
The pion-photon transition form factor at two loops in QCD

Tobias Huber
Universität Siegen

J. Gao, Y. Ji, Y.-M. Wang, TH in preparation

RADCOR-LoopFest 2021, FSU, Tallahassee, FL, May 20th, 2021

T. Huber The pion-photon transition form factor at two loops in QCD 1



Intro / motivation

Pion-photon transition form factor: theoretically (one of) the simplest hadronic
matrix elements

〈π(p)|jem
µ |γ(p′)〉 = g2

em εµναβ q
α pβ εν(p′)Fγ∗γ→π0 (Q2)

Ideally suited for

precision studies of the partonic landscape of composite hadrons

investigating the factorization properties of hard exclusive QCD reactions

First studies date back half a century (before QCD!)
[Cornwall’66; Gross,Treiman’71; Brodsky,Kinoshita,Terazawa’71]

Later one-loop and subleading power-corrections
[del Aguila,Chase’81; Braaten’83; Kadantseva,Mikhailov,Radyushkin’86; Shen,Wang’17]

Also with connections to

HLbL contribution to (g−2)µ in the dispersive framework (double-virtual FF)

exclusive B-meson decays such as B → π`ν or B → ππ (pion LCDA)
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Intro / motivation

Experimental measurements in e+e− collisions

Status of experimental measurements [figures from Wang’18]

Asymptotic limit (dashed line)

lim
Q2→∞

Q2Fγ∗γ→π0 (Q2) =
√

2 fπ
[Brodsky,Lepage’80]

Scaling violation?
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The pion-photon transition form factor

Pion-photon transition form factor Fγ∗γ→π0

extracted from matrix element of e.m. current jem
µ =

∑
q
gem Qq q̄ γµ q

between on-shell photon of momentum p′ and pion of momentum p

〈π(p)|jem
µ |γ(p′)〉 = g2

em εµναβ q
α pβ εν(p′)Fγ∗γ→π0 (Q2)

Have q = p− p′ and Q2 = −q2

Kinematics at leading power

p′µ = (n p′) n̄µ2 pµ = (n̄ p)nµ2 (n p′) ∼ (n̄ p) ∼ O(
√
Q2)

Goal: Establish QCD factorization formula for Fγ∗γ→π0 (Q2) at leading power
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The pion-photon transition form factor

Consider four-point QCD matrix element (x: momentum fraction, x̄ ≡ 1− x)

Πµ = 〈q(x p) q̄(x̄ p)|jem
µ |γ(p′)〉

Allows to derive factorization formula for Fγ∗γ→π0 at leading power

FLP
γ∗γ→π0 (Q2) = (Q2

u −Q2
d) fπ√

2Q2

∫ 1

0
dx T2(x)φπ(x, µ)

T2(x): hard function, computable in perturbation theory

φπ(x, µ): Leading twist pion light-cone distribution amplitude (LCDA)

〈π(p)|ξ̄(y)Wc(y, 0) γµ γ5 ξ(0)|0〉 = −i fπ pµ
∫ 1

0
du ei u p·y φπ(u, µ) +O(y2)
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Matching onto SCET

Goal: Extract hard function T (L)
2 at given loop-order L.

Introduce SCET operator basis: {Oµν1 (x), Oµν2 (x), OµνE (x)}

Oµνj (x) = n̄ · p
2π

∫
dτ ei x τ n̄·p ξ̄(τ n̄)Wc(τ n̄, 0) Γµνj ξ(0) ,

Dirac structures

Γ1, µν = g⊥µν 6 n̄ , Γ2, µν = i ε⊥µν 6 n̄ γ5 ,

ΓE, µν = 6 n̄
(

1
2 [γµ,⊥, γν,⊥]− i ε⊥µν γ5

)
.

For our calculation Oµν2 (x) is the relevant operator

OµνE (x) is evanescent

Oµν1 (x) cannot couple to a collinear pion state (parity). Relevant for DVCS.
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Matching onto SCET

Start with

〈jem〉 =
∑

a=1,2,E

Ta 〈Oa〉 (1)

Expand both sides in α̃s = αs/(4π), superscripts give loop order

Ta = T (0)
a + α̃s T

(1)
a + α̃2

s T
(2)
a + . . .

〈jem〉 =
∑

a=1,2,E

{
A(0)
a + α̃sA

(1)
a + α̃2

s

[
A(2)
a + Z(1)

α A(1)
a

]
+ . . .

}
〈Oa〉(0)

On-shell matrix elements of 〈Oa〉 simplify due to scaleless integrals

〈Oa〉 =
∑

b=1,2,E

{
δab + α̃s Z

(1)
ab + α̃2

s Z
(2)
ab + . . .

}
〈Ob〉(0)

Compare coefficients of 〈Oi〉(0) on both sides of (1) at given order in α̃s.
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Matching onto SCET: Master formulas

Tree level T
(0)
a = A

(0)
a

One loop

T
(1)
2 = A

(1)
2 − T

(0)
2 ∗ Z(1)

22 − T
(0)
E ∗ Z(1)

E2

T
(1)
E = A

(1)
2 − T

(0)
2 ∗ Z(1)

22 = T
(1)
2 + T

(0)
E ∗ Z(1)

E2︸ ︷︷ ︸
finite shift

Asterisk denotes convolution, due to non-locality of SCET operators Oa.

Have used that

A
(L)
2 = A

(L)
E Z

(1)
1E = Z

(1)
2E = 0

Z
(1)
12 = 0 (parity) Z

(1)
EE = Z

(1)
22

Two loops

T
(2)
2 = A

(2)
2 + Z(1)

α A
(1)
2 −

∑
a=2,E

[
T (1)
a ∗ Z(1)

a2 + T (0)
a ∗ Z(2)

a2

]
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Two-loop calculation

Generate diagrams with FeynArts and in-house routine [Hahn’00+]

Many diagrams vanish

Zero color factor

Furry’s theorem

projection onto the π0 wave-function ∝ |uū〉 − |dd̄〉

42 diagrams (plus γ ↔ γ∗) remain

Use dimensional regularization with D = 4− 2ε, NDR for γ5

Perform Dirac reduction to Γµν1,2,E

In individual diagrams two additional Dirac structures appear,

nµnν 6̄n and n̄µnν 6̄n
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Two-loop calculation

Reduction of scalar integrals: IBP relations, Laporta algorithm in FIRE
[Tkachov’81; Chetyrkin,Tkachov’81] [Laporta’01; Smirnov’08]

Reduction of most complicated diagram takes ∼ 1 day

In addition, exploit relations based on momentum conservation

Required since p1 = x p and p2 = x̄ p are parallel

x̄k2
1 − x̄(k1 + p1)2 + xk2

2 + x(k2 − k1 − p2)2 − x(k1 − k2)2 − x(k2 − p2)2 = 0

k2
2 − x(k2 − p2)2 − x̄(k2 + p1)2 = 0

Reduction yields (only) 12 master integrals

After IBP reduction, Dirac structures nµnν 6̄n and n̄µnν 6̄n drop out identically

Manifestation of QED Ward identity
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Master integrals

p′ p1

p2 q

q

p1

p′

p2

q

p1

p′ − p2

p′

q − p1

p2

q p2

p1 p′

p1

q

p′ − p2

p′ − p2 p1

q

p′ p1 + p2

q

q p1

p′ − p2

p′ p1

p1 − p′

P P
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Evaluating Master integrals

Closed forms, valid to all orders in ε. Gives Γ- and hypergeometric functions.

Expand with HypExp [Maître,TH’05’07]

Method of differential equations [Kotikov’90’91; Remiddi’97]

Partially in canonical form [Henn’13]

Mellin Barnes representations [Czakon’05; Gluza,Riemann et al.’07+; Kosower’09]

compute boundary conditions for DEs as x→ 0 or x→ 1 [Czakon’06]

derive full x-dependence of analytic functions

Numerical checks with FIESTA [Tentyukov,Smirnov’08+]

Obtain analytic ε-expansion of all master integrals

Harmonic polylogarithms (HPLs) of weights 0, 1 [Remiddi,Vermaseren’99]

HPLs of at most weight four appear in the amplitude.
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Infrared subtraction

Recall master formula

T
(2)
2 = A

(2)
2 + Z(1)

α A
(1)
2 −

∑
a=2,E

[
T (1)
a ∗ Z(1)

a2 + T (0)
a ∗ Z(2)

a2

]
Z

(1)
22 is the one-loop ERBL kernel [Efremov,Radyushkin’80; Brodsky,Lepage’80]

Z
(1)
22 (x, x′) = −2CF

ε

[
x̄

x̄′

(
1 + 1

x− x′
)
θ(x− x′) + (x↔ x̄ , x′ ↔ x̄′)

]
+

Z
(2)
22 is the two-loop ERBL kernel

Z
(2)
22 (x, x′) = 1

2ε2
{
Z

(1)
22 (x, x′′) ∗ Z(1)

22 (x′′, x′)− β0 Z
(1)
22 (x, x′)

}
+ 1

2ε
{

2nf CF VF + 2CF CA VG + C2
F VF

}
+

Need lower-loop quantities beyond O(ε0).
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Infrared subtraction

Most delicate point:

Evanescent −→ physical mixing

at two loops, Z(2)
E2

Insertion of non-local evanescent operator, regularize IR divergences

Take coefficient of Oµν2 , Fourier transform

IR regulator drops in sum of all diagrams
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Analytic results

Sum everything up, poles in ε cancel, extract T (2)
2

T
(2)
2 =β0 CF

(
K(2)
β (x)/x+K(2)

β (x̄)/x̄
)

+ C2
F

(
K(2)
F (x)/x+K(2)

F (x̄)/x̄
)

+ CF /Nc

(
K(2)
N (x)/x+K(2)

N (x̄)/x̄
)

[agrees with Braun,Manashov,Moch,Schoenleber’21]

where

K(2)
β (x) =− L2

(
H0(x) + 3

2

)
+ L

(
−10

3 H0(x)−H1(x) + 2H0,0(x)− 2H1,0(x)− 2ζ2 −
19
2

)
− ζ2H1(x)− 19

9 H0(x)

− 1
2H1(x) + 10

3 H0,0(x)− 14
3 H1,0(x)−H1,1(x)− 2H0,0,0(x) + 2H1,0,0(x)−H1,1,0(x)− 14

3 ζ2 − ζ3 −
457
24

K(2)
F (x) =L2

(
6H0(x)− 2H1(x) + 4H0,0(x) + 2H1,0(x) + 9

2

)
+ L

(
8ζ2H0(x) + 38

3 H0(x) + 4ζ2H1(x)− 17H1(x)

−6H0,0(x) + 8H1,0(x)− 2H1,1(x)− 12H0,0,0(x) + 4H1,1,0(x)− 4ζ3 + 6ζ2 + 47
2

)
+ 6ζ2H0(x) + 4ζ2H1(x)

− 2ζ2H2(x)− 8ζ2H0,0(x)− 2ζ2H1,0(x) + 2ζ2H1,1(x) + 32ζ3H0(x)− 4ζ3H1(x)− 64
9 H0(x)− 71

2 H1(x)

− 38
3 H0,0(x) + 34

3 H1,0(x)− 11H1,1(x)− 2H1,2(x)− 8H1,0,0(x) + 4H1,1,0(x)− 2H1,1,1(x)

− 2H1,2,0(x)− 4H2,0,0(x)− 2H2,1,0(x) + 12H0,0,0,0(x)− 2H1,0,0,0(x)− 2H1,1,0,0(x)

+ 2H1,1,1,0(x) + 3ζ2
2 + 34

3 ζ2 + 39ζ3 + 701
24
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Analytic results

Sum everything up, poles in ε cancel, extract T (2)
2

T
(2)
2 =β0 CF

(
K(2)
β (x)/x+K(2)

β (x̄)/x̄
)

+ C2
F

(
K(2)
F (x)/x+K(2)

F (x̄)/x̄
)

+ CF /Nc

(
K(2)
N (x)/x+K(2)

N (x̄)/x̄
)

[agrees with Braun,Manashov,Moch,Schoenleber’21]

where

K(2)
N (x) =L

(
4ζ2H0(x)− 8

3H0(x)− 4H1(x)− 4H3(x) + 4H2,0(x) + 12ζ3 − 1
)

+ 12x (ζ2H0(x)−H3(x) +H2,0(x))

− 6ζ2H1(x)− 4ζ2H2(x)− 4ζ2H0,0(x) + 4ζ2H1,0(x) + 2ζ2H1,1(x) + 14ζ3H0(x)− 32
9 H0(x) + 11H1(x)

+ 4H2(x) + 8H4(x) + 8
3H0,0(x) + 2

3H1,0(x) + 2H1,1(x) + 6H1,2(x)− 2H1,3(x) + 6H2,2(x)− 4H3,0(x)

− 4H3,1(x)− 6H1,1,0(x)− 2H1,1,2(x) + 4H1,2,0(x)− 6H2,0,0(x)− 4H2,1,0(x)− 2H1,1,0,0(x)

+ 2H1,1,1,0(x) + 1
5 ζ

2
2 −

22
3 ζ2 + 54ζ3 −

73
12
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Numerical results

Need to model the pion LCDA, choose five models

Use three-loop evolution of pion LCDA, expand to first 12 Gegenbauer moments

Model I: φπ(x, µ0) = Γ(2 + 2απ(µ0))
Γ2(1 + απ(µ0)) (x x̄)απ(µ0), απ(2 GeV) = 0.585+0.061

−0.055
[Khodjamirian,Melic,Wang,Wei’20]

Red line includes subleading power corrections (twist 4, hadronic photon effect)
[Shen,Wang’17]

Only perturbative uncertainties are shown
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Numerical results

Model III: a2(1 GeV) = 0.14 a4(1 GeV) = 0.23
a6(1 GeV) = 0.18 a8(1 GeV) = 0.05 [Agaev,Braun,Offen,Porkert’10]

Only perturbative uncertainties are shown
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Numerical results

Comparison between models

Only perturbative uncertainties are shown

Belle II data will allow to distinguish between LCDA models
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Conclusion and Outlook

We computed the pion-photon transition form factor to two loops in QCD

Prime example of QCD factorization in hard exclusive processes

Two-loop computation of bare amplitude uses standard multi-loop methods

IR subtraction non-trivial due to evanescent-physical mixing at two loops

Studied models of pion LCDA, comparison to data

Future plans, e.g.

Include massive quarks in fermion loops

Take second photon off-shell
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