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OpenlLoops

(OpenLoops is a fully automated numerical tool for the tree
and one-loop computation of hard scattering amplitudes

required in Monte-Carlo simulations

”56 ﬁgﬁg 000 |

0 :. e Full NLO QCD and NLO EW corrections available

= e Strong CPU performance and excellent numerical stability
. E 4 %\,: Available from https://gitlab.com/openloops/OpenLoops.git
SR Hoche] or https://openloops.hepforge.org

Scattering probability densities in perturbation theory from sums of L-loop Feynman diagrams (L=0,1):
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Automation at NNLO highly desirable — Goal: Two-loop OpenLoops



https://gitlab.com/openloops/OpenLoops.git
https://openloops.hepforge.org/
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|I. The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from sub-trees (starting from external lines)

For example My = + ... — split into sub-trees

Numerical recursion step:

sub-tree w,
— mxfg@< _ XBylkp k) g

oy
= wr w
kc%—m% b ¢

sub-tree wy
universal building block

from Feynman rules

Generic depiction:

y's
(k; external momenta)
w

Highly efficient: Sub-trees constructed only once for multiple tree and loop diagrams
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|I. The OpenLoops algorithm at one loop

High complexity in loop diagram I' due to analytical structure in loop momentum ¢
Factorisation into colour factor Cy
and loop segments

S1(q)---Sn(q)
o D 219 N\g
=Cir [d% Dy Dy ) )
Silq) = Ve =X (ks, pi, @)y
Bi—1 Bi

D;

AN

Scalar propagators Di(q) = (¢ + pi)” = Universal building block x sub-tree(s)

Open loop diagram at Dy — Dress chain of segments (open loop) recursively:

Nk(q>:.]ﬁ Si(q) = Ng—1(a)Sk(q) = ‘ ‘ ‘ @ N @

1=1 Bo - B = B
D, D, Dy, Di 1 Dy_1 Dy

= N()

ey 4

dressed segments undressed segments

Completely generic and highly efficient algorithm

Implemented at the level of tensor integral coefficients J\/](L]f)w



Il. Requirements for NNLO automation

NNLO scattering probability density: Wyitval — =z 2Re MEM
NNLO 0

T o

Kﬁﬂl_\grtual KﬁﬂlLrOeal available in OpenLoops [Buccioni, Lang, Lindert, Maierhofer, Pozzorini, Zhang, M.Z.]

e Amplitude of a two-loop diagram I":

Ry Ry qﬂl_”q“nqv.“q
Mopr= Cor X X Ny Ay, [aly, A dL 9
) ) 70120 7“2:0 M1 :LLTlVl V?“Z / / D(ql7 Q2)
colour tensor coefficient tensor integral

o Numerical construction of tensor coefficients in four dimensions — this talk

o Restoration of (D — 4)-dimensional numerator parts and renormalisation through
UV and rational counterterms — Hantian Zhang's talk on Friday

o Remaining tasks: Tensor integrals, treatment of IR divergences




l11. New algorithm to construct two-loop tensor coefficients in OpenLoops

Amplitude of irreducible two-loop diagram I' (1Pl on amputation of all external subtrees):

, N(q1, )

i D) (g;) 3=~ (a1+a2)

3 ' 1
Exploit factorisation of numerator MN(q1,q2) = z'ElN(Z)<%>jEO Vi(q1, q)

e Three chains, each depending on a single loop momentum ¢; (i = 1,2, 3)

with chain numerators factorising into loop segments N(i)@i) — Séi)(qz-) . Sj(\if)_1<%>
— Same structure as one-loop chain

e Two connecting vertices ), V;

e Chain denominators D@(qi) = D(()i)(qi) e D%z_l(qi) where Déi)(qz-) = (g +pm)2 —m3,

(External momenta p;, and masses m;, along i-th chain)



Building blocks of two-loop amplitudes

3 1w ] O SRR
Numerator N (g1, q) = 1 1 (NY(g)| " Volq, Vilqi,
(a1, 42) z:l[ (ai) e [ 0(a1 C]Q)] (@ QQ>]5](\}1)5](\?2)6§\2

can be constructed recursively, multiplying one chain segment or vertex V; per recursion step.

Observations:

e Chains have same complexity as one-loop chains

e Higher complexity in steps connecting V; due to dependence

on q1, q> and three open Lorentz/spinor indices B,S,i)

e Each chain segment or vertex V; increases helicity d.o.f.

by those of its external subtree(s) and the rank in a ¢; by 0 or 1

e Number of independent tensor coefficients Nﬂl"'urlm--

Vry Number of tensor components
increases exponentially with ranks 1,79 in q1,¢2 r 20 0 1 2 3
0 1 5 15 35
1 5 25 75 175
- - . e 2 15 75 225 525
Naive algorithm: Dress all chains first, then connect V) 1, 2 % 1 n 193
interfer with Born and sum over helicities ‘5* 17206 ggg %ggg 4212?8

— Would be inefficient due to expensive last steps



Connecting the building blocks of two-loop amplitudes

Final result: Helicity and colour-summed interference with Born U(q1, ¢o)

(1) 5(2) 5(3)
3 V-1 ' 5]\7 50 5() /30
= 32 (Z/\/lo( ) Cs r){ 11 [ 1 S@(qzah/(g))] (0 HV0<Q1 QQ)] {V1<(]1>QQ>} (1) 5(2) 5(3)
]’L CO ?}T T — k:() 6() 5]\716]\[26]\[3
chain N/O)(h1)) two-loop vertices
) . Nj—l ) .
with segment helicities h,iZ> — chain helicities 1! = k'zo h,iZ> — global helicity h = _%1 pl0)
= 1=

Algorithm will consist of N recursion steps: | N, =MN,,_1-S,, (n=1,...,N)

with partially dressed numerators )V, and building blocks .S, € {S]Ef), Vj,/\/'(i), MyCor}.

CPU cost of step n ~ number of multiplications
— dependent on structure of S;, and number of components of N,
— (number of tensor components in ¢;) x (helicitiy d.o.f.) x 4(number of open Lorentz/spinor indices)

= Most efficient algorithm found through cost simulation
of possible candidates for a wide range of QED and QCD Feynman diagrams



New two-loop algorithm

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

Order of chains and of two-loop vertices 1)), V| has major impact on efficiency




New two-loop algorithm

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

e Dress N'(3) (shortest chain)

1 e

Vi

NP (g3, 13y = M (g5, 1D 1) - 8B (s, hP))

with initial condition /\/'Sgl) =1
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New two-loop algorithm

e Sort chains by length: N1 > Ny > Nj Example: n=1

Choose order of V), V1 by vertex type ‘91/ _I_ %
@) - S

e Dress N'(3) (shortest chain)

Vi

N (g3, 23y = A3 (g5, AP ) -8B (g3, b)) with initial condition N = 1

o Shortest chain = Low number of helicity d.o.f. ﬁ%@ = 351311 + /74(13) and low rank in ¢3

o Partial chains ./\/}(13) computed only once for multiple diagrams

= Only a small nhumber of low-complexity steps for the full process
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New two-loop algorithm

e Sort chains by length: N1 > Ny > Nj Example: y n =10
Choose order of V), V| by vertex type ‘C-h/ —IO— %
q
o Dress A'(3) (shortest chain) @ i ’ @
o Dress UV o /\/16/\/(1) (longest chain)

Vi

U 1) = < UGBS hil) with Ul =2 £ M) Car)
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New two-loop algorithm

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

e Dress N'(3) (shortest chain)
o Dress UV o Mﬁ/\/(l) (longest chain)

Vo

Vi

ST,

1

n=1

3%

UM b)) = = U (b ) - SR with uln) =

h)

2( £ Mij(h) Car)

col ———— —
Born colour

(1)

On-the-fly summation of segment helicities hy,

(1)

= Partial chains depend on remaining helicities of the diagram hi' = h —

g% }L(l)

=1k
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New two-loop algorithm

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

e Dress N'(3) (shortest chain)
o Dress UV o /\/lf)‘/\/(l) (longest chain)

Vo

Vi

ST,

@ N |

n=>2

3%

U (g, Yy = s (g, B - SO plly with uY(h) =

hy!)

2( £ Mij(h) Car)

col ———— —
Born colour

(1)

On-the-fly summation of segment helicities Ay,

(1)

= Partial chains depend on remaining helicities of the diagram hi' = h —

g% }L(1>

=1k
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New two-loop algorithm

e Sort chains by length: N7 > Ny > Nj Example: n=3

Choose order of V), V1 by vertex type %I

o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
U i) = < Uit i) G ) with Ul () = £ M) Car)

1)
ha Born colour

(1)

On-the-fly summation of segment helicities Ay,

(1)

=> Partial chains depend on remaining helicities of the diagram hi' = h —

noo (1)
o1 hy

= Large portion of helicity d.o.f already summed over during dressing of longest chain
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New two-loop algorithm

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with (1) and A3

¢ Vo ¢

Vi

V(q1,q3,h?) = = U (g1, h — WY N gz, A Vi (g1, g3)
h

On-the-fly summation of chain helicity ) (and potential subtree helicity at V)
= Partial diagram depends on undressed chain helicity h2)

= Intermediate object depends on three open indices and two loop momenta
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New two-loop algorithm

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

e Dress N'(3) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V1 with U and NG)

e Connect V and map g3 — —(q1 + @)

Vi

u<_21)<q1, a2, h'?) = Va1, 43, M) Vola1, q1)
q3——(q1+q2)

o Partial diagram depends on undressed chain helicity h2) and two open indices

o Exploit analytical ¢;-structure, e.g. dependence of maximal rank R9 in g9 on rank 71 < Ry in ¢
Example: Ro(ry < 3) =1 and Ro(ry =4) =0 = No simple (Ry =4, Ro = 1) array
= Use this partial diagram as initial object for the last chain dressing
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New two-loop algorithm

e Sort chains by length: N7 > Ny > Nj Example: n=>0

Choose order of V), V1 by vertex type
o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with UV and NG)
e Connect V and map g3 — —(q1 + @)

e Connect segments of A/(2)

Vi

U (g1, o, W) = (22)%22_)1((11, 42, 7%(@221) S (go, hi?)
hY
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New two-loop algorithm

e Sort chains by length: N7 > Ny > Nj Example: n=1

Choose order of V), V1 by vertex type
o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with 2} and A/
e Connect V and map g3 — —(q1 + @)

e Connect segments of A/(2)

Vi
7 2 7 (2
U (g1, 0, 1)) = (22)%2_)1((11, .1 1) 5P (g, hP)
ha,
~ No—1
On-the-fly summation of segment helicities hq@ = QEH h§€2>
—n

= Partial diagram depends only on helicities of remaining undressed segments
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New two-loop algorithm

e Sort chains by length: N > No > Nj
Choose order of V), V1 by vertex type

o Dress N'(?) (shortest chain)

o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with UV and NG)

e Connect V and map g3 — —(q1 + @)

e Connect segments of A/(2)

Example:

Vi

U (q1, 0, W) = ¥
2

E

~

M?SJQ—)I(QL 42, hglﬁ S (go, hi?)

(2) _ Nl o (2)

On-the-fly summation of segment helicities 7’ = 5 h;;

k=n-+1

= Partial diagram depends only on helicities of remaining undressed segments

= Lowest complexity in helicities for steps with highest rank in loop momenta
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New two-loop algorithm

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with UV and NG)

Aql/

e Connect V and map g3 — —(q1 + @)

e Connect segments of A/(2)

Vi

Exploit diagram factorisation for full process:
Us+Up = Uap- Sy SN)+ Uy - Spv1---SN) = Uan+Upy) - Spst -+ Sy

Merge partially dressed diagrams with same topology and subsequent recursion steps
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New two-loop algorithm

e Sort chains by length: N1 > Ny > N3 Example:
Choose order of V), V1 by vertex type

o Dress N'(?) (shortest chain)
o Dress UV o /\/l(’)‘/\/(l) (longest chain)
e Connect V; with (1) and A3

Aql/

e Connect V and map g3 — —(q1 + @)

e Connect segments of A/(2)

Vi

Exploit diagram factorisation for full process:
Us+Up = Uap- Sy SN)+ Uy - Spv1---SN) = Uan+Upy) - Spst -+ Sy
Merge partially dressed diagrams with same topology and subsequent recursion steps

Highly efficient and completely generic algorithm for two-loop tensor coefficients

Fully implemented for QED and QCD corrections to the SM
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IV. Numerical stability

Pseudo-tree test
e Cut diagram at two propagators
e Saturate indices with random wavefunctions ey, ..., e4

e Fixed values for loop momenta ¢, ¢»

= Compute with well-tested tree-level algorithm and with new two-loop algorithm

B HT L 2
— contract coefficients ]\/'Ml...wlyl..%,2 with fixed-value tensor integrand . %(qu;z) %)

Test several processes in double and quadruple precision for 10° uniform random phase space points

Bulk of points has 14 — 16 digits agreement (all points 12 or more digits) in double precision
= Implementation validated without computing two-loop tensor integrals

All points have more than 16 digits agreement in quad precision
= Quad precision calculation as benchmark
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IV. Numerical stability

Two-loop algorithm with fixed ¢1, ¢> and pseudo wavefunctions e, ..., e4 for 10° uniform random

phase space points (psp). Numerical instability of double (dp) wrt quad precision (qp) calculation:

Wi -

" Min(IWEPLIWER)

60 -
60 -

50 A

I

o
I
o

w
o
1

ratio of psp in %
w
o

N
(=)
ratio of psp in %

N
o
1

[E
o
1

10 A

(=]

11 12 13 14 15 16 10 11 12 13 14 15 16
—|log10(A)] —[logio(A)|

gg — tt dd — uig
Excellent numerical stability

= Important for full calculation (tensor integral reduction will be main source of instabilities)
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V. Timings for two-loop tensor coefficients

QED, QCD and SM (NNLO QCD) processes (single Intel i7-6600U @ 2.6 GHz, 16GB RAM, 1000 psp)

logio(time [ms]/psp)

ratio 21/(11+q)

3.5 1

3.0 A

2.5 1

ete” —ete~

®g9g—tig

59— ttH

*ui - tig
dd - uug

. ,
€4 e —e e
®gg—tt /

e %99 -uu
uu - ttH

®dd - uu

linear fit

average
11 tensor integrals off
a 1l tensor integrals on

N r Y 4 A

A A

2.0

T

2.5 3.0 3.5 4.0
logio(number of diagrams)

2 — 2 process: 6 — 100 ms/psp

2 — 3 process: 60 — 2500 ms/psp
(on a laptop)

Runtime o< number of diagrams

time/psp/diagram ~ 150us

Constant ratios between NNLO
virtual (21) and real-virtual (114g):

2| (tensor coefficients) 9
1l1+g (tensor coefficients)

2| (tensor coefficients) A
1I+g (full calculation)

Strong CPU performance, comparable to real-virtual corrections in OpenlLoops
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VI. Summary and Outlook

Numerical calculation of two-loop tensor coefficients in the OpenlLoops framework

e Exploit factorisation of diagrams
— Highly efficient and completely generic recursive algorithm

e Fully implemented for NNLO QCD and NNLO QED corrections in the SM

(irreducible and reducible two-loop diagrams)
e Excellent numerical precision

e Strong CPU performance (~ 150us per diagram and psp) due to

— Efficient order of building blocks
— Exploitation of analytical structure in loop momenta
— On-the-fly helicity summation and diagram merging

Short-term and mid-term projects:
e Implementation of two-loop UV and rational counterterms
e Automation of all one-loop and two-loop ingredients in a single interface

e Tensor integral reduction and evaluation (in-house framework or external tool or mixture thereof)
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Backup




Reducible two-loop diagrams

Amplitude of reducible diagram I',..; (1-particle-reducible after amputation of external subtrees):

Merred

Two factorised one-loop diagrams connected by a tree-like bridge P
= Fully implemented
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