
Integral Reduction with Kira 2
and Finite Field Methods

based on: Computer Physics Communications 266 (2021) 108024

(with Jonas Klappert, Fabian Lange, Philipp Maierhöfer)

RADCOR-LoopFest 2021

Johann Usovitsch

19. May 2021
1 / 22

Outline

1 Introduction

2 Main feature: finite field reconstruction
Combining algebraic forward elimination with finite field reduction
Reducing the memory footprint with iterative reduction
Runtime reduction with coefficient arrays
Runtime reduction with MPI
Double-pentagon topology in five-light-parton scattering

3 Summary and outlook

2 / 22

Introduction Introduction

Introduction

Kira is a linear solver for sparse linear system of equations with main
application to Feynman integral reduction
The development of Kira is dedicated to extend the range of
feasible high precision calculations and help to study many
state-of-the-art problems
Kira should be used to built more advanced tools to compute
Feynman integrals
To do so, YAML allows to write human readable interface to Kira

3 / 22

Introduction Feynman integral reduction applications

Feynman integral reduction applications
Integration-by-parts (IBP)[Chetyrkin, Tkachov, 1981] and Lorentz invariance
[Gehrmann, Remiddi, 2000] identities for scalar Feynman integrals are very
important in quantum field theoretical computations (multi-loop
computations)
Reduce the number of Feynman integrals to compute, which
appear in scattering amplitude computations to a small basis of
master integrals
Compute these integrals analytically or numerically with the
methods of

differential equations [Kotikov, 1991; Remiddi, 1997; Henn, 2013; Argeri et al.,

2013; Lee, 2015; Meyer, 2016; Moriello, 2019; Hidding, 2020] or difference
equations[Laporta, 2000; Lee, 2010]
Use the method of sector decomposition [Heinrich,2008] (pySecDec
[Borowka et al., 2018] and Fiesta4 [Smirnov, 2016])
Use the linear reducibility of the integrals (HyperInt [Panzer, 2014]) to
compute the Feynman integrals analytically or numerically
Auxiliary mass flow integrals [Xin Guan, Xiao Liu, Yan-Qing Ma, 2020]

4 / 22

Introduction Feynman integral

Feynman integral

T (a1, . . . , aN) =
∫ (L∏

i=1
dd`i

)
1

P a1
1 P a2

2 · · ·P
aN
N

, N = L

2 (L+ 1) + LE

(1)

Pj = q2
j −m2

j , j = 1, . . . , N , are the inverse propagators
The momenta qj are linear combinations of the loop momenta `i,
i = 1, . . . , L for an L-loop integral, and external momenta pk,
k = 1, . . . , E for E + 1 external legs
The mj are the propagator masses
The aj are the (integer) propagator powers

sector number: S =
N∑

j=1
2j−1 θ(aj − 1

2)

Integrals with the same sector number share the same number of positive
propagator powers. Example: Integrals T(1,1,0,2) and T(1,2,-1,1) belong
to the same sector, while the integral T(0,0,1,2) belongs to a different
sector. 5 / 22

Introduction Magic relations

Relations from higher sectors
Relations between the integrals in one sector exist which cannot be
generated with the IBP- or LI-identities or symmetry relations for the
same sector
More relevant: the number of master integrals for one specific sector
may be further reduced by taking symmetry relations from sectors
with more positive propagator powers

Kira specific:
In case a sector, which is missing the additional relation, is the same
sector as listed in top_level_sectors, then the option
top_level_sectors restricts Kira not to generate symmetry
relations beyond the top_level_sector and we still miss the
additional relation
For this scenario the option magic_relations exists. It loosens the
restrictions of the option top_level_sectors and allows Kira to
built symmetry relations for sectors with more positive propagator
powers, which generate the additional relation
We will explain this in more detail in our gitlab Wiki 6 / 22

Introduction Preferred masters

Automatic generation of equations

The default behavior of Kira is to generate a system of equations for
each integral in the list of preferred master integrals or master
equations
The idea is: Kira guarantees that for any choice of master integrals
the integrals appearing in the system of differential equations are
reduced to the minimal set of preferred master integrals
Advanced trick: in the study of magic relations we may list one
integral in the preferred list of master integrals, which represents the
sector responsible for the generation of magic relations/ Which is
needed if multi-topology reductions are considered
We promise to bring up soon a feature to switch on/off this behavior

7 / 22

Introduction Challenges

Laporta algorithm challenges
The system of equations generated the Laporta way contains many
redundant equations
The number of equations may go up to billions and more
The coefficients are polynomials in the dimension D and many
different scales {s12, s23,m1,m2, ..}
Solving linear system of equations generated with the Laporta
algorithm are CPU, disk and memory expensive computations
Make trade offs to finish the reduction, e.g.: decrease the CPU
costs but increase memory or disk costs
Explore algorithmic improvements!

8 / 22

Main feature: finite field reconstruction

Finite field reconstruction: Kira + FireFly

Reconstruction of multivariate rational functions from samples over
finite integer fields [Schabinger, von Manteuffel, 2014][T. Peraro, 2016]

Public implementations available: FireFly [J. Klappert and F. Lange, 2019][Klappert,

Klein, Lange, 2020], FIRE 6 [A. V. Smirnov and F. S. Chukharev, 2019] and FiniteFlow [T. Peraro,

2019]

FireFly has been combined with Kira’s native finite field linear
solver
Furthermore Kira supports MPI: to utilize the new parallelization
opportunities now available with finite field methods
Side note: the collaboration [Dominik Bendle, Janko Boehm, Murray Hey-

mann, Rourou Ma, Mirko Rahn, Lukas Ristau, Marcel Wittmann, Zihao Wu, Yang Zhang, 2021] implements
semi-numeric row reduced echelon form. They play with Laporta
ordering in intermediate steps to improve the reduction time for the
forward elimination!

9 / 22

Main feature: finite field reconstruction

What is special about FireFly I

FireFly uses Zippel algorithm in the multivariate case instead of the
nested Newton algorithm to interpolate the Polynomials
In IBP reductions we will meet two kind of Polynomials:
E1 = 1 + s+ s2 + t+ t2 + st, homogeneous in the variables which are
of the same mass dimension. Note: we set in this example one
variable to 1.
(1+d+d2)(1+s+s2) = E2 = 1+d+d2+s+ds+d2s+s2+ds2+d2s2,
again we set one variable to one
For the polynomial E1 the Zippel algorithm needs just 6+4 probes
compared to the nested Newton 9+7 probes
For the E2 the nested Newton interpolation and the Zippel algorithm
are of the same complexity
In general the algorithmic complexity for Zippel is O(n ∗D ∗ T) and
for nested Newton O(Dn), with n number of variables, D the
maximal degree and T the number of terms

10 / 22

Main feature: finite field reconstruction

What is special about FireFly II

Main observation: IBP reductions involving 2 scales have the
complexity of E2 = 1 + d+ d2 + s+ ds+ d2s+ s2 + ds2 + d2s2, thus
FIRE6 and FiniteFlow should be on par with FireFly (probably)
IBP reductions involving 3 or more scales have the complexity of
E1 = 1 + s+ s2 + t+ t2 + st, thus FireFly should be better suited
compared to other public codes.
Further algorithmic improvements over brute force approaches
implemented in FireFly are efficient algorithms for rational functions,
racing algorithms, scan for univariate factors and many more

11 / 22

Main feature: finite field reconstruction

Kira + FireFly, strategy plans

The run time for the sampling over finite field is always dominated by
the forward elimination of the reduction
Strategy: compute the rational functions appearing in the forward
elimination phase first with Kiras native forward elimination algorithm
using Fermat
Use this system of equations in triangular form as an input to
reconstruct the final rational functions appearing in the backward
substitution

12 / 22

Main feature: finite field reconstruction Combining algebraic forward elimination with finite field reduction

Combining algebraic forward elimination with finite field
reduction - Hybrid I
P1 = k

2
1, P2 = k

2
2, P3 = k

2
3, P4 = (p1 − k1)2

, P5 = (p1 − k2)2
, P6 = (p1 − k3)2

, P7 = (p2 − k1)2
,

P8 = (p2 − k2)2
, P9 = (p2 − k3)2

, P10 = (k1 − k2)2
, P11 = (k1 − k3)2

, P12 = (k2 − k3)2
,

p
2
1 = zzb, p

2
2 = 1, p1p2 = (1 − z)(1 − zb)

We chose r = 17 and s = 0 for the benchmark

Mode Runtime Memory Probes CPU time
per probe

CPU time
for probes

run_initiate 5 h 20min 128GiB - - -

run_triangular +
run_back_substitution

>14 d ~ 540GB - - -

run_firefly: true 6 d 3 h 670GiB 108500 370 s 100%

run_triangular:
sectorwise

36min 4GiB - - -

run_firefly: back 4 h 54min 35GiB 108500 12.2 s 100%

13 / 22

Main feature: finite field reconstruction Combining algebraic forward elimination with finite field reduction

Combining algebraic forward elimination with finite field
reduction - Hybrid II

The complexity to generate the equations is in this example fixed (We
documented in the most recent Kira paper how to optimize this step)
The hybrid method is 20 times less expensive in main memory
management and 27 times more efficient in CPU time usage
The forward elimination generates a new system of equations which is
smaller and faster to evaluate than the original IBP system of
equations
The hybrid method is usually good idea for reductions up to 3 scales
We encourage everyone to play with different reduction strategies
available within Kira to get the best results

14 / 22

Main feature: finite field reconstruction Reducing the memory footprint with iterative reduction

Reducing the memory footprint with iterative reduction
p2 P6

P7

P2

P1

P5 q1

p1 P4 P3
q2

r = 7 and s = 4

Mode Iterative Runtime Memory

Kira ⊕ FireFly
- 18 h 40GiB

sectorwise 33 h 15min 9GiB

iterative_reduction: sectorwise — one sector at a time
iterative_reduction: masterwise — one master integral at a
time
Works well with the options run_back_substitution and
run_firefly
Independent study confirms the efficiency of this method
[Chawdhry, Lim, Mitov, 2018]

Sacrifice the CPU time for 4 times less main memory consumption 15 / 22

Main feature: finite field reconstruction Runtime reduction with coefficient arrays

Runtime reduction with coefficient arrays

--bunch_size= Runtime Memory
CPU time
per probe

CPU time
for probes

1 18 h 40GiB 1.73 s 95%
2 14 h 41GiB 1.30 s 94%
4 11 h 46GiB 1.00 s 93%
8 10 h 15min 51GiB 0.91 s 92%
16 9 h 45min 63GiB 0.85 s 92%
32 9 h 30min 82GiB 0.84 s 92%
64 9 h 30min 116GiB 0.83 s 92%

Kira ⊕ Fermat 82 h 147GiB - -

The runtime of the probes is dominated by the forward elimination
48 cores each with hyper-threading disabled
Coefficient arrays bring sizeable effects in exchange for main memory

16 / 22

Main feature: finite field reconstruction Runtime reduction with MPI

Runtime reduction with MPI

nodes Runtime Speed-up CPU efficiency

1 18 h 1.0 95%
2 10 h 15min 1.8 87%
3 7 h 15min 2.5 82%
4 5 h 45min 3.1 76%
5 5 h 30min 3.3 65%

Kira ⊕ Fermat 82 h - -

Option run_firefly: true and Intel R© MPI is used
The first prime number suffers in the performance because FireFly
cannot process arbitrary probes
New probes are scheduled based on intermediate results
Remark: the user should use less nodes for the first prime number

17 / 22

Main feature: finite field reconstruction Double-pentagon topology in five-light-parton scattering

Double-pentagon topology in five-light-parton scattering I
p1 P1

P4

P5

P2 P7

P8

p3

p4

p2 P3 P6
p5

Runtime Memory Probes CPU time
per probe

CPU time
for probes

12 d 540GiB 38278000 0.37 s 25%

Including d, the reduction of the double-pentagon topology is a six
variable problem
We use the system of equations is in block-triangular form taken from
[Xin Guan, Xiao Liu, Yan-Qing Ma, 2019], which is of the size of 72 MB, best value I
could find comparing to other methods. And no simplifications where
yet applied.
We benchmark the reduction of all integrals including five scalar
products

18 / 22

Main feature: finite field reconstruction Double-pentagon topology in five-light-parton scattering

Double-pentagon topology in five-light-parton scattering II

FireFly’s factor scan improves the denominators
–bunch_size = 128 option is used to improve the speed
40 cores with hyperthreading enabled
The most complicated master integral coefficient has a maximum
degree in the numerator of 87 and in the denominator of 50
The database of the reduction occupies 25GiB of disk space
The number of required probes 107 is computed fast due to the block
triangular structure of the system of equations
[Xin Guan, Xiao Liu, Yan-Qing Ma, 2020]

Main memory reduction can be achieved with the options
iterative_reduction or by reducing the –bunch_size option
We use Horner form to accelerate the parsing for the coefficients

19 / 22

Main feature: finite field reconstruction Double-pentagon topology in five-light-parton scattering

Double-pentagon topology in five-light-parton scattering III

The new option insert_prefactors would give a factor of 2
improvement in an overall performance if we use the denominators
from [J.U, arXiv:2002.08173]. The method to compute these denominators is
explained shortly in the summary of this paper, which relies on
algebraic reconstruction methods pioneered in
[arXiv:1805.01873, arXiv:1712.09737, arXiv:1511.01071]. A second approach to compute the
denominator functions is available with finite field methods
[Heller, von Manteuffel, arXiv:2101.0828].
The block triangular form is much better suited for the reduction
than a naive IBP system of equations as generated by Kira
Reduction tables are available upon request

20 / 22

Main feature: finite field reconstruction Publication process

Upcoming Features in next Kira Version

Kira’s, development release
Get Kira on gitlab: https://gitlab.com/kira-pyred/kira.git

Interface to user defined IBP-identities
Documentation to symbolic IBP-identities
On https://hepforge.kira.org we provide a static linked Kira
executable
We have launched a Wiki and a best practice summary on gitlab

21 / 22

https://gitlab.com/kira-pyred/kira.git
https://hepforge.kira.org

Summary and outlook

Summary and Outlook

Many parallelization improvements
Kira is an all-rounder for multi-scale as well as for multi-loop
computations
Kira utilize the finite field methods and helps to tailor it to your needs
The examples should help you to find the balance yourself
Bunches should be used if there is unused memory on the system
MPI if there are more computers or cluster nodes available
Many features are driven by the high energy physics community
demands
We plan to go for the block triangular form: run_triangular:
block, which finds a small and fast to evaluate system of equations
for general topologies [Xin Guan, Xiao Liu, Yan-Qing Ma, 2020]! It is a paper about
auxiliary mass flow integrals, but the ideas to generate block
triangular form relations are independent from this formalism
Be prepared to find more algorithmic improvements in Kira in the
near future 22 / 22

	Introduction
	Introduction
	Feynman integral reduction applications
	Feynman integral
	Magic relations
	Preferred masters
	Challenges

	Main feature: finite field reconstruction
	Combining algebraic forward elimination with finite field reduction
	Reducing the memory footprint with iterative reduction
	Runtime reduction with coefficient arrays
	Runtime reduction with MPI
	Double-pentagon topology in five-light-parton scattering
	Publication process

	Summary and outlook

