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Outline

@ Introduction: history and cosmological parameters
@ What is the Cosmic Microwave Background (CMB)?
o observables: spectrum, temperature, polarization, lensing
@ power spectra
© How does the CMB get its spots?
e sound waves in plasma
o free streaming and anisotropies today
e power spectrum prediction
@ What does the CMB tell us about the contents and evolution
of the universe?
e dependence of power spectrum on parameters
e constraints from Planck

references: ® Dodelson, Modern Cosmology; ® W. Hu, background.uchicago.edu;
e Planck Mission, www.cosmos.esa.int/web/planck
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History of the Universe: Astronomer’s view
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History of the Universe: Particle physicist's view
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Cosmological parameters

Minimal (“vanilla”) cosmological parameters
e ‘“Initial” quantum fluctuations Ag(k/kg)™*

e amplitude As at characteristic length scale
o scale-dependence n, of amplitude (scale-invariant if 1)

@ Contents of the universe today

e baryonic matter: density fraction
o cold dark matter: density fraction Q.

e Expansion rate of universe today: Hp = 100h km/sec/Mpc
o Optical depth 7 to CMB

Beyond the minimal model
@ Spatial curvature density fraction Qy = R
@ Massive neutrinos: density fraction €2,
e Dark energy equation of state P/p = wy + (1 — a)w;,

@ Inflation: tensor:scalar ratio r, non-Gaussianity, isocurvature
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Part 1l: What is the CMB?




CMB observables

Cosmic SPECTRUM FROM COBE
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CMB foregrounds |
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CMB foregrounds Il
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CMB power spectrum |
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£=1 m=—1¢ m: locations of peaks and troughs

AT from quantum fluctuations: we can only predict probabilities

K) o(K

<agmag/m/> = Cg(séz/)(sfmz,

That is, the agp, in our universe are randomly drawn from a Gaussian
probability distribution with mean 0 and variance Cj.

Cy is called the power spectrum, Dy = ¢(¢ + 1)Cy/(27).
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CMB power spectrum I
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CMB power spectrum I
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CMB power spectrum Il|
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Part Ill: How does the CMB get its spots?
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Overview: How the CMB got its spots

o

© ©

Before atoms form, the photons and baryons are tightly
coupled. Their density perturbations oscillate under the
competing influences of pressure and gravity.

A mode of wavelength X oscillates with period \/cs where cs
is the sound speed. Large modes oscillate slowly.

Atoms form at time t,, suddenly decoupling photons and
baryons. Modes which happen to be at their peaks or troughs
at t, correspond to peaks in the power spectrum.

Afterwards, photons stream freely while baryons cluster.

The mapping of 3-D temperature fluctuations at t, to 2-D
anisotropies depends on the expansion of the universe after t,.
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Oscillation of the baryon-photon plasma |

@ Balls represent baryons.

e Springs represent the pressure.
o The blue curve is the gravitational potential.

@ Colors represent photon temperature, with blue being hot.
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Oscillation of the baryon-photon plasma Il

Longer-wavelength modes oscillate more slowly.
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Oscillation of the baryon-photon plasma Il

Atoms form at t., decoupling the photons and stopping oscillation.
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From oscillations to anisotropies

Oscillations
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Once more, but with math!

Fractional temperature perturbation: @(E, D, = AWFE
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Once more, but with math!

Fractional temperature perturbation: @(E, D, = AWFE

Angular dependence must be on y = k - p: O(k,u,t) = AT/T
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Once more, but with math!

—

Fractional temperature perturbation: ©(k,p,t) = AT/ T
Angular dependence must be on y = k - p: O(k,u,t) = AT/T

Expand in Legendre moments: ©y(k,t) = & f Po(p)O(k, 1, t)
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Once more, but with math!

—

Fractional temperature perturbation: ©(k,p,t) = AT/ T
Angular dependence must be on y = k - p: O(k,u,t) = AT/T
Expand in Legendre moments: ©y(k,t) = & f Po(p)O(k, 1, t)

Tight-coupling era: temperature moments related to baryonic fluid
e Og(k,t) x0pp, ®O1(k,t)oxk-Vp o Oy negligible
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Once more, but with math!

—

Fractional temperature perturbation: ©(k,p,t) = AT/ T
Angular dependence must be on y = k - p: O(k,u,t) = AT/T
Expand in Legendre moments: ©y(k,t) = & f Po(p)O(k, 1, t)

Tight-coupling era: temperature moments related to baryonic fluid
e Og(k,t) x0pp, ®O1(k,t)oxk-Vp o Oy negligible
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Free streaming and anisotropy

©y today from free-streaming of
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Transfer function

What have we done so far?

Amol Upadhye
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Transfer function

What have we done so far?

Given: initial perturbations d;, = dn/n (suppose they are the same
for all types of particles)
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Transfer function

What have we done so far?

Given: initial perturbations d;, = dn/n (suppose they are the same
for all types of particles)

Tight-coupling: processing of the temperature perturbations ©g
and ©; by acoustic oscillations in the baryon-photon plasma,
resulting in ©g(k, t.) and ©1(k,t.)

Amol Upadhye How the CMB got its spots

21



Transfer function

What have we done so far?

Given: initial perturbations d;, = dn/n (suppose they are the same
for all types of particles)

Tight-coupling: processing of the temperature perturbations ©g
and ©; by acoustic oscillations in the baryon-photon plasma,
resulting in ©g(k, t.) and ©1(k,t.)

Free-streaming: projection of temperature perturbations onto
last-scattering surface seen by observer, and further processing by
time- varying ® and W, resulting in all ©,(k, tp)
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Transfer function

What have we done so far?

Given: initial perturbations d;, = dn/n (suppose they are the same
for all types of particles)

Tight-coupling: processing of the temperature perturbations ©g
and ©; by acoustic oscillations in the baryon-photon plasma,
resulting in ©g(k, t.) and ©1(k,t.)

Free-streaming: projection of temperature perturbations onto
last-scattering surface seen by observer, and further processing by
time- varying ® and W, resulting in all ©,(k, tp)

So, we can transfer an initial perturbation di, (k) to late-time
temperature perturbations ©y(k, t). Since our equations of motion

are linear, this lets us transform any combination of di,(k) to final
©¢(k, t) using the transfer function

To(k) = Ok, to)/din(K)|
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Power spectrum |

—,

But wait! If di,(k) comes from a quantum fluctuation, then we
can't predict its value, only it's probability distribution. Yet
another power spectrum:

(8RR ) = @8O (K ~ R)Ps, (k)
. Here %P&m(k) oc As(k/ko)™ L. Once again it is the variance of

the probability distribution of the amplitude squared as a function
of scale, but in 3 dimensions this time.
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Power spectrum |

—,

But wait! If di,(k) comes from a quantum fluctuation, then we
can't predict its value, only it's probability distribution. Yet
another power spectrum:

(8RR ) = @8O (K ~ R)Ps, (k)
. Here %P&m(k) oc As(k/ko)™ L. Once again it is the variance of
the probability distribution of the amplitude squared as a function

of scale, but in 3 dimensions this time.
Recall the CMB power spectrum: ngég)éfn’g, = (agmagny)
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Power spectrum ||

If we knew ©(X, p, ), then azm = [ d?pY}: (

p

)O(X, b, to)-
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Power spectrum ||

If we knew ©(X, p, t), then as, = [ d2pY; (P)O(X, B, to).

But this means that (agmap ) is related to

<e(/?, p.1)O(K P, to) ) = (2730 (K — K)Py,, (k) Te(k)?.
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Power spectrum ||

If we knew ©(X, p, t), then as, = [ d2pY; (P)O(X, B, to).

But this means that (agmap ) is related to
<@(/_€7 ﬁ,fo)@(/?, Iblv tO)> = (27T)35(D)(E ¥ El)Péin(k) Té(k)2

Pl
=Co= > (amapm) = / dkk?Ps, (k) Ty(k)?
0

o.m
This is our final answer! Given the initial power spectrum (As, ns),
the composition of the late universe (2, Q5), the late-time the
expansion rate (h, w(a), Qk), and optical depth (7), we can
predict C, and compare it to measurements.
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Part IV: CMB as a probe of fundamental physics
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Position of the first acoustic peak
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Relative peak heights |
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Relative peak heights Il
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Polarization
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Data constraints
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Conclusions

@ The CMB is a rich source of information on high-energy
physics as well as the late-time evolution of the universe. It
forms the foundation of the standard cosmological model.

@ Temperature and polarization anisotropies can be
characterized by power spectra, quantifying the spots in the
CMB. Features in the power spectra arise through acoustic
oscillations of the baryon-photon plasma.

© Quantifying the effect of each element of the cosmological
model on the CMB power spectra provides powerful
constraints on the cosmological parameters, including possible
new physics.
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