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Motivation

0 The regarding Higgs amplitudes are power suppressed due to chirality flipping. But scale hierarchy
Mf > mbz(c) gives Sudakov enhancement, which is relevant in precision study: ~ 1.6 % for H — yy

decay rate and ~ 13 % for gg — H production rate.

0 These are next-to-leading power (NLP) problems, and resummation has been studied using conventional
QCD techniques. [Akhoury, Wang and Yakovleyv, '98; Kotsky and Yakovlev, 'o1; Liu and Penin, 17, 18; Anastasiou and Penin, 20, '21]

0 Recently NLP SCET has drawn a lot of attention [Beneke et al., Moult et al., 2016-2020; Liu, Neubert, 19, Wang, ‘10]. These

processes are sufficiently complicated but simple enough (e.g., the operator basis is small) to investigate
NLP SCET.

0 Despite of some consensus of several generic features of NLP SCET (e.g., bare factorization), establishing
a renormalized factorization and dealing with endpoint divergences is not fully understood yet.

O For these two processes, we can get renormalized factorization formulae and use "plus-type
subtraction” to deal with endpoint divergences and push resummation beyond NLL in the end.




Brief Introduction to NLP SCET

O In general, NLP effects start to be relevant in precision study at colliders. See talks by [pal, van Beekveld, Penin, Mukherjee, Moch,
Schnubel, Ajjath A H, Szafron...]

O LP Soft- Effective Theory (SCET) is very successful, €.£., [Ahrens, etc, '09; Becher, Neumann, '20; Stewart, Tackman, Waalewijn, 'og;

Ellis, etc, '10; Beneke and Kirilin, 12 ...]. How to apply NLP SCET at colliders?

1. NLP correction to measurement functions
2. NLP operators depending on processes ?
3. NLP SCET Lagrangian insertion(s)

NLP SCET Lagrangian has been known for a while [Beneke, Feldman, '02;
Mount, Stewart, Vita, 19] , SO it seems it should be straightforward. But NO.

c c do ~ S HO 20O ~ Y HO2 O 050050 See Robert's talk

O Bare factorization is well understood for different processes, e.g., [DY: Beneke, etc. 16 - '20; Thrust: Mount, etc., '18-20;
Hyy: Liu and Neubert, 19; Wang, 19]. The problem is when renormalizing endpoint divergences always occur.

O Without consistent renormalization, there is no way to perform resummation by standard RG evolution.



Bare Factorization: Plus-Type Subtraction and Emergence of Cutoff

M’YW’ « Endpoint divergences occur whenz — 0,1 and £, — oo.
. 1 o Some are regularized by DR, while others are rapidity divergences.

! « Rapidity divergences are cancelled additively, not like LP SCET!
' H (O

h h : =
[Becher, Neubert, '10]
[Chiu, Jain, Neil, Rothstein, 1]

_|_

Ba
Hy2) @ C@: h 2 jdzHQ(O)(z)<O§0)kz) <H2(0)(Z) = %)
s ) , i : -

Cancellatlon of rapidity divergences mdlcates close

! ; + L relation between the two integrands in the endpoint region (next slide)
he he J J = _ | S—— .
Hs - | } -
- A = H3<()§0)> — H?EO) / d;+ / df JO (M) J(O) (Mpl_) SO (0,0 See Marvin's talk
3 L A T "plus-type” subtraction

infinity bin

[Liv, Neubert 012.08818] - M., = (H{” +8HGH) (O”) + / dz |1y (:)(05 (2)) — (S @O ()] = [ GIIKOE" ()]

H3” {? dﬁ* ——JO (mpt) JO (=mpty) SO (,00)

leading power

[f(2)] means that one retains only the leading terms of the function f(z).
Cutoffs are emergent after adding back the subtraction and double counting is removed, which is AHI(O).
Rapidity regulator is no longer needed due to plus-type subtraction.
The factorization formula for gg — h to appear is very similar to its abelian cousin.
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Re-factorization conditions

& Re-factorization conditions relate the integrands in the endpoint region.

@ We proved them to all orders of a,.

(O ey = QL ey [09108” ()] = =521 (k) €3 (k) [ T (<M) SO (M)

& These can also be used to obtain relations among renormalization factors, e.g., 7 ; and [Zs]
& They also ensure all order relations between "left-over” terms due to cutoffs when renormalizing operators.
M These conditions also hold in gg — h amplitude (to appear).

& Re-factorization could be generic to deal with endpoint divergences, including SCET1.



Renormalization (& — yy & gg — h)

& There are operator mixings when renormalizing them.

& The renormalization for the non-abelian case is slightly different, since the amplitude itself is not IR safe.

Extra divergences can be accounted for by a global renormalization: (Becher and Neubert, 00]

— _Af2/,,2
Mgg() = Zg (M), with  Zh =1+ @ (1) 204 | ~2Ca In(—M;/p?) + Bo

g9 99>’

+ O(a?)

A7 € €

& This global renormalization factor changes the renormalization factors for the operators,
and therefore the anomalous dimensions. Here are the Z factors of the soft function S at NLO as an example:

Lange-Neubert kernel

Z¥ (w,w's ) = §(w —w') + as (1) { [(CF—CA) (— —ZIn —)

2 (w, ') = 8w — ) + 2= { or(Z-2m ) - 2 s - ) - 1 wr<w,w’>}

& The structure of Cusp term is also observed in [Mount, Stewart, Vitra Zhu, '09; Beneke, Garny, Jaskiewicz, Szafron, Vernazza’ Wang, 20]
& We derived the non-abelian renormalization factors, not only from RG invariance, but also

using the method in [Bodwin, et al., 2101.04872].



Renormalized Factorization: Plus-Type Subtraction and Cutoff

& This master formula is free of any divergences for H — yy. Its non-abelian cousin is similar, but needs Zg_gl.

& To establish such a renormalized formula is not so straightforward:

O With cutoffs in the convolution, exchanging integration limits doesn't commute with renormalization, e.g.,

=) < L=
S(w,p)= | d

w' Zs (w,w'; 1) SO (w')  v.s v SO (W) x -

0 0

w/

& After exchanging the integration limits when expressing everything in terms of renormalized ones,

there are some "left-over” terms (mismatch). We proved to all orders that the sum of these terms is purely hard,

and it can be absorbed into H,. The same procedure also applies to gg — H.

infinity bin left-over mixing

1 ~

Hi () = (B + A — 00" 777 +2 / @z [ H ()23 () - [H (125 ()] - [H (2)]1 25 (2]
0




Renormalization Group Equations for Operators

T (01(1) = ~ 11 (01(1)

T (0al ) = - / 4222 (2,2) (02 (2.1) — 721 (2) (On (1)

e 1(Oa(e )] = - / & Ty (2. )02 (/. ))] ~ s (] (01 (1)
T3t = [ s 0P
dlius(w’“) = —7d$75(w,w/x)5(w/$,u)

4 There are non-local kernels (Brodsky-Lepage kernel and Lange-Neubert kernel) in all the above except <01(,u)>.

[ Two-loop solutions to J(p2, i) and S(w, yt) are obtained in [2003.03303] and [2005.03013].

4 The solutions to (O,(z, u)) and its endpoint region version will be given in our on-coming paper.

[4 The anomalous dimensions for the non-abelian case are different but the structure is similar.

4 We evolve the operators up to the hard scale My, such that resummation is obtained by evolution of operators.
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Large Logarithms at 3-loop

[ The renormalized factorization formulae for H — yy and gg — H can reproduce 2-loop fixed order results.

MUsing the RGEs up to 2-loop (H — yy), we can even analytically reproduce 3-loop amplitude for a2 643

S

in perfect agreement with [Czakon, Niggetiedt, 20].

—mj; — i0
N, 2 L2 L= m?
MY == T () (@){——2 :
s v 2
Cras (o) [ LA 5 21 272 Vi
Sl 5 Pl § 124+ 20— +16¢3 )| L — 20 + 4¢3 — —
Rl 12 R R A~
~ 2
as (fin) Cr 6 Cr  Bo 5 OS 14 0S 713
C L L _ D) L5 4 dOSLA 4+ d9SL3 + ...
N F( 47 ) {90 T 70 "8 T L AT

0.01975L% — 0.31111L° — 8.74342L* — 68.6182L>

gd?s and a’? S are numbers in terms of zeta values and color factors. The large logarithms correspond to the

:Aa :/f;xa /é\a

[A Note that there is hierarchy between the coefficients of the logarithms. Although L is large, subleading logarithm

diagrams in full theory.

is not smaller than the leading one at all, not to mention L* and L>. This means LL and NLL resummation would not

be sufficient.



Resummation: RG improved LO

[4 The previous slide shows you that we should treat equally leading logarithms, subleading logarithms, etc.

In other words, we resum the large logarithms in RG improved perturbation theory, keeping the counting in exponential.
T; ~exp [L? - g (asL?) + g (s L?) + s - gh(asL?) + .. ]
[ It turns out that NLL resummation only receives contribution from resummed T;. However, RG improved LO resummation

also needs resummed 7. The RG improved LO T; for H — yy reads:

TRGI — Ncab yb(ll'l'h / d_ dg_*‘ 28’1—‘(”83“}1) 2‘5’1—‘(“ ’/*l'h) 2SF(N’+$N‘h)+a"73 +a”7m +27E(2a1"_a’1“ CL?:)
3,LO . /_
0
(amH€ ) r (mH€+> ( >_aF I'l—ap) (1 aff)Gz,z ( 1,0,1,1 Z_E+)
,u— F(1+CLF)F(1+CLF) 44 1+af‘71+a’f‘7af‘aaf‘ mg
Meijer-G
. - O‘S(”)d Teuep (@) A - QS(M)d w(a) from resummed soft function
o == [ [ g wtn == [ a0

as(v) a. (v) os (1)

. . . . i
[4 For RG improved LO resummation, we use two loop I'cusp in Sy, one loop yyinar, a, anda, .
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Resummation: RG improved LO

4 Contribution from T, which originates from mixing with O,(u), is smaller than 75. However, it is hard to obtain

an analytic expression like the case of 75 due to the subtraction nature.

7, =2 [ dz[Ha(z,) (Oa(z, ) — [Ha(e mIOa(z0 )]~ [Ha(z, )1 1(O2(2, )]

[ We can numerically evaluate it. Nevertheless let me show you analytically how subtraction kills endpoint divergences.

To see this explicit, we go to Gegenbauer space:

s 4m + 3 1
(H2 ® (O2))aiv OC% (2m +1)(2m +2) Bo + 2CF (2Ham+1 — 3)
> dm+ 3 1

2([H2] @ [[<02>]])div x Zo (2m+1)(2m +2) Bo +2CF (2Hapmq1 — 3 — 1/((2m + 1)(2m + 2)))

4 The logic applies to the non-abelian case too.
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NLL from RG improved LO resummation

[ Although we argue that one should resum in RG improved perturbation theory, it is helpful to extract NLL

results from RG improved LO results for academic purpose:

MELL O<L2 i (—p.)" 2l'(n +1) 1+ 3py2n+1  fBo p5  (n+ 1) :CFOés(,Mh)LQ
2 ~ ['(2n + 3) ] 2L 2n+3 Cp 4L (2n+3)(2n+5) Y 27
e [ 2
MILL (i) ocL—22(— )”M 1+ Cr  3pg2n+1 _ Bo é (n+1)° P :(CF — CA)O‘S(:Uh)L
99 2 &= " T(2n+3) Cp—Ca2L2n+3 Cr—CadL (2n+3)(2n+5) g 27

[ At NLL, abelian case is recovered by C. — C, — Cj from the non-abelian case (in general not true beyond NLL).
F—ta F g

[ Abelian LL agree with [Akhoury et al, ‘o1l but NLL not, and non-abelian NLL agrees with the latest version of [Anastasiou and Penin, 20].
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How to obtain NLL from RG improved LO

4 )
MH —> YV 12f ]
: —————————— ___,_._..-::::::-.:: 2
= 1'0:_ i- ,,—”’::: —————————— ] Ly =In al?
£ 08} T ] 0_0
'i: : I/’//” E 2
% 0.6_— vhllll, ] L_ = ln m'uhg
04F }j w=7C_0, ] A=
At i ] 12
! 7 : ] L_|_ = ln L
02} PR i
[ e : ] _mHg‘*'
oo'gtf:_._. R A ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0
wimy?
Cra h « n) Bo
exp | — S(M ) L2_L2__L2 + S(ILL )_(L3_Li_L3> —6Ls
4 i + 4r 3 VF +

M gg — Hisinvolved due to the color factors of local kernel and non-kernel in the jet and soft function are different.

Resummed jet and soft function are different from the abelian case. For example, the jet function has the following change:

Cp—Cp/2
\ (IWU-—CHz)) “r=Ca
' F(1+arc)

[ Soft function is the same story. After expanding the new soft function to step function and also the exponential,

r (1 - CLFC)
I (1 + CLFC)

Cr —Ca/2

FC:CF_CA7 CF_CA

=1
CA—>O

everything else follows in the same way as in the abelian case. The integrand now reads:

exp [— (Cr — C4)

g (Mh)

s (pn) Bo

7

O@—L%—Li+
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Conclusion and take-home message

[ We derived the renormalized factorization formula in the "plus-type subtraction”
scheme to get rid of endpoint divergences.

[A The framework can be applied to other SCET2 problems, e.g., NLP qT resummation.

[A Subtraction scheme is successful to deal with endpoint divergences. Re-factorization
conditions play a key role here, and we believe they are also important in other cases.

[A Our prediction is in perfect agreement with QCD three-loop calculations.

[A It is the first NLP resummation which can be done to RG improved LO.

[ As NLL, non-abelian and abelian seem to be the same under the replacement C r—Cy = Ch.
But in general it is not true beyond.

Thank you for your attention!
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Backup: Bare results

N, —e 2T(1 + €)T2(—
H :y"T’; 20 (=M —i0) e (1 - 3¢) (Lt T ()

o A ANE AR AH
1_0}7058,0 (_M}%_Z,O)—eee,yEF(l—i—Qe)FQ(—Ze) iy LS L S 18

{ 47 ['(2 — 3¢)
y [2(1 —€) (3 —12¢ 4 9% — 2¢%) 8 T(1+e)I2(2—el(2— 3e)
4

1 — 3¢ 1 -2 T(1+26)3(1—2e¢)
(3 — 18¢ + 28 — 10¢® — 4¢*) T'(2—e¢)
1 — 3¢ (14 ¢)l'(2 — 2¢)

1 Cro o\ —€ [(1+e)?(—e) N
O () Y00 )2 F%s0 (a2 0 €VE
2 (2) V2 * 47 (=M —i0) e ['(2 — 2¢)
[2—46—62 2(1 — ¢€)? 1—2z2"¢
X
Yv,0
\/_

X

2
e —2(1—26—6)1_Z”+(z—>1—z)

r(1 + e)FQ(—e)]
['(2 — 2e¢)

M7 —i0) “e"2(1 —¢)?

(O05”) =my 094" . ?m?ﬂ vy mm
Ncay o Croso -

(037 (2)) ==5 "o [e%r@ (mio) "+ =0 (miy) [K(z)+K(1—z)]]

: (—p2 _ iO) € pEVE T'(1+ T (—¢) (2 Cde — 62)

- R g,/ﬁf: T
T dAn (2 - 2e)
S(O)(w) == NC:b’O My, 0 {S(O)(w)Q (w — mao) + Séo)(w)g (m2’ )} ,’/\j | /é\ | /g\ |

a

15



Backup: Renormalized quantities: Soft Quark Soft Function

& The soft quark soft function is the most complex.

o The diagrams for H — yy and gg — H are basically the same, taking color factors into account.

VANYVANYAN
A A

=In (w/p?), ©=w/mj

Ly,
v Neay vy 2 v 2
ST (w,p) = — - my (1) [Sa (w, )0 (w - mb) + 8y (w, 1)0 (mb —w
2
Sy(w, ) =1+ E% |12 6L, +12— T 1 g(a)
41 2
S'y _CF&S ~ ~
(w.) =P (1 — ) [+ In(1 — )

)]

16

Sg(wﬁvb) - =

Sa(w, p) =1+

Sp(u) = (

4

CAas [

Troapos

Cras | .
ra —L?U—6Lw+12—%+g(w)]

47

C
Cr— 5

2

7.‘.2

_qu - — + h(w)]

6

%s In(1 —

™

)

W) [Ly, + In(1 —

w)]

my () [S4(w, )0 (w —my) + Sf (w, 1)8 (m

p — W

)]



Backup: Renormalization (7 — yy)

Zy 0 0
0;(p) = Z;; @ 0¥ Z=| Zu Zw 0 |.
& Renormalization of O is trivial, which is just the quark mass renormalization

™ The diagonal Z,, can be understood by noticing that the coloured fields in O, have the same structure as in leading-twist

LCDA of a transversely polarized vector meson: Brodsky-Lepage kernel
o Z,, is not enough to absorb all the UV divergence in O,. The remaining can be absorbed by the mixing with O, which is
just Z,;. Since the final states are photons, the mixing is natural

& The renormalization of [O2(z)] can be obtained by the limiting behaviour of that of O,

JO o g0 g s0) = Oéo) =T {hfnlﬁm,i/deﬁééﬁ)(x), i / dDyESLZ) (y)} + h.c.

@ NLP SCET Lagrangian doesn't need renormalization, so the renormalization of 03(0) comes from that of the scalar current

Jg= hé_nlfnz, which is known to three loops:

/ dg_/ d£_|_ZJ(£/_,E_)ZJ(K;,E_F)ZS(f_E_F,W) = 2335(w—€/_€’+)
0 0

o Z,is related to [ Z5] by re-factorization formula and we prove that it can also be obtained from first principle

M Z can be obtained from the above relation and recently confirmed by Bodwin et al. first principle calculation at NLO
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Backup: Renormalization Group Equations for Hard Functions

left-over mixing

d ~—— 1 ﬁ
Hy(p) = v11H1 (1) + Deut (@) + Q/dz [Hz(zau)wl(z) — [Ha(z, 1)][21(2)] — [H2(z, M)]][[%l(»?)]]]

dln p

1
d
H2(Z7/'L) — /dZ/HZ (Z/,,LL) Y22 (Zlaz)
dln p

0

d
dln p

H3(p) =33H3(p)

[4 Due to the cutoffs, those "left-over" terms will give the inhomogeneous contribution in the end:

Deut (1) = —

Neap yo(p) | Cras
T V2 47

[ The RGE for H, (1) is not Sudakov type due to D¢(4), which makes it difficult to be solved.

2
16¢3 + (Z_;) dcut,2 + O (042) > Qp (asLh)n

However we can just set the scale 4 = y,, and evolve the scales of the operators up.

[ A similar pattern holds for the non-abelian case.
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Backup: //; mismatch and amplitudes

dp_ dps S ( ;
SHO 4 5 O = H(u/ dp— / p+ S (p1p- M)J()(Mp ) T (= Mps, 1)

™mp,0

leading power

[do— [ dps S (pyp_
. HéO) / L / P+ (p‘l‘p )J(O) (Mhp—)J(O) (_Mhp—{—)

—m,‘} —10

2
mp

P .
—mj; — i0

u?

P— P+ mMb,0
Mp o Mp leading power
1 0o oo 1
a% _
+4 /dz/dz' —/dz/dz/ %[{Zwl (z,2)][Z21 (2')],
0 0 0 0
Crosg 2, Crag [ 272 2, L = In
Ty oc— 2 ——L 12 +8(3) L T LpL,, — —L O
L +47r[3h+(+c‘°’)h+ ] R 3 T A
L Cpa, [ L* 5 1 , o
T30<2 + yp [_E_L +§(—3Lm+4—4C2)L —|—4(C2—|-2C3)L—8C3Lm+"'] - m§
u?
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Backup: Anomalous Dimensions

2

QL —p 0\ 2 0(1 - iE)
ok (pz,xpz) = {C’F In F(S(l — )+ CFF(lax)] +CFr (%) 1— 2 h(z) + O (ag)

2wl (W' — w)

w' (W' — w)

Vg (w,w's p) = _ % [CF (ln % + §) § (w—w')+2Cpwl (w,w’)] —2CF (%)

. 2t r h(r) +0 ()

w’
99 (2 .2 Ay —p’ Ca 2

2
v (w,w') = ‘% { {(Cp —C'A)ln% + w} §(w—w')+2 (CF - %) wl (w,w’)} +0 (o)

h(z) =Inx [BO +2CF (lnx — 1—;33 In(1—2x) — g)]

O This two loop non-local kernel was first derived in [Braun, Ji, Manashov, 19] for LCDA;
And was confirmed by a direct calculation of two loop radiative photon jet function in [Liu, Neubert, 20].
O The two loop version for the gluon case is ongoing...
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