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N3LO calculations for 2 → 2 processes using Simplified Differential Equations
Massless 3-loop 2→2 families with up to one external off-shell leg

Massless 3-loop 2→2 families with up to one external off-shell leg
HL-LHC and possible future upgrades/colliders will require high-precision theoretical
predictions, which for 2→ 2 scatterings means reaching N3LO computations. These
computations demand the calculation of 3-loop Feynman Integrals!

For all the external particles on-shell (relevant for di-jet or di-photon productions) there
exist 9 (2) families of MIs, all of whom have been recently calculated in the literature

V. A. Smirnov, Phys. Lett. B567 (2003) 193–199.
J. M. Henn, A. V. Smirnov and V. A. Smirnov, JHEP 07 (2013) 128.
J. M. Henn, A. V. Smirnov and V. A. Smirnov, JHEP 03 (2014) 088.
J. Henn, B. Mistlberger, V. A. Smirnov and P. Wasser, JHEP 04, 167 (2020).

Keeping one external leg off-shell (Higgs−jet in gluon fusion production) we have 18
(3) families of MIs, of whom only one has been computed

S. Di Vita, P. Mastrolia, U. Schubert, and V. Yundin, JHEP 09, 148 (2014)
DC and N. Syrrakos, JHEP 02 (2021) 080.

All these families together with the families with 2 external legs off-shell (di-boson
productions) need to be calculated for future comparisons with the experiments.

First results for 3-loop 4-point Amplitude for the qq̄ → γγ process in full-color QCD,
F. Caola, A. Von Manteuffel and L. Tancredi, Phys.Rev.Lett. 126 (2021) 11, 112004 !
[Tancredi’s talk]

3 / 18



N3LO calculations for 2 → 2 processes using Simplified Differential Equations
Quick review of SDE

Quick review of SDE
For any family of master integrals (MIs), G, one applies the following procedure [C. G.
Papadopoulos, JHEP 07 (2014), 088]:

1) Parametrize the external momenta in terms of an dimensionless parameter, x , in
such a way that captures the off-shellness of an external leg.

2) Take derivatives of the MIs with respect to x and create, using integration-by-parts
identities (IBPs) a system of differential equations (DE) in one independent variable

∂x G({sij}, x , ε) = H({sij}, x , ε)G({sij}, x , ε)

3) Find boundary conditions at x → 0 and solve the differential equation.

The application of this method has plenty of advantages compared to the standard
method of differential equations!
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N3LO calculations for 2 → 2 processes using Simplified Differential Equations
3-loop ladder-box with one external massive leg

3-loop ladder-box with one external massive leg
We adopt the basis of universal transcendental MIs1 (UT basis) and the notation for
the kinematics from [S. Di Vita, et al, JHEP 09, 148 (2014)], where this family was
first studied

q2q4

q1 q3

The external momenta can be expressed in Mandelstam variables

q2
1 = q2

2 = q2
3 = 0 , q2

4 = m2 , q2·q3 = s/2 , q1·q3 = t/2 , q1·q2 = (m2−s−t)/2 .

For this family we obtained a set of 83 master integrals in contrast with [S. Di Vita,
et al, JHEP 09, 148 (2014)], where a set of 85 was presented (we found via IBPs and
analytic check of the solutions that T7 = T8 and T45 = T46).

1[J. M. Henn, Phys. Rev. Lett. 110 (2013), 251601].
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N3LO calculations for 2 → 2 processes using Simplified Differential Equations
3-loop ladder-box with one external massive leg

The class of Feynman Integrals (FI) describing this family can be expressed as follows

Ga1,...,a15 ({qj}, ε) =
∫ ( 3∏

r=1

dd lr
iπd/2

)
e3εγE

Da1
1 . . .Da15

15
with d = 4− 2ε ,

where D11, . . . ,D15 are propagators coming from irreducible-scalar-products (ISPs), thus
obey {a11, a12, a13, a14, a15} ≤ 0, and the chosen parametrization for the propagators is

D1 = l2
1 , D2 = l2

2 , D3 = l2
3 , D4 = (l1 − l2)2 , D5 = (l2 − l3)2 ,

D6 = (l3 + q2)2 , D7 = (l1 + q23)2 , D8 = (l2 + q23)2 , D9 = (l3 + q23)2 ,

D10 = (l1 + q123)2 , D11 = (l1 + q2)2 , D12 = (l2 + q2)2 , D13 = (l2 + q123)2 ,

D14 = (l3 + q123)2 , and D15 = (l1 − l3)2 .

Moving to the SDE approach we choose the following parametrization

q1 → xp1 , q2 → p3 , q3 → −p123 , q4 → p12−xp1 with p2
1 = p2

2 = p2
3 = p2

4 = 0 .

We express the Mandelstam variables and the external mass in terms of the parameter
x and the new Mandelstam variables of the null momenta pj

s = s12 , t = xs23 , m2 = (1− x)s12 ,

where s12 = p2
12 and s23 = p2

23.
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N3LO calculations for 2 → 2 processes using Simplified Differential Equations
3-loop ladder-box with one external massive leg

p3p12 − xp1

xp1 p4

After making the transformations (l1 → k1 − q23, l2 → −k2 − q23, l3 → k3 − q23) and
applying the SDE approach to the propagators, they take the following form

D1 = (k1 + p12)2 , D2 = (k2 − p12)2 , D3 = (k3 + p12)2 , D4 = (k1 + k2)2 ,

D5 = (k2 + k3)2 , D6 = (k3 + p123)2 , D7 = k2
1 , D8 = k2

2 , D9 = k2
3 ,

D10 = (k1 + xp1)2 , D11 = (k1 + p123)2 , D12 = (k2 − p123)2 ,

D13 = (k2 − xp1)2 , D14 = (k3 + xp1)2 , and D15 = (k1 − k3)2 .

Having a UT basis we obtained a DE with respect to x , which is of canonical form

∂x g = ε

(
4∑

i=1

Mi
x − li

)
g

with Mi being purely numerical matrices and li = {0, 1, s12/(s12 + s23),−s12/s23}.
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N3LO calculations for 2 → 2 processes using Simplified Differential Equations
3-loop ladder-box with one external massive leg

We solve the DE in a Laurent expansion of the MIs up to weight six, in the Euclidean
region of the invariants, which is

0 < x < 1 , s12 < 0 , s12 < s23 < 0 .

The solution can be written in the compact form

g = ε0b(0)
0 + ε

(∑
Gi Mi b(0)

0 + b(1)
0

)
+ ε2

(∑
Gij Mi Mj b(0)

0 +
∑
Gi Mi b(1)

0 + b(2)
0

)
+ . . .

+ ε6
(

b(6)
0 +

∑
GijklmnMi Mj Mk Ml MmMnb(0)

0 +
∑
GijklmMi Mj Mk Ml Mmb(1)

0

+
∑
Gijkl Mi Mj Mk Ml b

(2)
0 +

∑
Gijk Mi Mj Mk b(3)

0 +
∑
Gij Mi Mj b(4)

0 +
∑
Gi Mi b(5)

0

)
,

where the matrices b(i)
0 are the boundary terms and Gi , ...,Gijklmn are Goncharov poly-

logarithms [A. B. Goncharov, Math. Res. Lett. 5 (1998), 497-516] of weight 1, . . . , 6,
respectively, with argument x and letters from the set li .

Our results were numerically crossed-checked with the results from [S. Di Vita, et al,
JHEP 09, 148 (2014)] using PolyLogTools [C. Duhr and F. Dulat, JHEP 08 (2019),
135], and perfect agreement was found in all cases!
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N3LO calculations for 2 → 2 processes using Simplified Differential Equations
Boundary conditions

Boundary conditions: known and zeroes
• Some integrals are known in close form and thus we can directly obtain boundary
conditions for them

{gb1, gb2, gb3, gb4, gb5, gb6, gb7, gb17, gb18, gb19, gb44} .

• If a basis element (BE) has as an overall prefactor of x in such a power such as its
leading regions contributing to its asymptotic limit x → 0 (expansion-by-regions [M.
Beneke and V. A. Smirnov, Nucl. Phys. B 522 (1998), 321-344]) are of the form xα+βε

with α > 0, then its boundary term should vanish

{gb10, gb11, gb14, gb15, gb21, gb22, gb23, gb24, gb25, gb26, gb28,

gb31, gb37, gb38, gb45, gb46, gb47, gb48, gb50, gb53, gb55, gb58,

gb59, gb63, gb64, gb66, gb68, gb70, gb80, gb82, gb83} = 0 .

Thus From 83→ 41 unknown boundaries!

Basis Element Asymptotic Limit of Master Integral x → 0
g32 ≡ (s12 + s23x)ε5F32 F32 ≡ G1,0,0,1,1,2,0,1,0,1,0,0,0,0,0 ∼ x−3ε, x0

g41 ≡ (s12 + s23x)ε5F41 F41 ≡ G0,1,0,2,1,1,0,0,1,1,0,0,0,0,0 ∼ x−3ε, x0

g42 ≡ s12s23xε4F42 F42 ≡ G0,1,0,2,2,1,0,0,1,1,0,0,0,0,0 ∼ x−1−3ε, x−3ε, x0

g56 ≡ (s12 + s23x)ε6F56 F56 ≡ G1,1,0,1,1,1,0,0,1,1,0,0,0,0,0 ∼ x0

g71 ≡ s2
12s23xε5F71 F71 ≡ G0,1,1,2,1,1,1,0,1,1,0,0,0,0,0 ∼ x−1−3ε, x−3ε, x0

g83 ≡ −s3
12xε6F83 F83 ≡ G1,1,1,1,1,1,1,1,1,1,0,−1,0,0,0 ∼ x−3ε, x0
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N3LO calculations for 2 → 2 processes using Simplified Differential Equations
Boundary conditions

Boundary conditions: relations between boundaries

We define the resummation matrix at x = 0 through the Jordan-decomposition of M0

M0 = S0D0S−1
0 −→ R0 = S0eεD0 log(x)S−1

0 .

R0 correctly resumms the logarithms of x from the basis elements, meaning that we
can write

g = R0greg0 ,

where greg0 is the regular part of the basis element at x = 0, via which are defined the
asymptotic boundaries

gbound = greg0
∣∣

x=0
.

Multiplying R0 from the right with gbound and from the left with T−1 (transformation
U.T. basis elements → MIs), we obtain the asymptotic limit at x → 0 of the MI

Fx→0 = T−1R0gbound .

This should be equal to the asymptotic limit found for the MI by expansion-by-regions
(found by asy [B. Jantzen, A. V. Smirnov and V. A. Smirnov, Eur. Phys. J. C 72
(2012), 2139]). Thus by comparing the regions found by asy with that found by the
resummation matrix method we obtain relations between different boundaries.
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N3LO calculations for 2 → 2 processes using Simplified Differential Equations
Boundary conditions

Pure and Impure relations

1) We call pure the relations that contain only boundaries of UT basis elements. As an
illustrated example we consider the master integral F71:

i) Expansion-by-regions method yields for x → 0 : x−1−3ε.

ii) The resummation matrix has produced two additional regions: x−1−2ε and x−1.

iii) We proceed by setting the extra regions to zero since they are not predicted by asy.

From the second one, we obtain a relation which connects the boundary condition of
g71 with the boundary condition of lower sector basis elements:

gb71 = (−12gb2 + 4gb13 + 32gb16 + 48gb41 + 36gb42 − 45gb43) /30 .

2) We call impure the relations between boundaries and asymptotic limits, which are
obtained by equating the result of the asy with that of the resummation matrix. E.g.

gb41 = F soft
41 s12ε

5 + gb2/9− gb13/12− 2gb16/3 .

where F soft
41 is the x−3ε region of F41.

As expected, in the pure relations between the boundaries the prefactors are just num-
bers −→ Working perfectly even when a full analytic reduction is a bottleneck!!!
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N3LO calculations for 2 → 2 processes using Simplified Differential Equations
Boundary conditions

• By applying this method we obtain 28 pure relations and thus the problem of com-
puting 41 boundaries is reduced to the calculation of the 13 asymptotic regions

{F hard
8 , F hard

9 , F hard
12 , F hard

13 , F hard
16 ,F hard

20 , F hard
27 , F hard

29 ,F soft
32 , F soft

39 , F soft
41 , F hard

51 , F hard
56 }

where with hard we denote the x0 region and with soft the x−3ε.

• We calculated the hard limits with the use of the method of expansion-by-regions in
the momentum space (significantly easier in SDE) and IBP reduction→ We found that
the hard limits are equal to some of the known MI.

• The soft limits were calculated using standard expansion-by-region approach, mean-
ing computing their Feynman-parameter representation provided by asy. In order to
facilitate the integrations we used a technique of integrating out bubble subintegrals
(inspired by J. M. Henn, A. V. Smirnov and V. A. Smirnov, JHEP 07 (2013) 128.),
using∫

dd k
iπd/2

1
(k2)a1 ((k + p)2)a2

=
Γ(a − d/2)Γ(d/2− a1)Γ(d/2− a2)

Γ(a1)Γ(a2)Γ(d − a)
(p2)d/2−a

where a = a1 + a2. In our cases a1 = 2 and a2 = 1 and after integrating out the bubble
subintegral we arrive at a two-loop integral with one index shifted from 1 to 1 + ε.
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N3LO calculations for 2 → 2 processes using Simplified Differential Equations
x → 1 limit: Massless problem

x → 1 limit: Massless problem
The x → 1 limit yields the solution for a canonical basis of the massless ladder-box:

p3p2

p1 p4

The chosen normalisation of the FI is

Ga1,...,a15 ({pj} , ε) = (−s12)3ε
∫ ( 3∏

l=1

dd kl

iπd/2

)
e3εγE

Da1
1 . . .Da15

15
with d = 4− 2ε

and the propagators being

D1 = (k1 + p12)2 , D2 = (k2 − p12)2 , D3 = (k3 + p12)2 , D4 = (k1 + k2)2 ,
D5 = (k2 + k3)2 , D6 = (k3 + p123)2 , D7 = k2

1 , D8 = k2
2 , D9 = k2

3 ,
D10 = (k1 + p1)2 , D11 = (k1 + p123)2 , D12 = (k2 − p123)2 ,
D13 = (k2 − p1)2 , D14 = (k3 + p1)2 , and D15 = (k1 − k3)2 .

We compared our results numerically with pySecDec [S. Borowka et al, Comput. Phys.
Commun. 222 (2018), 313-326] and perfect agreement was found in all cases!
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N3LO calculations for 2 → 2 processes using Simplified Differential Equations
x → 1 limit: Massless problem

Procedure for taking the x → 1
Briefly the procedure for taking the x → 1 limit is:

1) Rewrite the solution as an expansion in log(1− x):

g =
∑
n≥0

εn
n∑

i=0

1
i!

c(n)
i logi (1− x)

2) Define the regular part of g at x = 1 and from it the truncated part:

greg =
∑

εnc(n)
0 and gtrunc = greg

∣∣
x=1

3) Define the resummation matrix R1 and from it the purely numerical matrix R10:

R1 = eεM1 log(1−x) = S1eεD1 log(1−x)S−1
1 and R1

(1−x)ai ε→0
−−−−−−−−→ R10

4) Find the x → 1 limit by acting R10 to gtrunc :

gx→1 = R10gtrunc

5) Reduce the number of the basis elements to the number of the MI of the massless
problem using the property R2

10 = R10 ⇒ R10gx→1 = gx→1 and/or IBPs.
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N3LO calculations for 2 → 2 processes using Simplified Differential Equations
Ongoing work @ 3-loops

4-point 3-loop planar families with 1 off-shell leg
To complete the set of all planar families one needs to solve the two tennis-courts:

q2 q1

q3 q4

q1 q4

q2 q3

• The first (lets call F2) contains 117 MI of whom 59 are new!

• The second (lets call F3) contains 166 MI of whom 32 are new!

• For fast evaluations, analytical solutions will be needed for the 3 physical regions

1) m2 > 0, s ≥ m2, t ≤ 0, u ≤ 0

2) m2 > 0, s ≤ 0, t ≥ m2, u ≤ 0

3) m2 > 0, s ≤ 0, t ≤ 0, u ≥ m2

15 / 18
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Ongoing work @ 3-loops

Focusing on the F2, we have constructed an UT basis using the following methods:

One-loop (boxes, triangles, etc) and two-loop (UT integrals from Double-box
families) building blocks [P. Wasser, MSc thesis (2016)].
DlogBasis combined with the SDE parametrization, to find integrands of d-log
form [J. Henn, et al, JHEP 04, 167 (2020)].
Magnus exponential [M. Argeri, et al, JHEP 1403 (2014) 082].
Fuchsia.cpp [https://github.com/magv/fuchsia.cpp].

Intermediate checks of the UTness of the chosen BEs were made by semi-numerical
derivations of the DE.

An analytic reduction through FIRE6 [A. Smirnov, et al, Comput.Phys.Commun. 247
(2020)] was possible in a personal laptop (i7, 8-core, 16GB RAM) using SDE approach
which produced 104 integrals for reduction in order to derive the DE, while was not
possible using the standard approach which produced 1096 integrals.

Currently working on the computation of the boundaries of F2 and the determination
of a UT Basis for F3, using the methods described herein.
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DlogBasis combined with SDE parametrization

DlogBasis depends on the spinor helicity parametrization, which can not be applied
when we deal with massive external momenta. When one deals with such problems the
standard way to proceed is the decomposition of the external massive momentum in
terms of two (arbitrary) massless momenta [J. Henn, et al, JHEP 04, 167 (2020)], or
the use of Baikov representation [J. Henn, et al,JHEP 04 (2020) 018] & [C. Dlapa et
al, 2103.04638 [hep-th]].

Another possible way of proceeding is the use of the SDE notation for the propagators
where by definition the external momenta that appear in it for 1-mass problems are
massless2 and thus the spinor helicity parametrization can be applied. Thus while the
command

SetParametrization[SpinorHelicityParametrization[{l1, l2, l3}, {a, b, c}, {q1, q2, q3}]]

doen’t work when someone uses the standard notation for the propagators, it works
when one uses the SDE notation for the propagators

SetParametrization[SpinorHelicityParametrization[{k1, k2, k3}, {a, b, c}, {p1, p2, p3}]]

2the same approach can be used for 2-mass problems introducing an extra y parameter beyond x
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