons and stopping oscillation.
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From oscillations to anisotropies
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Once more, but with math!

Fractional temperature perturbation: Θ(~k, p̂, t) = ∆T/T

Angular dependence must be on µ = k̂ · p̂: Θ(k , µ, t) = ∆T/T

Expand in Legendre moments: Θ`(k, t) = i`

2

∫ 1
−1 P`(µ)Θ(k , µ, t)

Tight-coupling era: temperature moments related to baryonic fluid
• Θ0(k , t) ∝ δρb • Θ1(k , t) ∝ k̂ · ~vb • Θ`≥2 negligible

Evolution of Θ0 in tight-coupling era, with R = 3ρb
4ργ

, c2
s = 1

3(1+R) :(
d2

dt2
+

Ṙ

1 + R

d

dt
+ k2c2

s

)
(Θ0 + Φ) =

k2

3

(
1

1 + R
Φ−Ψ

)
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Free streaming and anisotropy
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Θ` today from free-streaming of
Θ0(t∗), Θ1(t∗) with ∆t = t0 − t∗:

Θ`(k , t0) = [Θ0(k , t∗) + Ψ(k, t∗)]j`(k∆t)

+ 3Θ1(k , t∗)j`−1(k∆t)

− 3Θ1(k , t∗)
(`+1)
k∆t j`(k∆t)

+

∫ t0

0
dte−τ(t) d [Ψ− Φ]

dt
j`(k∆t)



Transfer function

What have we done so far?

Given: initial perturbations δin = δn/n̄ (suppose they are the same
for all types of particles)

Tight-coupling: processing of the temperature perturbations Θ0

and Θ1 by acoustic oscillations in the baryon-photon plasma,
resulting in Θ0(k, t∗) and Θ1(k , t∗)

Free-streaming: projection of temperature perturbations onto
last-scattering surface seen by observer, and further processing by
time- varying Φ and Ψ, resulting in all Θ`(k , t0)

So, we can transfer an initial perturbation δin(k) to late-time
temperature perturbations Θ`(k , t). Since our equations of motion
are linear, this lets us transform any combination of δin(~k) to final
Θ`(k , t) using the transfer function

T`(k) = |Θ`(k, t0)/δin(k)|
.
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Power spectrum I

But wait! If δin(~k) comes from a quantum fluctuation, then we
can’t predict its value, only it’s probability distribution. Yet
another power spectrum:〈

δin(~k)δin(~k ′)∗
〉

= (2π)3δ(D)(~k − ~k ′)Pδin(k)

. Here k3

2π2Pδin(k) ∝ As(k/k0)ns−1. Once again it is the variance of
the probability distribution of the amplitude squared as a function
of scale, but in 3 dimensions this time.

Recall the CMB power spectrum: C`δ(K)
``′ δ

(K)
mm′ = 〈a`ma`′m′〉
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Power spectrum II

If we knew Θ(~x , p̂, t), then a`m =
∫
d2p̂Y ∗`m(p̂)Θ(~x , p̂, t0).

But this means that 〈a`ma`′m′〉 is related to〈
Θ(~k , p̂, t0)Θ(~k ′, p̂′, t0)

〉
= (2π)3δ(D)(~k − ~k ′)Pδin(k)T`(k)2.

⇒ C` =
∑
`′,m′

〈a`ma`′m′〉 =
2

π

∫ ∞
0

dkk2Pδin(k)T`(k)2

This is our final answer! Given the initial power spectrum (As , ns),
the composition of the late universe (Ωm, Ωb), the late-time the
expansion rate (h, w(a), ΩK ), and optical depth (τ), we can
predict C` and compare it to measurements.
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Part IV: CMB as a probe of fundamental physics
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Position of the first acoustic peak
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Relative peak heights I
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Relative peak heights II
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Polarization
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Data constraints
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Ωch
2 = 0.1200± 0.0012

Ωbh
2 = 0.02237± 0.00015

h = 0.6736± 0.0054

log(1010As) = 3.044± 0.014

ns = 0.9649± 0.0042

τ = 0.0544± 0.0073



Conclusions

1 The CMB is a rich source of information on high-energy
physics as well as the late-time evolution of the universe. It
forms the foundation of the standard cosmological model.

2 Temperature and polarization anisotropies can be
characterized by power spectra, quantifying the spots in the
CMB. Features in the power spectra arise through acoustic
oscillations of the baryon-photon plasma.

3 Quantifying the effect of each element of the cosmological
model on the CMB power spectra provides powerful
constraints on the cosmological parameters, including possible
new physics.
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