
Two-loop amplitude generation in
OpenLoops

M. F. Zoller
in collaboration with

S. Pozzorini and N. Schär

RADCOR – LoopFest 2021

OpenLoops

[Höche]

OpenLoops is a fully automated numerical tool for the tree
and one-loop computation of hard scattering amplitudes
required in Monte-Carlo simulations

• Full NLO QCD and NLO EW corrections available
• Strong CPU performance and excellent numerical stability

Available from https://gitlab.com/openloops/OpenLoops.git

or https://openloops.hepforge.org

Scattering probability densities in perturbation theory from sums of L-loop Feynman diagrams (L=0,1):

W00 = ∑
hel

∑
col
|M0|2, W01 = ∑

hel
∑
col

2 Re
M∗0M1

, W11 = ∑
hel

∑
col
|M1|2

M0 = + + . . . M1 = + + . . .

Automation at NNLO highly desirable → Goal: Two-loop OpenLoops
1

https://gitlab.com/openloops/OpenLoops.git
https://openloops.hepforge.org/

Outline

I. The OpenLoops algorithm at tree level and one loop

II. Requirements for two-loop automation

III. New algorithm to construct two-loop tensor coefficients in OpenLoops

IV. Numerical stability

V. Timings

VI. Summary and Outlook

2

I. The OpenLoops algorithm at tree level

Tree-level amplitudes constructed recursively from sub-trees (starting from external lines)

For example M0 = + . . . → split into sub-trees

Numerical recursion step:

wαa = = ×
sub-tree wb

sub-tree wc

=
Xα
βγ(kb, kc)
k2
a −m2

a︸ ︷︷ ︸
universal building block
from Feynman rules

w
β
b wγc

Generic depiction: α wa

ka

= α

wb

wc

kb

kc

(ki external momenta)

Highly efficient: Sub-trees constructed only once for multiple tree and loop diagrams

3

I. The OpenLoops algorithm at one loop
High complexity in loop diagram Γ due to analytical structure in loop momentum q

M1,Γ =

wN−1wN

w1 w2

D0

D1

D2

DN−1

q = C1,Γ
∫

dDq S1(q)· · ·SN (q)
D0· · ·DN−1

Scalar propagators Di(q) = (q + pi)2 −m2
i

Factorisation into colour factor C1,Γ
and loop segments

Si(q) =
βi−1

wi

ki

Di

βi

= Xα
i (ki, pi, q)wαi

Universal building block × sub-tree(s)

Open loop diagram at D0 → Dress chain of segments (open loop) recursively:

Nk(q) =
k∏
i=1

Si(q) = Nk−1(q)Sk(q) =
β0

w1

D1

w2

D2

wk

Dk

βk

wk+1

Dk+1

wN−1

DN−1

wN

D0

βN

︸ ︷︷ ︸
dressed segments

︸ ︷︷ ︸
undressed segments=

k∑
r=0
N (k)
µ1...µrq

µ1 . . . qµr

Completely generic and highly efficient algorithm
Implemented at the level of tensor integral coefficients N (k)

µ1...µr

4

II. Requirements for NNLO automation

NNLO scattering probability density: Wvirtual
NNLO = ∑

hel
∑
col

2 Re
M∗0M2

 + |M1|2


M0 = + . . . M1 = + . . . M2 = q1 q2 + . . .

• |M1|2,W real-virtual
NNLO ,W real-real

NNLO available in OpenLoops [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, M.Z.]

• Amplitude of a two-loop diagram Γ:

M2,Γ = C2,Γ︸ ︷︷ ︸
colour

R1∑
r1=0

R2∑
r2=0

Nµ1···µr1ν1···νr2︸ ︷︷ ︸
tensor coefficient

∫
dDq1

∫
dDq2

q
µ1
1 · · · q

µr1
1 qν1

2 · · · q
νr2
2

D(q1, q2)︸ ︷︷ ︸
tensor integral

◦ Numerical construction of tensor coefficients in four dimensions → this talk

◦ Restoration of (D − 4)-dimensional numerator parts and renormalisation through
UV and rational counterterms → Hantian Zhang’s talk on Friday

◦ Remaining tasks: Tensor integrals, treatment of IR divergences

5

III. New algorithm to construct two-loop tensor coefficients in OpenLoops

Amplitude of irreducible two-loop diagram Γ (1PI on amputation of all external subtrees):

M2,Γ =

w(1)
1

w(1)
2

w(1)

N1−1

D(1)
0

D(1)
1

D(1)

N1−1

w(3)
1

w(3)

N3−1

D(3)
0

D(3)
N3−1

w(2)
1

w(2)
2

w(2)

N2−1

D(2)
0

D(2)
1

D(2)

N2−1

V0

V1

q1 q2

q3

= C2,Γ
∫

dDq1
∫

dDq2
N (q1, q2)
3∏
i=1
D(i)(qi)

∣∣∣∣∣∣q3→−(q1+q2)

Exploit factorisation of numerator N (q1, q2) = 3∏
i=1
N (i)(qi)

1∏
j=0
Vj(q1, q2)

• Three chains, each depending on a single loop momentum qi (i = 1, 2, 3)

with chain numerators factorising into loop segments N (i)(qi) = S
(i)
0 (qi) · · ·S

(i)
Ni−1(qi)

→ Same structure as one-loop chain
• Two connecting vertices V0,V1

• Chain denominators D(i)(qi) = D
(i)
0 (qi) · · ·D

(i)
Ni−1(qi) where D

(i)
a (qi) = (qi + pia)2−m2

ia
(External momenta pia and masses mia along i-th chain)

6

Building blocks of two-loop amplitudes

Numerator N (q1, q2) =


3∏
i=1

N (i)(qi)
 β

(i)
Ni

β
(i)
0


V0(q1, q2)

β
(1)
0 β

(2)
0 β

(3)
0

V1(q1, q2)

β

(1)
N1β

(2)
N2β

(3)
N3

can be constructed recursively, multiplying one chain segment or vertex Vj per recursion step.

Observations:

• Chains have same complexity as one-loop chains

• Higher complexity in steps connecting Vj due to dependence
on q1, q2 and three open Lorentz/spinor indices β(i)

k

• Each chain segment or vertex Vj increases helicity d.o.f.
by those of its external subtree(s) and the rank in a qi by 0 or 1

• Number of independent tensor coefficients Nµ1···µr1ν1···νr2
increases exponentially with ranks r1, r2 in q1,q2

Naive algorithm: Dress all chains first, then connect V0,1,
interfer with Born and sum over helicities
→ Would be inefficient due to expensive last steps

w(1)
1

w(1)
2

w(1)

N1−1

D(1)
0

D(1)
1

D(1)

N1−1

w(3)
1

w(3)

N3−1

D(3)
0

D(3)
N3−1

w(2)
1

w(2)
2

w(2)

N2−1

D(2)
0

D(2)
1

D(2)

N2−1

V0

V1

q1 q2

q3

Number of tensor components
r2

r1 0 1 2 3
0 1 5 15 35
1 5 25 75 175
2 15 75 225 525
3 35 175 525 1225
4 70 350 1050 2450
5 126 630 1890 4410

7

Connecting the building blocks of two-loop amplitudes

Final result: Helicity and colour-summed interference with Born U(q1, q2)

= ∑
h

2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour


3∏
i=1

Ni−1∏
k=0

S
(i)
k (qi, h

(i)
k)

 β
(i)
Ni

β
(i)
0︸ ︷︷ ︸

chain N (i)(h(i))


V0(q1, q2)

β
(1)
0 β

(2)
0 β

(3)
0

V1(q1, q2)

β

(1)
N1β

(2)
N2β

(3)
N3︸ ︷︷ ︸

two-loop vertices

with segment helicities h(i)
k → chain helicities h(i) =

Ni−1∑
k=0

h
(i)
k → global helicity h = 3∑

i=1
h(i)

Algorithm will consist of N recursion steps: Nn = Nn−1 · Sn, (n = 1, . . . , N)

with partially dressed numerators Nn and building blocks Sn ∈ {S(i)
k ,Vj,N (i),M∗0C2,Γ}.

CPU cost of step n ∼ number of multiplications
→ dependent on structure of Sn and number of components of Nn
= (number of tensor components in qi) × (helicitiy d.o.f.) × 4(number of open Lorentz/spinor indices)

⇒ Most efficient algorithm found through cost simulation
of possible candidates for a wide range of QED and QCD Feynman diagrams

8

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

Order of chains and of two-loop vertices V0,V1 has major impact on efficiency
9

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

Example: n = 0

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

N (3)
n (q3, ĥ

(3)
n) = N (3)

n−1(q3, ĥ
(3)
n−1) · S(3)

n (q3, h
(3)
n) with initial condition N (3)

−1 = 11

10

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

Example: n = 1

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

N (3)
n (q3, ĥ

(3)
n) = N (3)

n−1(q3, ĥ
(3)
n−1) · S(3)

n (q3, h
(3)
n) with initial condition N (3)

−1 = 11

◦ Shortest chain ⇒ Low number of helicity d.o.f. ĥ(3)
n = ĥ

(3)
n−1 + h

(3)
n and low rank in q3

◦ Partial chains N (3)
n computed only once for multiple diagrams

⇒ Only a small number of low-complexity steps for the full process
10

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

Example: n = 0

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (1)
n (q1, ȟ

(1)
n) = ∑

h
(1)
n

U (1)
n−1(q1, ȟ

(1)
n−1) · S(1)

n (q1, h
(1)
n) with U (1)

−1(h) = 2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour



11

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

Example: n = 1

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (1)
n (q1, ȟ

(1)
n) = ∑

h
(1)
n

U (1)
n−1(q1, ȟ

(1)
n−1) · S(1)

n (q1, h
(1)
n) with U (1)

−1(h) = 2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour



On-the-fly summation of segment helicities h(1)
n

⇒ Partial chains depend on remaining helicities of the diagram ȟ
(1)
n = h− n∑

k=1
h

(1)
k

11

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

Example: n = 2

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (1)
n (q1, ȟ

(1)
n) = ∑

h
(1)
n

U (1)
n−1(q1, ȟ

(1)
n−1) · S(1)

n (q1, h
(1)
n) with U (1)

−1(h) = 2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour



On-the-fly summation of segment helicities h(1)
n

⇒ Partial chains depend on remaining helicities of the diagram ȟ
(1)
n = h− n∑

k=1
h

(1)
k

11

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

Example: n = 3

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (1)
n (q1, ȟ

(1)
n) = ∑

h
(1)
n

U (1)
n−1(q1, ȟ

(1)
n−1) · S(1)

n (q1, h
(1)
n) with U (1)

−1(h) = 2
 ∑

col
M∗0(h)︸ ︷︷ ︸

Born

C2,Γ︸ ︷︷ ︸
colour



On-the-fly summation of segment helicities h(1)
n

⇒ Partial chains depend on remaining helicities of the diagram ȟ
(1)
n = h− n∑

k=1
h

(1)
k

⇒ Large portion of helicity d.o.f already summed over during dressing of longest chain
11

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

Y(q1, q3, h
(2)) = ∑

h(3)
U (1)(q1, h− h(1)) N (3)(q3, h

(3)) V1(q1, q3)

On-the-fly summation of chain helicity h(3) (and potential subtree helicity at V1)
⇒ Partial diagram depends on undressed chain helicity h(2)

⇒ Intermediate object depends on three open indices and two loop momenta
12

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (2)
−1(q1, q2, h

(2)) = Y(q1, q3, h
(2)) V0(q1, q1)

∣∣∣∣∣∣q3→−(q1+q2)

◦ Partial diagram depends on undressed chain helicity h(2) and two open indices
◦ Exploit analytical qi-structure, e.g. dependence of maximal rank R2 in q2 on rank r1 ≤ R1 in q1

Example: R2(r1 ≤ 3) = 1 and R2(r1 = 4) = 0 ⇒ No simple (R1 = 4, R2 = 1) array
⇒ Use this partial diagram as initial object for the last chain dressing

13

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example: n = 0

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (2)
n (q1, q2, h̃

(2)
n) = ∑

h
(2)
n

U (2)
n−1(q1, q2, h̃

(2)
n−1) S(2)

n (q2, h
(2)
n)

14

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example: n = 1

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (2)
n (q1, q2, h̃

(2)
n) = ∑

h
(2)
n

U (2)
n−1(q1, q2, h̃

(2)
n−1) S(2)

n (q2, h
(2)
n)

On-the-fly summation of segment helicities h̃(2)
n =

N2−1∑
k=n+1

h
(2)
k

⇒ Partial diagram depends only on helicities of remaining undressed segments

14

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example: n = 2

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

U (2)
n (q1, q2, h̃

(2)
n) = ∑

h
(2)
n

U (2)
n−1(q1, q2, h̃

(2)
n−1) S(2)

n (q2, h
(2)
n)

On-the-fly summation of segment helicities h̃(2)
n =

N2−1∑
k=n+1

h
(2)
k

⇒ Partial diagram depends only on helicities of remaining undressed segments

⇒ Lowest complexity in helicities for steps with highest rank in loop momenta
14

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

Exploit diagram factorisation for full process:

UA + UB =
(
UA,n · Sn+1 · · ·SN

)
+

(
UB,n · Sn+1 · · ·SN

)
=

(
UA,n + UB,n

)
· Sn+1 · · ·SN

Merge partially dressed diagrams with same topology and subsequent recursion steps

15

New two-loop algorithm

• Sort chains by length: N1 ≥ N2 ≥ N3
Choose order of V0,V1 by vertex type

• Dress N (3) (shortest chain)

• Dress U (1) ∝M∗0N (1) (longest chain)

• Connect V1 with U (1) and N (3)

• Connect V0 and map q3 → −(q1 + q2)

• Connect segments of N (2)

Example:

V1

V0

w(1)
1

w(1)
2

w(1)
3

w(3)
1

w(2)
1

w(2)
2

q1 q2

q3

Exploit diagram factorisation for full process:

UA + UB =
(
UA,n · Sn+1 · · ·SN

)
+

(
UB,n · Sn+1 · · ·SN

)
=

(
UA,n + UB,n

)
· Sn+1 · · ·SN

Merge partially dressed diagrams with same topology and subsequent recursion steps

Highly efficient and completely generic algorithm for two-loop tensor coefficients

Fully implemented for QED and QCD corrections to the SM
15

IV. Numerical stability

Pseudo-tree test

• Cut diagram at two propagators

• Saturate indices with random wavefunctions e1, . . . , e4

• Fixed values for loop momenta q1, q2

e1e2
e3 e4

D(1)
0

D(3)
0

D(2)
0

V0

V1

q1 q2

q3

⇒ Compute with well-tested tree-level algorithm and with new two-loop algorithm
→ contract coefficients Nµ1···µr1ν1···νr2 with fixed-value tensor integrand q

µ1
1 ···q

µr1
1 q

ν1
2 ···q

νr2
2

D(q1,q2)

Test several processes in double and quadruple precision for 105 uniform random phase space points

Bulk of points has 14− 16 digits agreement (all points 12 or more digits) in double precision
⇒ Implementation validated without computing two-loop tensor integrals

All points have more than 16 digits agreement in quad precision
⇒ Quad precision calculation as benchmark

16

IV. Numerical stability

Two-loop algorithm with fixed q1, q2 and pseudo wavefunctions e1, . . . , e4 for 105 uniform random
phase space points (psp). Numerical instability of double (dp) wrt quad precision (qp) calculation:

A := |W(dp)
02 −W

(qp)
02 |

Min(|W(dp)
02 |,|W

(qp)
02 |)

11 12 13 14 15 16
|log10()|

0

10

20

30

40

50

60

ra
tio

 o
f p

sp
 in

 %

gg → t̄t

10 11 12 13 14 15 16
|log10()|

0

10

20

30

40

50

60

ra
tio

 o
f p

sp
 in

 %

dd̄→ uūg

Excellent numerical stability
⇒ Important for full calculation (tensor integral reduction will be main source of instabilities)

17

V. Timings for two-loop tensor coefficients

QED, QCD and SM (NNLO QCD) processes (single Intel i7-6600U @ 2.6 GHz, 16GB RAM, 1000 psp)

1.0

1.5

2.0

2.5

3.0

3.5

lo
g 1

0(
tim

e
[m

s]
/p

sp
)

e + e e + e

e + e e + e

gg uu

dd uu

dd uug
uu ttg

gg tt

gg ttg

ud W + gg

uu W + W g

uu ttH

gg ttH

linear fit

2.0 2.5 3.0 3.5 4.0
log10(number of diagrams)

5

10

15

ra
tio

 2
l/(

1l
+

g) average
1l tensor integrals off
1l tensor integrals on

2→ 2 process: 6− 100 ms/psp

2→ 3 process: 60− 2500 ms/psp
(on a laptop)

Runtime ∝ number of diagrams
time/psp/diagram ∼ 150µs

Constant ratios between NNLO
virtual (2l) and real-virtual (1l+g):
2l (tensor coefficients)

1l+g (tensor coefficients) ∼ 9
2l (tensor coefficients)
1l+g (full calculation) ∼ 4

Strong CPU performance, comparable to real-virtual corrections in OpenLoops

18

VI. Summary and Outlook

Numerical calculation of two-loop tensor coefficients in the OpenLoops framework

• Exploit factorisation of diagrams
→ Highly efficient and completely generic recursive algorithm

• Fully implemented for NNLO QCD and NNLO QED corrections in the SM
(irreducible and reducible two-loop diagrams)

• Excellent numerical precision

• Strong CPU performance (∼ 150µs per diagram and psp) due to
– Efficient order of building blocks
– Exploitation of analytical structure in loop momenta
– On-the-fly helicity summation and diagram merging

Short-term and mid-term projects:

• Implementation of two-loop UV and rational counterterms

• Automation of all one-loop and two-loop ingredients in a single interface

• Tensor integral reduction and evaluation (in-house framework or external tool or mixture thereof)

19

Backup

Reducible two-loop diagrams

Amplitude of reducible diagram Γred (1-particle-reducible after amputation of external subtrees):

M2,Γred =

w(1)
1

w(1)

N1−1

D(1)
0

D(1)
1

D(1)

N1−1

q1

P

w(2)
N2

w(2)
2

D(2)

N2−1

D(2)
1

D(2)
0

q2

= C2,Γred Pα1α2
2∏
i=1

∫
dDqi

N (i)(qi)
αi

D(i)(qi)

Two factorised one-loop diagrams connected by a tree-like bridge P
⇒ Fully implemented

21

