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Two-loop Bhabha scattering in QED: four-point diagrams with
all the external points on the mass shell, p? = m?. Three
variables, s = (p, + p2)%,t = (p1 + p3)?, m?.

Diagrams with one-loop insertions and/or a closed fermion
loop

First results for diagrams with seven lines:
Other partial results

The evaluation in the small mass limit



Evaluating master integrals for the planar graph of the first
type [J. Henn & V.S."13] with the help of canonical bases
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Now: analytic evaluation of master integrals for graph (b).
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Evaluating master integrals for the planar graph of the first
with the help of canonical bases
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Now: analytic evaluation of master integrals for graph (b).

Evaluating integrals for graph (a) with two different masses
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X

Solving IBP relations with KIRA or FIRE — 43 master
integrals g1, ..., gu3.
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Solving differential equations

Differential equations

avg =Ag,
v=s,t,m? 0, = % and matrices A, A;, A2 are rational
functions of s, t, m* and e.
Turn to an e-basis . & — f,

O,f = €A, f

with A, independent of e.
We use the strategy of
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dlog form: df = edAf.

Solution

f(s,t;€) = Pexp {e l dﬁ] fo(e)

where Pexp is the path-ordered exponential and f(¢) is the
initial condition related to the value of f at a specific point.
The path 7 connects the initial point (sp, ty) to the generic
point (s, t).



Evaluating planar master integrals for Bhabha scattering

i = e Fz,o,o,o,o,z,o,o,o )

f, = —62%\/—_5\/ 4m? — sFy 21,002,000
—€*V/=sVAm? — 5F322001.000

f = —625/:0,2,1,0,0,2,0,0,0 )

h = —%62\/—_“/ 4m? — tFo.0001.2200
—E/—tVAmM2 — tFy0.0021200

2
fo = —€tF000012200,

2 2
fo = —em Fy01,022000

_ 3
f; = —€vV—sVam? —sFy11012000,- -
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The appearance of square roots is the price for having a
canonical basis. There are four square roots,

re = V—sVAdm? —s, rn=+—tvdm? —t,

ry = V—s—tVam? —s—t, ry=+/—s\/4mb —s(m? — t)2.
The square roots are chosen in such a way that that they are
manifestly real at Euclidean values, s, t < 0.

The standard way to rationalize the first two square roots is to
turn to dimensionless variables x and y

—s _(1-x* -t _ (1-y)?
m? X m oy
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The square root r, is present only in fi4.

We stay for fi4 with the variables x and y and evaluate this
element using elliptic MPLs.

The square root rg; does not appear when solving differential
equations up to weight 3 for all elements but f3; and at weight
4 for all elements but f;, i = 35,36, 37,38, 39, 41, 43.

The equations can be solved, first, in x, with results in terms
of MPLs of x with the letters {0, —1,1,—y,—1/y}.

MPLs

G(ala"'aan;x) = / dat G(az,...,an;t)
o t—a

n!

1
G(0,...,0;x) = — In"x
——

n times
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Then the equations with respect to y can be solved (after
checking that the variable x disappears in them) in terms of
MPLs of y with the letters {0, —1,1}, i.e. harmonic
polylogarithms

To fix the solutions we use boundary conditions in the limit
s, t — 0.

Using expansion by regions

implemented in the code asy.m

(which is now included in the code FIESTA

also in pySecDec )

and evaluating resulting parametric integrals

we obtain the following leading order asymptotic behaviour in
this limit
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22 2¢(3)e  Tmtet
i ~ 1 —
' 7% 3 360
o~ 1 5r%¢  11¢(3)¢ EWAGL‘,
4 24 6 480

m2e?

f ~ 55+ %(—:3 (27%log(2) — 7¢(3))

1 1
+—¢* (137#‘ — 90 log*(2) — 18072 log®(2) — 2160Li, (5)) :

180
fis ~ 363 (27% log(2) — 3¢(3))
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_ 1 4C(3)e  miet
f22 ~ (—5) € (_§+ C(3) + 60 )
1 72 14¢(3)e 67
a2 (1 _ _ O 44
(=9 (4 24 3 480" 6) ’

s ~ (—s)7%n” (€ + 2 log(2) + 2¢* (7 + log?(2))) ,

f25 ~ (_5)_67'(2 <—€2 — 263 |Og(2) — %64 (71—2 +4 |Og2(2)>)

and f; ~ 0, i.e. f; = o(s,t) for all the other elements.
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For example,

1 1
faz = ... +e*(—7n2G(—1;y)G(0, x) + szc(o; ¥)G(0, x) — ;‘rrzG(l;y)G(O,x) —36G(—1, —1,0;y)G(0, x)

+24G(—1,0,0;y)G(0, x) — 12G(—1,1,0; y)G(0, x) + 24G(0, —1, 0; y)G(0, x) — 10G(0, 0, 0; y)G(0, x)
+8G(0,1,0;y)G(0, x) — 12G(1, —1,0; ¥)G(0, x) +8G(1,0,0; y)G(0, x) — 4G(1,1,0; y)G(0, x)

4 2 ! 2 ) . 1 2.0 .
+114B)6(0, ) — 27" G(—1,x)G(0;y) + 277 G(= 1Y) G(—1/yix) — =7 G(0;Y)G(—1/yix)
— ZWZG(fl;y)G(fy,x) + gﬂzG(O;y)G(fy,x) - gﬂzG(fl,O,x)

—126(—1,0,x)G(~1,0;y) — 472G(—1,0;y) + 72G(—1, —=1/y;x) — 72 G(—1, —y, x)

—272G(0, —1;y) + 8G(—1,0,x)G(0,0; y) + 2G(—1, —1/y; x)G(0, 0; y)
—2G(—1, —y,x)G(0,0;y) + EWZG(O, 0;y) — 4G(—1,0,x)G(1,0;y) — ngG(l, 0;y)
+72G(—1/y, —1;x) + 6G(—1,0;¥)G(—1/y, 0;x) — 4G(0, 0; ¥)G(—1/y, 0;x) + 2G(1,0; ) G(—1/y, 0; )

1 1
- ngG(—l/y, 0;x) — G(0,0;y)G(—1/y, =1/y;x) — szc(_uy, —1/y;x)+ G(0,0;¥)G(=1/y, —yix) + ...
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To evaluate f37 at weights 3 and 4 and
f.,i = 35,36,38,39,41, 43 at weight 4 we have to deal with
the square root ry;.

It can be rationalized by the following further change of
variables x — w:

2 <(1 —w)(y* -y +1)° —2y2)
(1-w?)(y2—y+1)° '

The equations are solved, first, in w and then in y. The results
are written in terms of G(...,w) and G(...,y).
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The letters in G(...,w) and G(...,y) are cumbersome and
the result is rather compllcated, the contributions of weight 4
take ~ 60mb. Still we obtain an answer to the question about
the class of functions: these are MPLs, with the exception of
fia.
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The letters in G(...,w) and G(...,y) are cumbersome and
the result is rather compllcated, the contributions of weight 4
take ~ 60mb. Still we obtain an answer to the question about

the class of functions: these are MPLs, with the exception of
fia.

Evaluating the weight 4 results with GiNaC

meets certain problems connected with timing and stability, so
that such results become impractical.
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For these complicated elements, we prefer to apply the
recently developed code DiffExp to evaluate Feynman
integrals numerically using differential equations

based on the strategy of evaluating path-ordered exponentials
in an e-expansion

Input data for this code are matrices in differential equations
and boundary conditions in some limit.

The code works in an optimal way and provides the possibility
to obtain high-precision values (100 digits accuracy and more)
equally well in the Euclidean and physical regions.

With a canonical basis, the code works much better.
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Elliptic sector

fia = *f = —¢*/—s — t/4m? — s — t times

The differential equation equations give
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9 - 1
af(x,y)f (x — )x/(x + )0 + 1) 0By + % — xy + x 1 y)

X [(X —1)G(0, x) (2 <3x2y+x(y —1)? +y> G(0,0,y) + =° <x2 — 1) y>
—(x+1) <2G(0,y) (X (y2 - 1) G(0,0,x) + (x — 1)%y (G <—%70,X> - G(—y,O,x)>>

1
—2(x —1)%y (—G (—}—/,0, 0,x> — G(-y,0,0,x) +2G(0,0,0,x) — 2G(1,0,0, x)

1£G(0,0,0,y) — 2G(L,0,0,y) — ¢(3)) + (x — 1)%y (2(;(0, 0,y) + ﬂz) G <7%,x>

T (x—1)2y (2 G(0,0,y) + 7r2) G(—y,x))] .
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9 - 1
af(x,y)f (x — )x/(x + )0 + 1) 0By + % — xy + x 1 y)

X [(X —1)G(0, x) (2 <3x2y+x(y —1)? +y> G(0,0,y) + =° <x2 — 1) y>
—(x+1) <2G(0,y) (X <y2 - 1) G(0,0,x) + (x — 1)%y (G <—%70,X> - G(—y,O,x)>>

1
—2(x —1)%y (—G (—}—/,0, 0,x> — G(-y,0,0,x) +2G(0,0,0,x) — 2G(1,0,0, x)

1£G(0,0,0,y) — 2G(L,0,0,y) — ¢(3)) + (x — 1)%y (2(;(0, 0,y) + ﬂz) G <7%,x>

T (x—1)2y (2 G(0,0,y) + 7r2) G(—y,x))] .

The function f(x, y) is symmetrical, f(y,x) = f(x, y).
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The differential equation is solved on a path which consists of
two straight-line segments: the straight line from the point
(1,1) (where the function = 0) to the point (1,y),0 <y <1,
and from (1, y) to the general (x, y) in the Euclidean region
0<x<l,0<y<l1

The square root v/(x + y)(xy + 1) (x2y +xy2 — 4xy + x + y)
cannot be rationalized

so that, maybe, it is not possible to arrive at a result in terms

of MPLs.
Let us apply elliptic MPLs (eMPLs)

Use the variable X = 1 — x. Here is the result
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25.;(;: 11111 X, a>+254 ;lyilii;i,a_’)Jr(73Iog2(y)77r2>54 1l.k39)
+ (Iog (y)+m )54( g _+1,x,5) + (Iogz(y)+w2) Ea(2,11i%,3)

+2log(y)&a(;o1 ;11 :;;,s) —2log(y)€a( o 11135, 3) +254<21 ;1 : ::*ﬁ)

+28 (1R A+ (Iogz(y) - 7r2) Sa(11:%,8) + (|og2(y) + 7r2) 54( 7 5‘“ (%, 5)
+ (Iogz(y) + 7 ) a7y yil,x, 3) +4log(y)€a( B 11:%,3) + 2Iog(y)£4< A 1:1 i;)‘(, 5)
—2log(y)€a( 3t 11 1:%,3) +4Ea (2210 ;, 3) —4&a(211L%5)
+48(F1311:%,3) — 48 (11 1ix3) 4 (—4Lis(—y) — 4Lis(y) + 4Li2(—y) log(y)
+ 4Lia(y) log(y) — % log*(y) + 2log(1 — y) logz(y) + 2log(y + 1) log?(y) — 7% log(y)

+ 27 log(y + 1) — 2<(3)) Ea(32i%,3) + (—4Lis(—y) — 4Liz(y) + 4Liz(—y)log(y)

+ 4Liz(y) log(y) — % log?(y) + 2log(1 — y) log?(y) + 2 log(y + 1) log?(y) — = log(y)
+2n% log(y +1) — 24(3)) Ea( 1%, 8) — 12Lia(—y) — 12Lia(y) — 2Lia(y) log*(y)

— 2Lia(—y) (log?(y) + ) + 8Lis(~y) log(y) + BLia(y) log(y) — 2((3) log(»)

1., 1, o 374
— 2 — 7% _
g log (v) — 5 log"(y) — —4



eMPLs

84( Z: I

.CkvX7a_):/ dtwnl(C]_,t,é)(€4(Z§
0
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eMPLs
E(m 2:;x,a):/ e, (ci, b, 3) Ea(2 0 Tt 5)
0

The set of eMPLs in our case is associated with the elliptic
curve z2 = P,(x, y), where P, is a polynomial of degree n =3

or 4. Here
Py(x,y) = (x — a1)(x — a2)(x — a3)(x — a4) with

a=y+la=(—-1) (x/y2—6y+1+y—1> /(2y),
a=(y—1) (—\/y2—6y+1+y—1) /(2y),aa =1/y +1
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)
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If all the indices A; = (&) are equal to ('), the integral is
divergent and a definition with some subtractions is used.
For n = 0:

Cy

Wo(O,X, 5) = —

)
w1y

where ¢, = 21/(a1 — a3)(a2 — a4), w1 = 2K(\)
and K(\) is the complete elliptic integral of the first kind.
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If all the indices A; = (&) are equal to ('), the integral is
divergent and a definition with some subtractions is used.

For n = 0:

Oxa——
Vo (0, x, ) oy’

where ¢, = 21/(a1 — a3)(a2 — a4), w1 = 2K(\)
and K(\) is the complete elliptic integral of the first kind.

MPLs are partial cases of eMPLs:

54(c1 Ck,X a) = G(Cl,...,Ck;X)



We checked our result in the Euclidean region with FIESTA
[A.V. Smirnov'15].

«0O)>» «F)»r « =

DA
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We checked our result in the Euclidean region with FIESTA

When doing this we evaluated eMPLs with an inhouse code.
One could also do this using an elliptic extension of GiNaC

Still we don’t know if fi4 can be evaluated in terms of MPLs
only. The fact that there is a square root which cannot be
rationalized with a rational transformation doesn’t mean that
it is impossible to do this.

There are at least two examples illustrating this point.

For the analog of our fi4 for the first type of Bhabha two-loop
integrals

H-diagram
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Conclusion

m We evaluated master integrals for the second type of
two-loop Bhabha integrals.

m All the master integrals but one are expressed in terms of
MPLs.

m We have derived a compact result for one master integral
in terms of eMPLs.



