Expansion by regions with pySecDec

Emilio Villa

RADCOR + LoopFest, 17-21 May 2021 Tallahassee, FL, USA

Emilio Villa (KIT) 19 May 2021 1/32

Introduction

Introduction

Why caring about loop integrals?

Observables are dominated by theoretical uncertainties¹

Emilio Villa (KIT)

¹image from CERN HL-HE Yellow Report 2019

Introduction

There are many techniques to evaluate loop integrals:

- Mellin-Barnes representation
- Differential Equations
- Dimensional Recurrence
- Sector Decomposition
- Asymptotic expansions (e.g. Expansion by regions)

In the following \rightarrow *Expansion by regions*

Expansion by regions²

First: motivation

$$G = \int \prod_{l=1}^{L} d^{D} \kappa_{l} \frac{1}{\prod_{j=1}^{N} P_{j}^{\nu_{j}} \left(\{k\}, \{p\}, m_{j}^{2} \right)}, \quad d^{D} \kappa \equiv \mu^{4-D} \frac{d^{D} k}{i \pi^{D/2}}$$

G is a complicated function of masses m_j and kinematics invariants $p_i \cdot p_j$

Idea: Exploit parameter hierarchies to expand **integrand** in small parameter, e.g. $m^2/p^2 \rightarrow$ resulting integrals might be easier to evaluate

Caveat: one cannot just Taylor expand \rightarrow magnitude of k_I

Emilio Villa (KIT)

²The method was pioneered in arXiv:hep-ph/9711391 by M. Beneke and V.A. Smirnov

Example \rightarrow limit $|p^2| \gg m^2$ of

$$G = \int d^D \kappa \frac{1}{(k+p)^2 (k^2-m^2)^2} \equiv \int d^D \kappa \ \mathcal{I}$$

hard region: $|k^2| \gg m^2$

soft region: $|k^2|, |2k \cdot p| \ll p^2$

$$\mathcal{I}_{(h)} \sim \frac{1}{(k+p)^2(k^2)^2} \left(1 + 2\frac{m^2}{k^2} \right) \qquad \mathcal{I}_{(s)} \sim \frac{1}{p^2(k^2-m^2)^2} \left(1 - \frac{k^2 + 2p \cdot k}{p^2} \right)$$

Next → Integrate over whole domain

$$\begin{split} G &= \int d^D\kappa \; \mathcal{I}_{(h)} + \int d^D\kappa \; \mathcal{I}_{(s)} - \underbrace{\int d^D\kappa \; \mathcal{I}_{(hs)}}_{\text{scaleless} \to \; 0 \; \text{in } DR} \\ &= \frac{1}{p^2} \left[-\frac{1}{\epsilon} + \ln \left(\frac{-p^2}{\mu^2} \right) \right] + \frac{1}{p^2} \left[\frac{1}{\epsilon} - \ln \left(\frac{m^2}{\mu^2} \right) \right] + o\left(\epsilon, \frac{m^2}{p^2} \right) \\ &= \frac{1}{p^2} \ln \left(\frac{-p^2}{m^2} \right) + o\left(\epsilon, \frac{m^2}{p^2} \right) \end{split}$$

Workflow

Emilio Villa (KIT) 19 May 2021

Workflow

Emilio Villa (KIT) 19 May 2021

Let's move to Feynman parameters \rightarrow Lee-Pomeransky parametrisation³

$$G \propto \int_0^\infty \prod_j dx_j \ x_j^{\nu_j - 1} \ P^{-D/2}$$

where P = F + U is a **polynomial**

→ to find the regions we use the *Geometric Approach*⁴

Emilio Villa (KIT)

³arXiv:1308.6676 by R. Lee and A. Pomeranksy

⁴arXiv:1011.4863 by A. Pak and A. Smirnov

Consider

$$P(\mathbf{x},t) = \sum_{i=0}^{m} c_i x_1^{p_{i,1}} \dots x_n^{p_{i,n}} t^{p_{i,n+1}}$$

with

- ullet $c_i
 ightarrow$ non-negative coefficients
- $x_i \rightarrow$ integration variables
- $\mathbf{p}_i = (p_{i,1}, \dots, p_{i,n+1}) \in \mathbb{N}^{n+1} o ext{ exponent vectors}$
- ullet t o small parameter

Emilio Villa (KIT)

19 May 2021

We define ${f u}$ such that $x_i=t^{u_i}$ (note: $t=t o u_{n+1}=1$) and write

$$P(\mathbf{u},t)=\sum_{i=0}^m c_i t^{\mathbf{p}_i\cdot\mathbf{u}}$$

The largest term of the polynomial is the one with the smallest value of $\mathbf{p}_i \cdot \mathbf{u} \rightarrow$ let's visualise this with the Newton polytope $\equiv \text{convHull}\left(\mathbf{p}_1,\mathbf{p}_2,\dots\right)$

$$\mathsf{convHull}\left(\mathbf{p}_1,\mathbf{p}_2,\dots\right) = \left\{a_1\mathbf{p}_1 + \dots + a_n\mathbf{p}_n \mid a_i > 0 \ \forall i, \sum_{i=1}^n a_i = 1\right\}$$

Newton polytope for $P(x) = x + x^2 + t$, along with an example vector **u**

$$\mathbf{p}_0 = (1,0), \mathbf{p}_1 = (2,0), \mathbf{p}_2 = (0,1) \to P(t) = t^3 + t^6 + t$$

Emilio Villa (KIT)

When expanding according to \mathbf{v} gives a convergent expansion at \mathbf{u} ?

 $\textbf{Answer} \colon \{ \text{vertices closest along } \textbf{v} \} \subseteq \{ \text{vertices closest along } \textbf{u} \}$

We can find all the regions choosing the v_i

to be the normal vectors to the facets pointing upwards \rightarrow "how?" solved

Emilio Villa (KIT) 19 May 2021

Consider now $P(x, y) = x^2 + y^2 + xy$ and the corresponding polytope

the points lie on the line $p_x + p_y = 2$ orthogonal to the $\mathbf{v} = (1,1)$ direction.

Rescaling with $\mathbf{v} = (1,1)$, i.e. $x \to \rho x$, $y \to \rho y$ gives $P(\rho x, \rho y) = \rho^2 P(x,y)$

Note that the **area** of the Newton polytope \mathcal{N}_P is **0**.

For non homogeneous polynomials $\rightarrow Q(x,y) = x^2 + y^2 + x^2y$

The area of \mathcal{N}_Q is non-zero.

Emilio Villa (KIT) 19 May 2021

$Homogeneity^5 \equiv Scalelessness$

Multiple expansions produce lower dimensional polytope \rightarrow "scaleless?" solved

Emilio Villa (KIT)

⁵homogeneity w.r.t. a subset of the Feynman parameters.

it's actually not that easy ...

- ullet with negative coefficients o **new regions** arise, hard to detect
- ullet dimension as regulator not enough o additional regulators needed
- ullet overlap contributions $eq 0 \rightarrow e.g.$ when not using analytic regulators

For more details \rightarrow arXiv:1111.2589 by B. Jantzen

However: Problematic cases can in general be **anticipated** and the validity of the method **assessed**

pySecDec: new release!

pySecDec

What's new?

automated Expansion by regions

but also

- ② automatic reduction of $\lambda_i \rightarrow$ no more sign check error!
- $\sum_k c_k I_k \rightarrow$ automatic adjustment # evaluation points
- lacktriangledown FORM settings adjusted automatically $^6
 ightarrow$ based on detected hardware
- → towards *amplitudes* evaluation

⁶Based on the work of T. Ueda

pySecDec: λ_i reduction

For physical kinematics, contour deformation might be needed:

$$z_i(\mathbf{x}) = x_i - i\lambda_i x_i (1 - x_i) \frac{\partial F}{\partial x_i}(\mathbf{x})$$

In order to preserve Feynman prescription $-i\delta$, λ_i should be small enough.

Before: sign-check error and stop of the integration Now: **automatic** λ_i **reduction**

pySecDec: sum of integrals and coefficients

The # of sampling points N_s for each integral is set depending on its contribution to the **error estimate** of the sum and on the **time required** for each integrand evaluation. We set N_s minimising:

$$T = \sum_{i} t_{i} + \beta \left(\Delta_{S}^{2} - \sum_{i} c_{i}^{2} \Delta_{i}^{2} \right)$$

where:

- $t_i \rightarrow$ integration time of I_i
- $\Delta_i \rightarrow \text{absolute error of } I_i$
- ullet $\Delta_S o$ absolute error of S (accuracy goal)
- $\beta \rightarrow \text{Lagrange multiplier}$

 \rightarrow global accuracy goal for the sum reached more efficiently.

Examples

pySecDec: a hard example

For s, t, $m^2 = 5.3$, -1.86, 0.1 and expanding at LO in m^2 :

• regions: 13

• integrals: 5866

• time¹ (compile + integrate): 10 [h]

• accuracy: 1.4 %

Emilio Villa (KIT)

¹Integration ran on a system with 4 GeForce 1080 Ti GPUs

pySecDec: timings

Diagram	psd (r: 10 ¹) [min]	psd (r: 10 ³) [min]	ebr (r: 10 ³) [min]
* 1	5.23	101.94	1.61
	1.52	33.77	8.55
s m	0.12	0.13	0.09

 $r \equiv invariants ratio, accuracy: 10^{-2}$

28 / 32

pySecDec: scan (ebr vs psd)

ebr is numerically stable over many orders of magnitude as ratio of scales increases

Emilio Villa (KIT) 19 May 2021

Conclusions

Conclusions

Summary:

- Expansion by regions
- pySecDec new features:
 - \bullet automatic λ_i reduction
 - 2 automatic adjustment # evaluation points
 - FORM settings
- Examples

Emilio Villa (KIT) 19 May 2021

Thank you for listening!

Emilio Villa (KIT)