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DRELL-YAN
a

l

l̄

✓ One of the standard candle processes

• Large cross section and clean experimental signature - important for
detector calibration and constraining parton distribution functions

✓ Precise predictions for electroweak parameter

• W boson mass (mW ), Weak mixing angle (sin2 θeff ) ... (δmW < 5 MeV and
δ sin2 θeff < 0.0001 would provide very stringent test of the SM likelihood. )

✓ New physics potential

• Many BSM scenarios with same final states -W ′, Z′, KK modes etc.
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Chronicles of the inclusive Drell-Yan

NLO QCD & NLO EW
Politzer (1977)
Sachrajda (1978)
Altarelli, Ellis, Martinelli (1979)
Humpert, van Neerven (1979)
Dittmaier, Krämer (2002)
Baur, Brein, Hollik, Schappacher, Wackeroth (2002)
...
NNLO QCD
Hamberg, Matsuura, van Neerven (1991)
Harlander, Kilgore (2002)
...
N3LO QCD
...
Duhr, Dulat, Mistlberger (2020)
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Progress in obtaining the NNLO QCDxEW corrections

On-shell Z/W production - first step towards full Drell-Yan
• Pole approximation : Dittmaier, Huss, Schwinn;
• Analytic QCDxQED corrections : de Florian, Der, Fabre;
• pZT distribution in QCDxQED including pT resummation : Cieri, Ferrera, Sborlini;
• Differential on-shell Z production including QCDxQED : Delto, Jaquier, Melnikov, Roentsch;
• Total QCDxEW corrections to Z production (fully analytic):
Bonciani, Buccioni, NR, Triscari, Vicini; Bonciani, Buccioni, NR, Vicini; ⇐= This Talk
• Differential on-shell Z/W production including QCDxEW :
Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, Roentsch; ⇐= Talk by A. Behring
• QCDxQED corrections beyond SV at N3LO :
A.H, Mukherjee, Ravindran, Sankar, Tiwari; ⇐= Talk by A. Sankar

Complete Drell-Yan
• neutrino pair production in QCDxQED : Cieri, de Florian, Der, Mazzitelli;
• pp → lνl +X in QCDxEW :
Buonocore, Grazzini, Kallweit, Savoini, Tramontano; ⇐= Talk by L. Buonocore
• two-loop amplitudes:
Heller, von Manteuffel, Schabinger; ⇐= Talk by A. von Manteuffel
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αs(mZ ) ≃ 0.118 α(mZ ) ≃ 0.0078 αs(mZ )
α(mZ )

≃ 15.1
α2s(mZ )

α(mZ )
≃ 1.8

1. From naive argument of coupling strength, N3LO QCD ∼ mixed NNLO QCD⊗EW.

2. However, in specific phase-space points, fixed order EW corrections can become
very large because of logarithmic (weak and QED Sudakov type) enhancement.
These effects are large forW mass measurements. On the other hand, these
corrections suffer from large uncertainties coming from unphysical scales.

3. N3LO QCD corrections control the uncertainties arising from the unphysical
scales, but they lack the large EW effects.

4. The appearance of photon induced processes⇒ photon PDFs.

The NNLO mixed QCD-EW corrections
• have similar magnitude as N3LO QCD,
• contain the large EW effects,
• and also reduce the dependency on unphysical scales.

NNLO QCD⊗EW corrections extremely important for high (O(10−4)) precision pheno.

5



Another motivation : Electroweak scheme dependence

The Lagrangian has 3 inputs (g, g′, v). More observables (like Gµ, α,mW ,mZ , sin θW )
are experimentally measured and can be considered as input parameters in different
schemes. Such two schemes are

1. Gµ-scheme : where (Gµ,mW ,mZ ) are considered as input
2. α(0)-scheme : where (α,mW ,mZ ) are considered as input

The relation between Gµ and α gets EW and mixed QCD⊗EW corrections.
Gµ√
2
=

πα

2 sin2 θW cos2 θWm2
Z

(1+∆r)

At LO, α(Gµ) and α(0) differs by 3.53%.

order Gµ-scheme α(0)-scheme δGµ−α(0) (%)
LO 48882 47215 3.53
NLO QCD (LO +∆10) 55732 53831 3.53
NNLO QCD (LO +∆10 +∆20) 55651 53753 3.53
NLO EW (LO +∆01) 48732 48477 0.53
LO +∆10 +∆01 55582 55093 0.89
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In this talk, I present the NNLO mixed QCD×EW corrections to Z boson
production. I outline the computational details and technical challenges to
obtain such contributions.
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Notation

σtot(z) =
∑

i,j∈q,q̄,g,γ

∫
dx1dx2 fi(x1, µF )fj(x2, µF )σij(z, ε, µF )

In the full QCD-EW SM, we have a double expansion of the partonic cross sections in
the electromagnetic and strong coupling constants, α and αs , respectively:

σij(z) = σ
(0)
ij

∞∑
m,n=0

αm
s αn σ

(m,n)
ij (z)

= σ
(0)
ij

[
σ
(0,0)
ij (z)

+ αsσ
(1,0)
ij (z) + ασ

(0,1)
ij (z)

+ α2sσ
(2,0)
ij (z) + ααsσ

(1,1)
ij (z) + α2σ

(0,2)
ij (z)

+ α3sσ
(3,0)
ij (z) + αα2sσ

(2,1)
ij (z) + α2αsσ

(1,2)
ij (z) + · · ·

]
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Anatomy of NNLO contributions for Z production

Pure Virtual

×

Real-Virtual
×

× ,

×

×

Double Real
×
×
×

Loop integrals

• Integrating the virtual loop momenta, widely studied and understood

• The integrals result in constants (MZVs and cyclotomic constants)

Phase-space integrals

• Integrating the momenta of real-emitted particles

• Often performed numerically

• To obtain inclusive production cross-section, we require an analytic computation

• These integrals contain standard HPLs and elliptic polylogarithms
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Anatomy of NNLO contributions for Z production

Pure Virtual

×

Real-Virtual
×

× ,

×

×

Double Real
×
×
×

For different vector bosons, the contribution can be organized into four types

a

• QCD⊗QED : γ propagator in the loop / emission of γ

• EW1 : single Z propagator in the loop

• EW2 : singleW propagator in the loop

• EW3 : Contributions withWWZ vertex
Emission of massive boson is infrared finite, hence, is treated as separate process.

gauge invariant and finite : QCD⊗QED, EW1, EW2+EW3
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The generic procedure
d = 4− 2ϵ

• Diagrammatic approach -> QGRAF to generate diagrams (102 − 103)

• In-house FORM routines for algebraic manipulation :
Lorentz, Dirac and Color algebra

• Reverse unitarity : phase-space integrals to loop integrals

δ(k2 −m2) ∼
1
2πi

(
1

k2 −m2 + i0
−

1
k2 −m2 − i0

)
• Decomposition of the dot products to obtain scalar integrals (105 − 106)

2l.p
l2(l − p)2

=
l2 − (l − p)2 + p2

l2(l − p)2
=

1
(l − p)2

−
1
l2

+
p2

l2(l − p)2

• Identity relations (105 − 106) among scalar integrals : IBPs, LIs & SRs

• Algebraic linear system of equations relating the integrals
⇓

Master integrals (MIs) (10− 102)

• Computation of MIs : Differential equations
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Comments

on the method of differential equations :
1. We do not use canonical form for the system of differential equations.
2. Hence, we find coupled differential equations which we decouple at each
order in ϵ.

on the dependence on mW and mZ :
1. For convenience, the calculation of the MIs that depend on two different
masses (mZ and mW ) is done performing an expansion of the integrand in
powers of the ratio δm2 = (m2

Z −m2
W )/m2

Z .

11



More notations

The variable z and its various forms

z =
t

(1+ t)2
=

ρ

(1− ρ+ ρ2)
=

w

1− w2 .

Appearing kernels and the corresponding letters{
− 1,− 1

2
, 0, 1

2
, 1
}

≡
{

1
1+ x

,
1

1
2 + x

,
1
x
,

1
1
2 − x

,
1

1− x

}
{
{3, 0}, {3, 1}, {6, 0}, {6, 1}

}
≡

{
1

1+ x+ x2
,

x

1+ x+ x2
,

1
1− x+ x2

,
x

1− x+ x2

}
{
{4, 1}, i1,−i2

}
≡

{
x

1+ x2
,

1
i1 − x

,
1

i2 + x

}
where i1 and i2 are given by

i1 =

√
5− 1
2

≡ 0.618034 . . . , i2 =

√
5+ 1
2

≡ 1.618034 . . .
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Computing the double-virtual

× × ×

1. We compute the integrals considering off-shell Z.

2. We define the variables x and xL, for single and double mass case,
respectively as x = − q2

m2 = (1−xL)2

xL
.

3. The boundary conditions are obtained for x, xL = 1.

4. The result is written in HPLs with alphabet {−1, 0, 1, {6, 0}, {6, 1}}.
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Computing the double-virtual

× × ×

To achieve the on-shell result, appropriate limit needs to be taken.

• For EW1, the limit is x → −1.

• For EW3, instead of taking the limit xL → 1− m2
Z

2m2
W

− 1
2

√
m2

Z

m2
W

(
m2

Z

m2
W

− 4
)
,

we do a Taylor series expansion around δm2 = 0.

• This produces HPLs (constants) with argument r2 =
1
2 − i

√
3
2 .

• Finally, we reduce all these constants to a basis
(introduced by [Henn, Smirnov, Smirnov]).

H[__,−1], H[__, r2] ⇒ {π, ln 2, ln 3, ζ2, ζ3, . . . , GR[__], GI [__]}

The basis is very important for analytic cancellation of singularities.
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Computing the real-virtual

×

× ,

×

×

×

× ,

×

×

• Reverse unitarity→ IBP→ MIs→ d
dz

→ Solve the diff. eqns.

• The following kernels appear
1

1+ z
,
1
z
,

1
1
2 − z

,
1

1− z
,

1
1− z + z2

,
z

1− z + z2
,

1
z
√
1− z

√
1+ 3z

,
1

z
√
1+ 4z2

• However, the numerical evaluation of the iterated integrals with square-root
letters is not efficient.

• Instead of using a single transformation rule to rationalize them, we write the
system (each MI) as sum of functions of dependent variables and separately
treat them. As a result, each sub-system has alphabet with ’good’ letters
(−1, 0, 12 , 1, {6, 0}, {6, 1}, i1,−i2) with different argument (z, ρ, w).
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Computing the real-virtual (example)

Let’s consider two integrals {J1, J2} such that

J ′
1 = a1(d, z)J1 + r1(d, z); J ′

2 = a2(d, z)J2 + b2(d, z)J1 + r2(d, z)

• the solution of J1 involves a square-root letter,

• the homogeneous solution of J2 contains standard kernel.

Expecting that all the coefficient of the poles should have a simpler/standard HPLs,
we look for a combination J0 ≡ f1(z)J1 + f2(z)J2 , such that

J ′
0 = a0(d, z)J0 + (d− 4)b0(d, z)J1 + r0(d, z) .

This allows poles with simpler HPLs.

For the finite contributions from J0 , of course, the iterative integral over square-root
will be present, along with standard HPLs. We perform variable transformation for
only the square-root and associated terms to rationalize and write the
non-homogeneous part as the following sum nonh = nonh(z) + nonh(w). Thus we
avoid square-root letters in the alphabet which allows a smooth numerical evaluation.
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Computing the real-virtual (example)

J
(−1)
1 =

w2

1− w4

(
iπ

(
3H0(w) + H1(w) + H−1(w)

)
− 7H0,0(w) − 4H0,1(w)

+ 3H0,−i2 (w) − 3H0,i1 (w) + 4H0,−1(w) − H1,0(w) − H1,i1 (w) − H−1,0(w)

− H−1,i1 (w) + 3ζ2 + H1,−i2 (w) + H−1,−i2 (w)
)

J
(0)
0 = z

2
(
− 9ζ3 + · · · · · · − 2H 1

2 ,
1
2 ,0

(z) − 2H 1
2 ,

1
2 ,1

(z) − 5H 1
2 ,0,0

(z) − 6H 1
2 ,0,1

(z)

− 4H 1
2 ,1,0

(z) − 5H 1
2 ,1,1

(z) + 12H1,0,0(z) + 14H1,1,0(z) + 19H1,1,1(z) + · · · · · ·
)

+
w2

(1− w2)2

(
− 3H−1(w)ζ2 + · · · · · · + H1,−1,0(w) + 3H1,0,i1 (w) − 3H1,0,−i2 (w)

+ H1,1,i1 (w) + H1,−1,i1 (w) − H1,1,−i2 (w) − H1,−1,−i2 (w) + · · · · · ·
)
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Computing the double-real

×
×
× ,

×
×
×

• Reverse unitarity→ IBP→ MIs→ d
dz

→ Solve the diff. eqns.

• The following kernels appear
1

1+ z
,

1
1
2 + z

,
1
z
,

1
1
2 − z

,
1

1− z
,

1
1+ z + z2

,
z

1+ z + z2
,

1
1− z + z2

,
z

1− z + z2
,

z

1+ z2
,

1
z
√
1− z

√
1+ 3z

• Similar to RV, we write the system (each MI) as sum of functions of dependent
variables and separately treat them. As a result, each sub-system has alphabet
with ’good’ letters (−1,− 1

2 , 0,
1
2 , 1, {3, 0}, {3, 1}, {6, 0}, {6, 1}, {4, 1}) with

different argument (z, ρ, t).
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Computing the double-real (Elliptic)

×
×
×

⇒ ⇒
×

×

This topology produces a 3× 3 system which is not first-order factorizable, giving a set
of elliptic integrals {I1, I2, I3}, the homogeneous part of which is the same as the one
studied for the corresponding virtual diagram by Aglietti, Bonciani, Grassi & Remiddi
and Broedel, Duhr, Dulat, Penante & Tancredi to obtain the results in terms of elliptic
integrals of the first kind and eMPLs, respectively.

In each order of ϵ-expansion, the 3× 3 system reduces to 2× 2 and 1× 1 sub-systems.

The system can be solved with standard HPLs in the poles and eMPLs in the finite part
and higher ϵ orders.
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Computing the double-real (Elliptic)

However, the IBP reduction introduces a 1
ϵ
in the coefficient of these integrals which

implies the integrals need to be computed up to O(ϵ) and the finite part of the
integrals (contain eMPLs) contribute to single pole of the matrix element.

Expecting the simpler polylogarithmic structure (no eMPL) of the single pole of the
matrix element, we find the following combination of the elliptic masters
(contributing to single pole) and solve for the ordinary d.e. in terms of HPLs.

I
(n)
0 = z(1+ 2z)I(n)

1 + z(1− 4z)I(n)
2 − (1+ 5z)I(n)

3 .

We find the solutions

I
(−1)
0 =

1
2
z2(−1+ 4z)H0(z)

I
(0)
0 =

(
−
5z2

2
+

6z4

−1+ z

)
H0,0(z) + 2z2(−1+ 4z)H0,1(z) + 2(1− 4z)z2ζ2

The solutions provide analytic cancellation of the single pole. Of course, the
combination does not remain independent of I2, I3 for I(1)0 , which contribute with
eMPLs to the finite part of the matrix element.
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Computing the double-real (Elliptic)

• To avoid the numerical evaluation of the eMPLs, we expand in logarithmic series
the solutions for I2 and I3 around z = 1, 12 and 0, imposing initial conditions in
z → 1 and matching the different series in intermediate points.

• We replace I0 for I1 and compute the HPL-dependent part of I0 in closed form
and the rest in expansion.

• In the end, we have part of the result of these elliptic integrals in closed form
and the rest in expansion which enables us for a smooth numerical evaluation.

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

1.5

I
(0)
1 in blue, I(0)2 in yellow, I(0)3 in green, I(1−expanded)

0 in red
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Ultraviolet renormalization

⊛ The Born contribution is zeroth order in αs , hence no αs renormalization is needed.

⊛ Renormalization of quark wave function receives one-loop EW and two-loop mixed
QCD⊗EW contributions in the on-shell scheme.

+

⊗
+ ⊗ ⇒ UV finite

⊛ The neutral current vertex is renormalized using background field gauge, with the
advantage that the vertex and propagator contributions are separately UV finite.

+
⊗ • ⇒ UV finite

⊛ The UV counter terms get contributions from two-point functions.

The UV renormalized matrix-elements are finally combined with appropriate mass
counter terms to obtain the finite partonic cross sections (σ(1,1)

ij ).
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Numerical evaluation

We perform the convolution of the physical parton densities with the finite partonic
cross-sections through two parallel FORTRAN codes to obtain the inclusive
production cross-section.

In one code, we use HarmonicSums and GiNaC to evaluate σ
(1,1)
ij (z) and save them

as grids. Next, we use an interpolation routine to perform the convolution. Each
σ
(1,1)
ij (z) can be evaluated for 1000 points in a single-core in minutes, due to the
compact structure.

In the other, we use handyG to evaluate σ
(1,1)
ij (z) during convolution integration.
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Results!

-4

-2

	0

	2

	4

	0 	0.2 	0.4 	0.6 	0.8 	1

u	ū						Z	+	X

Δ u
ū(i,
j) 	
(z
)

z

10-1	Δuū
(1,0)

Δuū,γ
(1,1)

Δuū,Z
(1,1)

Δuū,W
(1,1)

Δuū
(1,1)

-0.1

-0.05

	0

	0.05

	0.1

	0 	0.1 	0.2 	0.3 	0.4 	0.5

The finite partonic cross-sections for the particular process uū → Z +X .

It is interesting to note the ’kink’ at z = 1
4 in the weak contributions, arising from the

di-boson production threshold.
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Results!

Inclusive production cross-section for Z boson at 13 TeV

NNLO QCD + Gµ α(0) δGµ−α(0) (%)
55651 53753 3.53

δNLO−EW 55501 55015 0.88
δNLO−EW + δNNLO−QCD×QED 55516 55029 0.88
δNLO−EW + δNNLO−QCD×EW 55469 55340 0.23

• We use NNPDF31_nnlo_as_0118_luxqed_nf_4 pdfset.

• The mixed NNLO QCD×QED correction is 0.03% of the Born, while the mixed
NNLO QCD×EW correction is negative and larger than the earlier by almost a
factor of 3, providing per mille correction to the Born.

• After including the mixed NNLO QCD×EW correction, the spread between two
schemes reduces to 0.23%.
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Results!

Inclusive production cross-section for Z boson at 13 TeV

Definitions of best prediction

PDF with DGLAP-QCD evolution σA = NNLO QCD
NNPDF31_nnlo_as_0118_nf_4
PDF with DGLAP-(QCDxQED) evolution σB = NNLO QCD + δNLO−EW + δNNLO−QCD×EW

NNPDF31_nnlo_as_0118_luxqed_nf_4

In pure QCD model, the PDF is evolved with DGLAP-QCD
σA = 55787 pb

In case of mixed corrections, PDF must be evolved with DGLAP-(QCDxQED)
σB = 55469 pb

Both models are legitimate and differ by ∼0.57%.
However the full QCD-EW model is the logical choice for high precision studies!

25



Summarizing

• We have obtained analytic results for mixed NNLO QCD×EW corrections to
on-shell Z boson production.

• The method of reverse unitarity allows us to use the techniques (IBP, DE) of loop
calculation for the phase-space integrals.

• We have computed two-loop virtual & phase-space integrals with massive lines.

• The solutions are obtained mostly in terms of HPLs and special constants (MZV
and cyclotomic HPL at 1). The contributions from eMPLs are obtained as
expansion.

• Cross checks
- analytically and numerically with available QCD×QED results.
- within expected numerical accuracy with the Monte-Carlo computation.

Thank you for your attention!
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