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Motivation: automated two-loop calculations

e Higher-order calculations are usually performed in D = 4—2¢ dimensions to regularise divergences

in Feynman integrals, but D-dim vectors cannot be implemented in a numerical program

e Automated one-loop numerical algorithms usually construct numerators of loop integrands in

4-dim, and the extension to two-loop amplitudes is under development [see Max Zoller's talk]

e Rational counterterms reconstruct missing terms originating from (D — 4)-dim part of loop

numerator
=> one loop: rational terms of type R9 [Ossola, Papadopoulos, Pittaul]

= in this talk:

— General structure of two-loop rational counterterms
— Extension to generic renormalisation schemes

— New techniques for calculations in spontanesouly broken gauge theories



Introduction to one-loop rational terms

Amplitude of an one-loop diagram ~ in D = 4 — 2¢ dimensions
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Rational term emerges by splitting D-dim numerator into 4-dim and e-dim parts
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leads to
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computed computed
numerically analytically

e 0R, N from interplay between e-dim A and % UV poles = require technique to extract UV poles



Tadpole decomposition [Chetyrkin, Misiak, Miinz]

The UV divergence can be captured by massive tadpole decomposition of denominators
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S—— ~ ~~ -~
leading UV tadpole subleading UV term
O(1/47) O(1/q)
with
Ap(qr,pr) = —p —2q1-pp+ mk M?

Apply recursively to obtain tadpole expansion (S y) up to order (1/q;)" 2
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Rational terms from UV divergences

e Use tadpole expansions to fully isolate UV divergent part

Al0)
Alﬁ /dq Z N +./\/’()q]1\210 + UV-finite remainder

~

UV-divergent tadpoles S x /_11’7

e Extract full UV part with numerator split into 4-dim and &-dim

S x /_llﬁ = —0Z4y, + O0R;, -+ finite part
N——
1 MS pole finite
€ rational term

o 0R, N and 07, N from same UV divergence = 0R , local counterterm like 0.7
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Renormalisation of irreducible two-loop diagrams

Renormalisation of D-dim amplitude of diagram I" with R-operation [BPHZ; Caswell and Kennedy]

RAQ’F = ./_1271“ + Z 5Z17,y '“le,F/v_l_ 5Z2F

)

S —~— ——
sub-div. local two-loop
subtraction div. subtraction

o At 1Pl vertex function level ( I" = set of diagrams), 6.7 - and 0Z, - are local counterterms that

can be implemented in the Lagrangian

Example: single QED diagram

RAQ,F = + 621,7 + 5ZQ,F

_ 4D,

|
S

where D, = numerator dimension



Structure of two-loop UV rational terms [Pozzorini, Zhang, Zoller|

Master formula for renormalisation of amplitude in D,, = 4 numerator dimension

RAy = |Ayp+ Y (671,402, +0R ) A oyt (6251 + Ry 1) + Oe)
7 sub-divergence subtraction local two—Io?)g divergence Dn=4
+ rational part reconstruction subtraction + reconstruction

° 521’7 is a new one-loop counterterm o (12/5 = (O(1) that arises from quadratically divergent
one-loop subdiagrams in D, = 4 (see backup slides)

® 0R, r originates from local two-loop divergence = process-independent local couterterm
(proof in [2001.11388])

Example: single QED diagram

RA, | = + (6Zy,+ 621, +0R,,)+ (0Zyr +6Ryp)| + O(e)
D=D Dy=4




Derivation of two-loop rational terms

Rational terms can be derived once and for all by reverting the master formula, and its calculations

can be simplified into massive tadpole integrals by tadpole expansion S

ORop = S AQ,FJFZ(SZM'ALF/W
i i 1 D,=D

— S | Ayr+ > (07144021, +0Ry ) - A I
| v 1 D=4

e Full set of 4R, |- rational terms for QED presented in [2001.11388]



Extension to generic renormalisation schemes [Lang, Pozzorini, Zhang, Zoller]

In a scheme Y with arbitrary finite renormalisations, we write renormalisation constants (RCs) as

2 143 (5)" (52 4 522
k=1

N—— N—— N—— " 'a=ay (upR)
scale factor MS pole finite part

parameter 6,

for x = { field ),

Renormalised 1Pl vertex function in scheme Y

’ y y
RV A = A+ 5Z§,F> + 572%79 ,

_ Y ~ (Y Y Y Y
RV Ay = Ayp+ Y (02 40200 + R ) - A+ 025+ RS
Y

e UV counterterms 525? are fully controlled by RCs at the level of Lagrangian

e One-loop 5729;) and (529;) contain only trivial scheme dependence through scale factor 5

€
) _ (MS) oY) _ e < 5(MS) B iy
5721,’}/ o ti/ 57?/1,7 ) 5210/ — tgy 52177 , €.g. ti/[—s = (47'('6 Vé)



Renormalisation scheme dependence of 57299

(Y)

Universal scheme dependence of )R, - can be written as (set ¢, = 1)

SR = orMY 4 DAY RNy sic(B))

e |t contains finite multiplicative renormalisation of one-loop rational term

AY MS AY
DRI = (Z(szie 90 Z 527%) R(MS
(AY)

e and additional 5/C;AFY> term originates from non-commutativity of finite renormalisation (D, )
and 4-dim projection of loop numerators (P)

sk = [Dm” P4]A1p £ 0

which can be controlled through a new kind of process-independent one-loop counterterms
(see [2007.03713] for further details)



Results of two-loop QCD rational counterterms

Example: Triple-gluon function in renormalisation scheme Y

a2
D2
D1 H2 2
“ a,a Qs t (Y
gf12a3‘/ﬂ1#2#3p1 p27p3 {Z( S Y) k;g)gg}
H1
as k=1
p3
M3
S b 4
vy [ 23 8 . 119 145
5R2’ggg = [ CA—I—Tan <ECA_§CF e+ Trng CA——CF 288OA
4 13 C 4 .
_ (§ Cp + ZTan) A (Z Cp + 2Tan> 5Z<A) +7Ca A —A(szf ST S ozl

feF

A\ 7

renormalisation scheme dependence = applicable to any scheme

e Compact results of QCD rational counterterms derived once and for all in a generic scheme
[2007.03713]
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Rational Terms in

Spontaneously Broken Gauge Theories

[Lang, Pozzorini, Zhang, Zoller: 2106.XXXX]

Idea: reduce the complexity of dRy calculations in the full Standard Model by

exploiting the symmetric phase and vev-expansion
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Symmetry breaking & vev-expansion

Consider a spontaneously broken theory with Higgs field H, and vev v that generates masses

LH) = Lyuld) with ¢ = H+v
—— N——
broken phase symmetric phase

UV divergent part of D-dim amplitudes in broken phase can be related to massless symmetric
phase (YM) via vev-expansion

X YM X ?Jk YM
VoxAr = D Ak = ) TAl,FH’f‘ _
\ / . pH—O
VT k=0 k=0
vev-expansion N———— ~ ~ ~
in broken phase external vev-insertions external H-insertions
in symmetric phase with 0-momentum
Diagrammatic vev-expansion of a loop propagator G (g, mq) up to O(v?)
® ® ® ® ® |
Dn:D

turn physical mass dependence into series of vev-insertions in symmetric phase
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Vev-expansion in D = 4 dimensions

In D = 4, the naive relation between broken and symmetric phases is violated

YM
Vix)Air = ZAmk + AV x Ar

\

~
extra §°-terms from vev-exp.
of loop propagators in D, =4

while AV[O X] A, p part can be described through auxiliary 0-counterterm insertions at the level

of loop propagators
® ®
Vi Ga = [ +( S )

~ ~ ~ o~ YM
(89«22 + 28 4 89 . @3 )

In SM, v-counterterm insertions are only needed for fermion propagators

~ . -~ -2
& o ® & 2 44

= 1m f ? , = —1m f =6
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Rational terms with vev- & vu-insertions

Vev-expansion for [-loop amplitudes in D, = 4 reads

X k
Ve = 3 (X AT)

k=0 Jj=0

7

"

vev & 0-CT insertions of O(v")
in symmetric phase

Rational terms at [-loops in broken phase can be related to their symmetric counterparts

X k
YM
Rir = Z( 5Rz,rmkﬂ')
k=0 7=0

e Simplified calculations of rational terms in SM based on massless symmetric phase.

e For renormalisation scheme dependence including gauge fixing and mixing effects, tadpoles and

vev renormalisations, please see upcoming paper [2106.XXXX]
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Results for two-loop rational counterterms of O(a?) in SM

Example 1: Higgs—gluon three-point function

Broken Phase Symmetric Phase
I R o Q
al 5 a9 — N ay + aq o
|/ TOTT I TTTO fmv@m rzsm@m
= astt\ ¥ .
= jp§®92 ghipe { Z ( 5 ) 5Rk,ggH}
k=1

with m ¢ = )\fv/\/§ and

57%17%[{ = _2TFZ>\?C

A 1 19 A A .
Rogert = —Tr Y [(5 Cip +6 CF) e+ 5 0a - 70F] M —2Tp Y [0210 + 0214 +2021),] M
feF
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Results for two-loop rational counterterms of O(a?) in SM

Example 2: Gluon—vector-boson four-point function

b, W ay
I Ha 2
1T Ibqb2 Oés ty ) :
e Sy {3 () [ (o) ]|
by as N e d . o
Y, 3 SU(3) x SU(2) x U(1)

gauge group structure

with VIMMQM?’“‘* = g/h/izg/i:s/h; : Vﬁlﬂ'QuSﬂﬁl — gulugguzm + gﬂlﬂ4gM2M3 ’ and

~ (Al
5Rg,gg>vlvz - ng,
. 1 3 2
W - (oo 26) o 502

. 5 (ATD)
Similarly for 5Rk,ggV1V2 terms.

e -5 in Korner-Kreimer-Schilcher (KKS) scheme (anticommuting + reading-point prescription)

o Full set of O(a?) rational terms of ffS, ffV,qgS, g9V, 999V, 995152, ggV; V> vertices in SM
will appear in [2106. XXXX]
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Summary

e Renormalised D-dim two-loop amplitude can be constructed by amplitude with 4-dim numerator
+ rational counterterms in a generic renormalisation scheme Y

_ Y ~ (Y Y Y Y
R(Y) AQ,F = ‘AQ,F + Z (525;2 + 5Z§,fy) + 572%,7)) ' 'Al,F/7 - 5Zé,F) ™ 672;,1)
Y

=> an important step towards two-loop automation

e We have presented a generic method to compute 0R, - from one-scale tadpoles, and shown
that 0R, - are process-independent local counterterms

e Full set of rational terms at two loops in QED [2001.11388] and pure QCD [2007.03713]

e New vev-expansion technique that relates rational terms in broken and symmetric phases

= calculation of rational terms in SM strongly simplified

e Full set of O(a?) rational terms at two loops in the SM [2106. XXXX]
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Outlook

e Study of two-loop rational terms of IR origin (ongoing)

e Rational terms in full SM with EW corrections
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Backup
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B.1. 52177 from subdivergences in two-loop diagram

e Subdivergence originates from the UV divergent one-loop subdiagram

= needs to be firstly subtracted in renormalisation procedure
e Subdiagram has D-dim external loop momenta

One-loop subdiagram with D-dim external ¢o = ¢9 + ¢o:

Di(q1,32) = Pk<§1792>+<2€71'§2+§§)

7 \ 7

1 (2 e e
4-dim ¢ e-dim ¢y
q . : : :
d = additional e-dim terms show up in tadpole expansion
_ )2 9y - ) — M2
qli ')q1+q2 b B I —et+te) _22 a-eta)- M
(q1+ @+ @) g — M? (qf — M?)?
QQT . SO0 C]% : :
= extra quadratic pole term 677 . (¢2) o< —= in 4-dim numerator case
= ’ >
(X1

KAL (@) = — 028 (@) — 027 (¢)

N J
~N~ N~

% MS pole extra pole of O(1)
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B.2. Renormalised one-loop subdiagrams

Subtract poles and rational terms in both D- and 4-dim, we can identify amplitudes with

AT (@)~ KA (@) = A (@) - KA (@) +O(,q)

4

D-dim full subtraction 4-dim full subtraction
Recall
KA, (@) = —025 (@) +R{, (@) + O()
KAS (@) = =027 (q2) — 021 (@)

= Renormalised one-loop sub-amplitude

Al (@) + 028 (@) = AT (q2) + 625 (q2) + 027 ,(q2) + 0RT (q2) +Ole, §)

A

WV WV TV
D-dim renormalisation 4-dim renormalisation rational parts
compute numerically
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B.3. One-loop subdiagram example: photon self-energy

Let Dy, € {D, 4} be the dimension of numerator, we have

_Tl” V%gﬂ%(gl +ﬁ2)] 1( 4/, _&, & 2e )
D =D — K - Q0 QU ~Qp i a1y
/ G (@1 + ¢2)? 3 \g(qg q2q2)1 3 29
~0Z, (@) 57317(%) + O( )
and
—Tr [y g, v (¢, + )] 1( 4 2
D — 4 — K d— 1 1 2 _ 2 oo ap I~/ RN e TYe 2
/ i (@1 + @ + () e\ 3<qg q2q2), i
_521,7(%) _521,7@2)
= Renormalised photon self-energy insertion:
+ 871, (@) | = + 8021, (02) +0Z1 () + IR (@) | +O(e)
u Qi Qy 4 D,=D - 0% Qp 4 D=4
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