Decoupage at 5 loops

Alessandro Georgoudis
ENS Paris, CNRS

RADCOR-LoopFest 2021

Work based on 2104.08272
with V. Goncalves, E. Panzer, R. Pereira, A. V. Smirnov and V. A Smirnov

LPENS

LABORATOIRE DE PHYSIQUE
DE L’'ECOLE NORMALE SUPERIEURE

1/35



IIiilIE!IIIHE!!lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

We computed massless 5-loop p-integrals in 4 — 2¢ dimensions.
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Overview

We computed massless 5-loop p-integrals in 4 — 2¢ dimensions.

they depend on a single external momenta p, which we choose as p? = 1,
as (p?)™“ where w = Y a; — £d/2.
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Overview

We computed massless 5-loop p-integrals in 4 — 2¢ dimensions.

they depend on a single external momenta p, which we choose as p? = 1,
as (p?)™“ where w = Y a; — £d/2.
Then a general p-integral P can be written as

P(d) = ()P Y, co(P)e!

neZ

where all the ¢, for our case are rational numbers, ((i) or (i, /) values.
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I-loop p-integrals can be used to compute |4+1-loop counterterms.
B-functions in different theories.

They appear as boundary conditions in differential equations.

Can be used for computing different physical quantities (structure
constants, anomalous dimension, etc).
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I-loop p-integrals can be used to compute |4+1-loop counterterms.
B-functions in different theories.

They appear as boundary conditions in differential equations.

Can be used for computing different physical quantities (structure
constants, anomalous dimension, etc).

Cross-check that our results for ¢(i) and (i, /) transformation hold
for all p-integrals (not only position space) and compute the missing
momentum space non-planar contribution.
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We want to use the Glue-and-Cut method to compute the p-integrals.
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Glue-and-Cut

Let us consider a vacuum integrals with w = 0 and no other
sub-divergences.

p2+ m? (p2)Ie — (1 + 1)e +0(e)

_ f dPp  P(e) o

The value of the p-integral is then:

By cutting different edges we can construct convergent p-integrals that
have the same value at €° order.
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We want to use the Glue-and-Cut method to compute the p-integrals.
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We want to use the Glue-and-Cut method to compute the p-integrals.

@ Generate vacuum 6-loop graphs. Check for “convergence” of vacuum
integrals, allowing also for numerators.
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Vacuum integrals

We need vacuum integrals with at least 12 propagators. This is the
minimal number in 4 dimensions to have w = 0. Higher number of
propagators can be generated by adding numerators.

For our computation we used convergent vacuum integrals with up to 2
numerators and 14 propagators.
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We want to use the Glue-and-Cut method to compute the p-integrals.

@ Generate vacuum 6-loop graphs. Check for “convergence” of vacuum
integrals, allowing also for numerators.
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We want to use the Glue-and-Cut method to compute the p-integrals.

@ Generate vacuum 6-loop graphs. Check for “convergence” of vacuum
integrals, allowing also for numerators.

@ Construct all possible cuts. Map integrals to a specific p-integral
family.
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We now need to cut all the possible vacuum integrals.
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We now need to cut all the possible vacuum integrals.

In order to produce p-integrals with a higher number of propagators we
also have to blow up higher valence vertices.

We then need to map all the p-integrals into one of the 64 possible
3-valent maximal topologies.
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We want to use the Glue-and-Cut method to compute the p-integrals.

@ Generate vacuum 6-loop graphs. Check for “convergence” of vacuum
integrals, allowing also for numerators.

@ Construct all possible cuts. Map integrals to a specific p-integral
family.
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We want to use the Glue-and-Cut method to compute the p-integrals.
@ Generate vacuum 6-loop graphs. Check for “convergence” of vacuum
integrals, allowing also for numerators.
@ Construct all possible cuts. Map integrals to a specific p-integral
family.
@ Apply constraints and equivalence of the different cuts of the same
vacuum integral.
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How can we learn something from the equivalence of finite p-Integrals?
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How can we learn something from the equivalence of finite p-Integrals?
With integral by parts reductions!

@ IBPs are integration of a total derivative:

D D VH
S S RO -

@ They can be used to express a general integral as a combination of

Master Integrals:
N

I:Zd,-l,-,

i=1
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The constraints are then:

@ Degree of divergence of a I-loop 2-point integral does not exceed I.
Important as IBP coefficients can have poles in 4 — 2e.

@ Cancellation of poles as p-integrals obtain through cutting are finite.
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Constraints: Example

Reduction of two-loop propagator integral

23d—10)8—3d) / O\
B (d — 4)2 U

a 2(::43)4@7
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Constraints: Example

Reduction of two-loop propagator integral

23d—10)8—3d) / O\
B (d — 4)2 U
d—4
The spurious pole give a constrain on two epsilon orders. Convergence of

the starting integral and the insertion of the value of the trivial integral
1 ione.
Mbbubble = 2 gives:
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Constraints: Example

Reduction of two-loop propagator integral

23d—10)8—3d) / O\
B (d — 4)2 U
d—4
The spurious pole give a constrain on two epsilon orders. Convergence of

the starting integral and the insertion of the value of the trivial integral
1 ione.
Mbbubble = 2 gives:

Same holds at higher loops

24/35



The constraints are then:

@ Degree of divergence of a I-loop 2-point integral does not exceed |.
Important as IBP coefficients can have poles in 4 — 2e.

@ Cancellation of poles as p-integrals obtain through cutting are finite.

o Different cuts of the same vacuum integral are the same.
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The constraints are then:

@ Degree of divergence of a I-loop 2-point integral does not exceed I.
Important as IBP coefficients can have poles in 4 — 2e.

@ Cancellation of poles as p-integrals obtain through cutting are finite.
o Different cuts of the same vacuum integral are the same.

With this constraint we are able to relate all the coefficients of 5-loop
master integrals, up to transcendental weight 9, to recursive 1-loop
integrals and a product integral.
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Recursive 1-loop

By recursively applying the bubble integration we can compute several
integrals that appear at all loops.

d’t 1 2Nd/2—a—b
de/2 (?a(p — ()b = (p%) /22 G(a,b),
with G defined as

F(atb—d/2)T(d/2— a)T(d/2 - b)
G(a,b) = F@r (b (d—a—b) ' 1)
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Recursive 1-loop

By recursively applying the bubble integration we can compute several
integrals that appear at all loops.

d’t 1 2vd/2—a—b
de/2 (?a(p — ()b = (p°) /22 G(a,b),

with G defined as

Ma+b—d/2)[(d/2— a)(d/2— b)

G(a,b) = F@r (b (d—a—b) ' 1)

For example we can compute the sunset diagram at two loops:

% = G(1,1)G(2—d/2,1)

The same recursion can be done to compute the general watermelon
diagram at each loop.
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The constraints are then:

@ Degree of divergence of a I-loop 2-point integral does not exceed |.
Important as IBP coefficients can have poles in 4 — 2¢.

@ Cancellation of poles as p-integrals obtain through cutting are finite.
o Different cuts of the same vacuum integral are the same.

With this constraint we are able to relate all the coefficients of 5-loop
master integrals, up to transcendental weight 9, to recursive 1-loop
integrals and a product integral.

B —a
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The constraints are then:

@ Degree of divergence of a I-loop 2-point integral does not exceed |.
Important as IBP coefficients can have poles in 4 — 2e.

@ Cancellation of poles as p-integrals obtain through cutting are finite.

@ Different cuts of the same vacuum integral are the same.

With this constraint we are able to relate all the coefficients of 5-loop
master integrals, up to transcendental weight 9, to recursive 1-loop
integrals and a product integral.

¢() ]

¢(i,J)
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( representation

There seem to exist a (e dependent) redefinition of the ¢ values such that
the m dependent terms cancel for all the p-integrals.

~ 9 63 65

83) = ¢3) + S¢) — 22-¢(6) + 2 (8).
3

85) = C(5) + 2¢(6) - 2(8).

& =+ 5¢@),
8(3,5) = ((3,5) — 29¢(8) ~ C(4)(6),

{(9) = ¢(9).
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f representation

There seem to exist a (e dependent) redefinition of the ¢ values such that
the m dependent terms cancel for all the p-integrals.

2 3e 53 21¢°
¢(3)=<¢@3) + ?C(“) - 7C(6) + ?C(E;),

3
85) = C(5) + 2¢(6) ~ 2c(8),

& =+ 5¢@),
8(3,5) = ((3,5) — 29¢(8) ~ C(4)(6),
{(9) = <(9).

This type of relations, through the no-m theorem are related to some
cancellations/relations of 7 terms in correlations functions, anomalous

dimensions and S-functions.
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Conclusions & Outlook

@ Using the Glue-and-Cut method we were able to compute all the
5-loop 2 point master integral. Our result are up to transcendental
weight ¢(9), which is the € order of the finite p-integrals.

@ We have checked that our f representation works also for momentum
space p-integrals in the non-planar case.
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Conclusions & Outlook

@ Using the Glue-and-Cut method we were able to compute all the
5-loop 2 point master integral. Our result are up to transcendental
weight ¢(9), which is the € order of the finite p-integrals.

@ We have checked that our f representation works also for momentum
space p-integrals in the non-planar case.

@ A major bottleneck are the IBP reductions. If one would like to push
this to higher loops we need better tools.

@ Would be interesting to apply the same method to different
dimensions, for example d = 3.
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