(Semi-)automated methods for solving Feynman

integrals through differential equations

Martijn Hidding
Uppsala University

Based on work in collaboration with:
levgen Dubovyk, Krzysztof Grzanka, Johann Usovitsch

RADCOR/Loopfest 2021

Introduction

In recent years, the method of diffential equations has proven to be an exceptionally

: : [Kotikov, 1991], [Remiddi, 1997]
powerful way of computing Feynman integrals. [Gehrmann, Remiddi, 2000]

The effectiveness of the differential equations method is especially striking when it is

applied to polylogarithmic integral families that admit an e-factorized (canonical) basis.
[Henn, 2013]

Furthermore, numerical approaches to solving the differential equations can be

efficient, precise, and may extend to cases beyond multiple polylogarithms or elliptic
o e.g.: [Lee, Smirnov, Smirnov, '18], [Mandal, Zhao, '19], [Moriello, '19],
generalizations thereof. [Bonciani, Del Duca, Frellesvig, Henn, MH, Maestri,
Moriello, Salvatori, Smirnov, '19], [MH '20],
[Abreu, Ita, Moriello, Page, Tschernow, Zeng '20]

Although many individual steps have been automated, some “glue” is still missing. In

this talk we will consider some steps towards a full automatization.

Introduction

Outline of the talk

* The method of differential equations

 Solutions through iterated series expansions

« Overview of an automated computational strategy

» The DiffExp Mathematica package & the Caesar toolbox

« Applications to a 3-loop vertex topology

Differential equations and series solutions

Differential equations

« We consider a family of Feynman integrals:

Coddk \ T N 4= e e
o 7 i=n+1 " "1 o 2 9 .
; 1= 1

1=1

and a basis of master integrals I. Taking derivatives on kinematic invariants and

masses and performing IBP reductions, we obtain:

r — [Kotikov, 1991], [Remiddi, 1997]
5’sj I = MSj ({Si}a E)I [Gehrmann, Remiddi, 2000]

« We will proceed by solving these equations iteratively in terms of one-dimensional
series expansions, which will allow us to obtain numerical results everywhere in

phase-space.

Differential equations and series solutions

Differential equations

* Let us briefly consider the special case of a canonical basis. Under a change of

variablesé = Tf, we have that;
)

5.8 = (05, T) T+ TM,, T | B. [Henn, 2013]
1

 For polylogarithmic families, it is conjectured that a T exists, such that: Lo ?jﬁ %'931?]

8B’ 3A _ . o ~ [Prausa, 1701.00725]

L [Gituliar, Magerya, 1701.04269]

— € B, dB = edADB [Meyer, 1705.06252]

8Si 8Si [Dlapa, Henn, Yan, 2002.02340]

where 4 does not depends on ¢, and such that

A = Z C; log(l;)

decomposes as a Q-linear combination of logarithms of rat./algebraic functions.

Differential equations and series solutions

Differential equations

 Let us parametrize the differential equations along a one-dimensional path. In

other words, we consider: v : [0,1] — C'*|
L = (731 ('CC)D s ”)/S|S| (x))

* Then we have that; 9,5 = saAg(m)) B
xX
0,B =cA,B

« Upon expanding in ¢, the equations can be solved order-by-order:

B=> BWs BU(z)= / A, BV (2)dz' + B (z = 0)
0

i>0

Differential equations and series solutions

Differential equations

 Let us expand the matrix A, in the line parameter. Then we have:
A, =2a" Zcpa:p + O (")

| p=0

 Using integration-by-parts, we find can write for each rational m and integer n:

/ ™ log(z)" = ™t Z cjlog(z

« Thus, we may perform all the integratlons in terms of (generalized) series

expansions B(k) =" Z Z Cmn T log(z Cmn € C, 0>re@Q

n=0m=0

 Although each series solution has a limited range of convergence, we may

concatenate such solutions to reach any point in phase-space.

Differential equations and series solutions

Differential equations

« More generally, consider an unsimplified or partially simplified basis f satisfying:

0 - - Seee.q.
a—f(zc, €) = Ay (x,€)f(x,¢€) [Moriello, "19],
L [R. Bonciani, V. Del Duca, H.
. Frellesvig, J. M. Henn, MH,
« We will assume that A, is finite as € goes to zero, which gives L Maegstri, F. Moriello, G.
k—1 Salvatori, V. A. Smirnov, '19]
awf(k‘) _ Agso)f(k) 4+ Z Aff‘j)f(j) [MH, “20]
=0

 This can typically be achieved by rescalings of the form:
fi = elfs, pi€l

« Lastly, upon ordering the integrals sector-wise, we obtain a "block-triangular” form:

A0) , Which allows us to decompose into .
n i - - 0§ = Mg+ b
| differential equations of the form:

Differential equations and series solutions

DiffExp

 DiffExp is a Mathematica package for solving linear systems of differential

equations in terms of one-dimensional series expansions. [MH, ©2006.05510]
« Capable of computing “coupled” systems of more than two integrals

« Takes in (any) system of differential equations of the form

s = Aufllsih Aulsihe = Y AP ({5 e

k=0
« Uses: compute Feynman integrals numerically at high precision. Analytically

continue results across thresholds. Transporting boundary conditions from

one special point to another.

Differential equations and series solutions

DiffExp

 Typical usage of the package:
» Set configuration options using the method LoadConfiguration[opts]
* Prepare a list of boundary conditions using PrepareBoundaryConditions[bcs , line]
« Then we can find series solutions along a line using the function:
IntegrateSystem[bcsprepared , line]
« Or one can transport the boundary conditions to a new point using:

TransportTo[bcsprepared , point |

Differential equations and series solutions

Example: 3-loop banana graph

 Load DiffExp:

Get[FileNameJoin[{NotebookDirectory[], "..", "DiffExp.m"}1];

Loading DiffExp version 1.0.7

For questions, email: martijn.hiddingephysics.uu.se

For the latest version, see:

 Set the configuration options and load the matrices

EqualMassConfiguration = {

https://gitlab.com/hiddingm/diffexp

DeltaPrescriptions -» {t-16+16},

MatrixDirectory -» NotebookDirectory[] <> "Banana_EqualMass Matrices/",

UseMobius -» True, UsePade -» True

}s

LoadConfiguration[EqualMassConfiguration];

DiffExp: Loading matrices.

DiffExp: Found files: {dt ©@.m, dt_1.m, dt_2.m, dt_3.m, dt_4.m}

DiffExp: Kinematic invariants and masses: {t}

DiffExp: Getting irreducible factors..

DiffExp: Configuration updated.

my
P A P
i)
Ty

Figure 1: The three-loop unequal mass banana diagram.

Equal-mass case:
B = (el e(1+) Iy
e(1+3€) (1 +de) [P, I)
ge \ 3) 4
Layasasas = (ij) (m?)" 272 (1:[[ddk,,) D™ Dy Dy Dy

Dy =—k¥4+m?, Dy=—ki+m?,
D3 = —k2+m?, Dy=—(ki+ky+ks+p1)*+m?

Differential equations and series solutions

3-loop banana graph

 Prepare the boundary conditions along an asymptotic limit:

EqualMassBoundaryConditions = {

non
R]

non
R |

6e3Euler~Gannnac—:(_%)1”5eGamma[—e]zGamma[e]3

e (L+3€) (1+4e)

4 e3 EulerGamma e Gamma [G] 3
- +
t Gamma[-2 €]
g @3 Fulercamnac (_ %)1"26 € Gamma[-¢]® Gamma[e] Gamma[2e] 3 e?Fulercammac (_ %)1"36 e Gamma[-€]% Gamma[3 €]
+
Gamma[-3 €] Gamma[-4 €]

e3 EulerGamma € €3 Gamma[€] 3

} // PrepareBoundaryConditions[#, <|t-> -1/x|>] &;

DiffExp: Integral 1: Ignoring boundary conditions.
DiffExp: Integral 2: Ignoring boundary conditions.
DiffExp: Assuming that integral 3 is exactly zero at epsilon order @.

DiffExp: Prepared boundary conditions in asymptotic limit, of the form:

> ? ? ? ?
? ? ? ? ?
Dl'F'FEXp: O[X]Sl () X+0[X]3/2 () x+o[x]3/2 () X+O[X}3/2 ()X+O[X]3/2

Differential equations and series solutions

3-loop banana graph

» Next, we transport the boundary conditions:

Transportl = TransportTo[EqualMassBoundaryConditions, <|t-> -1|>];
Transport2 = TransportTo[Transportl, <|t-> x|>, 32, True];

1.
DiffExp: Transporting boundary conditions along (‘te——‘} from x = 0. to x = 1.
X

DiffExp: Preparing partial derivative matrices along current line..
DiffExp: Determining positions of singularities and branch-cuts.
DiffExp: Possible singularities along line at positions {©.}.
DiffExp: Analyzing integration segments.

DiffExp: Segments to integrate: 3.
8. (-1.+1.x)

X

DiffExp: Integrating segment: {‘t-e

DiffExp: Integrated segment 1 out of 3 in 20.8565 seconds.
DiffExp: Evaluating at x = 0.0625
DiffExp: Current segment error estimate: 5.14483x10 3!

DiffExp: Total error estimate: 5.14483x10 !
-1.+1.Xx

N3 LLCvne ThtAamnatrina canmmant. /|+ . \

Differential equations and series solutions

 Lastly, we plot the result:

3-loop banana graph

ResultsForPlotting = ToPiecewise[Transport2];
Quiet[ReImPlot[{ResultsForPlotting[[3, 4]][x], ResultsForPlotting[[3, 5]1]1[x]}, {x, @, 32},

ClippingStyle » Red, PlotLegends - {"Béa) ", "Bé‘” "}, AxesLabel - {
MaxRecursion - 15, WorkingPrecision - 100] |
800 |
600

400

200 |

-200
-400

~600 f

n 2

p~/m

"}, PlotRange » {-700, 850},

Differential equations and series solutions

3-loop banana graph
e Timing:
« Moving from p? = —oo to p? = 30 at a precision of 25 digits takes about 90 sec, where we computed
the top sector integrals up to and including order 3.

« Moving from p? = —o0 to p? = 30 at a precision of 100 digits takes a bit under 20 min, where we

computed the top sector integrals up to and including order €3.

 Obtaining 100+ digits at p? = —100 up to and including order 3 takes about 2.5 min.

. ng) :

%)

4.082413202704059607801991461045097339855501253774222434496563798314848283907330199489603248642178129
-0.7713150915227857546258559692543676298350939151980774607908277236769934490973612004866036340787026038
-15.52268532416518855576696548019433617730937578226039207428302008586262767404183548619606743796239099
78.125097281480016929867/90482079302619114776011817121195506011258285334682242128391076363566162968586

Differential equations and series solutions

3-Loop banana graph

« We may also compute the fully unequal mass case. We choose the basis:

(banana banana banana banana banana banana)
elr1os ™, elg1s e, elvgor e, elgiis ™, elgior ™, elgyii™e,

banana banana banana
pBbanana _ e(1+ 3e) 17715, e(1 + 3e) IPfor™®, (1 4 3e) I3, >
e(1 + 3e)IPrreme, e(1 + 3e)(1 + 4e) IPpPpme,
3 rbanana 3 rbanana 3 rbanana 3 rbanana
€ Iori ™, e Ipgr ™ e Lo, € 1710)
« We provide 55 digits of basis integral B;; below, in the point
(p? =50,m? =2,m5 =3/2,m% =4/3,m5 =1)
B <0
BY = 5.1972521136965043170120578538563652405618939122389078645 These results were obtained in about 20
+ 7 6.8755169535390207501370685645538902299559024551830956594 minutes on a Single CPU-Core

Bﬁ) = —17.9580108112094060899523361698928478948780687053899075733
+ ¢ 31.7436703633693090908402932299011971913508950649494231047

BS) = —121.5101152068177565203392807541216084962880772908306370668
— 1 40.7690762360202766453775999917172226537428258529145754746

Bﬁ) = 125.6113388023605534745593764004798958232118632681257073923
— 1 229.9200257172388589952062757571215176834471783495112755027

Differential equations and series solutions

Further automatization

* |In the previous example, the boundary conditions were provided as closed-
form expressions in €. In general, this requires a manual case-by-case

analysis using expansion by regions in the parametric representation.

[See works by Beneke and Smirov] & [Jantzen, Smirnov,
Smirnov, 1206.0546] for the asy.m package

» Furthermore, the basis was chosen such that the differential equations are

finite (and also in precanonical form A, + €A;.)

« More generally, we would like to derive the basis, differential equations and

boundary terms in an automated way.

Differential equations and series solutions

An automated computational strategy

* Find a basis of (quasi-)finite Feynman integrals.

 Derive a closed linear system of differential equations for the basis.

« Rescale integrals by powers of € to make the differential equations finite in €.
« Compute boundary conditions in a Euclidean point by numerical integration.

« Obtain points in the physical region (and analytically continue) by numerically

solving the differential equations using iterated series expansions.

« (Optional) upgrade the boundary conditions to a higher precision by analyzing

behavior near thresholds and pseudo-thresholds.

Differential equations and series solutions

Caesar package

» Together with J. Usovitsch, | am working on a Mathematica toolbox, Caesar, which automates all

steps. It works by interfacing with various programs that are already on the market. Kira 2.0:
[J. Klappert, F. Lange, P. Maierhofer, J. Usovitsch, 2008.06494]

A finite basis is derived in an automated fashion by using Reduze to obtain candidate integr%I% ,
eduze Z:

[A. von Manteuffel, C. Studerus, 2008.06494]

and using Kira to select an independent set.
LiteRed 1.4:

[R.N. Lee, 1310.1145]
The differential equations are computed using inbuilt code, while the dimensional reduction

pySecDec:
[S. Borowka, G. Heinrich, S. Jahn, S.P. Jones,
M. Kerner, J. Schlenk, T. Zirke, 1703.09692]

pySecDec is used to obtain numerical boundary conditions in the Euclidean region

relations are generated using LiteRed.

. . . DiffExp:
DiffExp is used to obtain results everywhere else. [MH, 2006.05510]

3-loop topology

Application: 3-loop vertex topology (relevant for EW

pseudo-observables at Z-boson resonance) i collaboration with.
. [levgen Dubovyk, Ayres Freitas, Janusz Gluza,
» We consider the 3-loop topology pictured below: Krzysztof Grzanka, MH, Johann Usovitsch]
P1 Surviving 8-propagator sectors:
yal P1
my IBP | r |
P3 My my D3
mt = i my my
mw ’ mw
mw P2 P2 |
P2

in the kinematic configuration: p; =0, p3 =0, p1 - p2 = s/2 . We choose the following propagators:

D; = mW - k3) Do = _kQ) D3 = _k%) Dy = - (kl —DP1— p22)2
D5 = — (ko — 5 —p2)” Dg=m3 — (k3 —pl p2)” D7 = —(ks —p1) , Dg = m? — (k3 — 132)
D9=—(k2—k1) Nip = — (k1 — ks) Nit = — (k1 —p2)” Nizg = — (k2 — p2)

 After IBP-reduction, the top sector collapses. The highest sectors remaining after IBP reduction

have 8 propagators and are pictured in the top-right.

3-loop topology

Example: 3-loop topology

« The (finite) basis consists of 77 integrals in total. We choose 19 integrals in d = 4,

53 integrals in d = 6, and 5 integrals in d = 8.

« We rescale the integrals by powers of € in order to make the differential equations

finite as e — 0. The largest power we rescale by is e .

« We set up the system of differential equations, making use of IBP identities and

dimensional recurrence relations. The differential equations are ~ 12 MB before

expanding in e.

3-loop topology

2,2,2,2,0,1 0,2,0,0,0,0

) Id 6—2¢
3,0,2,2,2,0,0,2,0,0,0,0
6—2¢

2

Id:G—ZE
2,0,2,0,0,1,1,3,2,0,0,0

1) Id=4fze
1,0,1,1,0,1,1,3,1,0,0,0

Basis integrals

()151362??31000000
(6_3)1%62

I —2€
222211010000

2€
2,1,0,0,3,0,0,0,0

Id:6726
2,2,2,2,1,0,1,1,0,0,0,0

Id:ﬁ—ZE
,2,2,2,1,1,1,1,0,0,0,0

Id:4—2E
2,0,1,1,0,1,0,2,1,0,0,0

1 Id=6—26
0,2,0,2,0,0,2,2,2,0,0,0

I 4—2€
,0,1,1,1,0,1,1,1,0,0,0

1\ yd=6-2¢
62 1,2,0,2,0,1,1,1,2,0,0,0

Id=4f2e
1,1,1,1,0,1,1,1,1,0,0,0

l)ldzﬁ—ZE
e/ 22222]1,1,0,0,0,0,0
€
,2,0,0,3,0,0,0,0

€
,0,0,2,3,0,0,0,0

€
»]0D0D1t3P2P0’0)0
€
» 1010’2'3'2'0’070
) Id=4—2£
3,0,1,1,0,0,1,2,1,0,0,0

Id=6726
2,0,2,0,2,0,1,1,2,0,0,0

I =8—-2¢
,3,0,3,0,1,0,0,3,0,0,0

Id: —2€
1,1,1,1,0,1,0,1,1,0,0,0

1 Id =6—2¢
2)722,020,01,1,2,0,0,0

(1) Id=6—2€

3/10,02,1,0,0,2,4,2,0,0,0
(l) [d=4-2¢

¢/72,01,1,0,0,1,3,1,0,0,0

1 Id=672E

2)72,0,2,0,1,0,1,2,2,0,0,0
Id—4—26

1,0,1,1,1,0,1,2,1,0,0,0

Id42€
1,0,1,1,0,1,1,2,1,0,0,0

e
wa.
ol
o

—2€
12v0v0s072y0,0,0,0

e S N

KN R

D e —r
—_
wao
ol
-No':

—2€
rzvov]- ’0)41010,0,0

/—\/—\/—\/—-\/—-\/—\/—-\C’_D‘_

Mol Mal= ol= Mol= Mol Mwel= Mol~

I

.J}.
'_‘N
om

,0,1,2,1,0,0,0

et
m |=— [=g=N

Id=6726
1,0,2,0,2,0,2,1,2,0,0,0

\.._/I—'

Id:6 2€
1,0,2,0,0,1,1,3,2,0,0,0

—_——~ o~
M| =

m =

Id:4—2€
2,0,1,1,0,1,1,2,1,0,0,0

3-loop topology

Numerical boundary conditions using pySecDec

« When all basis integrals are finite, their numerical integration using pySecDec is

sped up considerably.

+ We compute all basis integrals in the Euclidean region in the point s = —2,m{, =

4,m? = 16, using the Qmc integrator configured with:

—

iib.use_ch(minn=lO**7, maxeval=10**9, transform='korobov3', epsabs=le-12, cputhreads=16)
« The computation took between 1/2-1 day on a Ryzen Threadripper Pro 3955WX.

+(2.x107"° +7.x107" ¢)

3-loop topology

Results in the physical region, using DiffExp

« Using DiffExp we may transport from the Euclidean point to any other (real) point in phase-

space.

» Transporting from (s, mj,, m?) = (—2,4,16) to (s, m§,, m?) = (1' (:g;z:)z , (;23222)2)' we

obtain:

198 e | 122000 = (0.125019 +0.0127438 i) — (0.334035 — 0.0731341 i) e + (1.81433 + 0.208055 i) €* — (6.08263 — 0.389921 i) € + O(e*)
o P9 121000 = (117171 +1.03298 i) — (3.13434 — 1.43328 i) € + (5.9312 + 3.04346 i) €* + O(€®)

195429 1121000 = (0.912403 +0.837335 i) — (1.66844 — 1.83869 i) € + (2.25671 + 3.31779 i) € + O(€)

LGS 1 131,000 = (0.102616 +0.123891 §) — (0.137177 — 0.313638 i) € — (0.0575107 — 0.560502 i) € + O(€’)

93428 | 111000 = (1.30731 + 3.42323 i) — (10.0551 — 8.533 i) € + O(€?)

» The computation involved 16 line segments and took 45 minutes on a single CPU core. The

precision of the expansions was 10717, exceeding the precision of the boundary conditions.

3-loop topology

Results in the physical region, using DiffExp

» We find that the numerical error of the boundary conditions approximately carries

over after transporting from the Euclidean to the physical point.
- For example, at (s, mf,, m?) = (—2,4,16) we have:

T 01111000 = +0.133952666651744 & 2 x 10~

2 2
. 401925 433000

- While at (s, mZ,,m?) = (1, , we have:
Wy T 455938 227969

T T0111.1.000 = (1.30730596404577+43.42322623988039i)+ (3 x 10~ + 2 x 10~%)

3-loop topology

Results in the physical region, using DiffExp

» By concatenating series expansions along line segments, we can plot the results along a line. For

|d=4
1,1,1,1,0,1,1,1,1,0,0,0

example:

5 10 15 20 —25 30

- It took about 2 hour and 15 minutes to obtain the results along this line, at a precision of ~ 10713,

« Afterwards, evaluating an integral anywhere along the line takes about 0.071 seconds.

3-loop topology

Optional: upgrading the boundary conditions

Suppose we want to go beyond the precision that pySecDec can provide in the Euclidean region. It
turns out that we can lift the boundary conditions to a higher precision by looking at the scaling of

the integrals near (pseudo-)thresholds.

We don't have to use expansion by regions. Instead, we take the numerical boundary conditions,
move around in phase-space and record at which locations there are branch-points or singularities.
See also:

[D. Chicherin, T. Gehrmann, J. M. Henn, N. A. Lo Presti, V. Mitev, P. Wasser, 1809.06240]
[Abreu, Ita, Moriello, Page, Tschernow, Zeng, 2005.04195]

In particular, for each line segment we record presence or absence of terms of the form of x™",

x~™? and log(x)™, where we let n < 0.

Because the boundary conditions are of finite precision, such terms may carry coefficients of the

form 1071% which we will interpret to be 0 exactly.

3-loop topology

Optional: upgrading the boundary conditions

« We get a feeling for which directions to move towards, by looking at the poles of the differential

equations. The differential equations have the following poles:

mt, mw , s, mt + mw,

mt + s, mt - mw, mw - S, mt - mw + s,

S5#mw - 2xsS, 2xmw - S, 3xmw - S, 4xmw - S,

mt - mw - 3xs, 2«smt - 4xmw + S, mtA2 - 2xmtsmw + mwh2 + mt«s, mtA2 - 2xmtxmw + 4xmwss - sA2,
mtA2 - 2«mtsmw + mwht2 — 2«mt+s - 2xmw+s + SN2, 2emtamw - 4xmw?r2 + mt+s + Gaxmwss - 2+S72,

2mt*mw-8mtimwl+ 12 mt?mwi-8mtmwt+2mwC-mtY*s+5mtimws-9omtlmwlis+ 7 mtmw® s-2mw* s -mt? mws?-3mtmw? s?+mt?s?

r B . . . ' . . - R R e T

- For example, with mZ = 16, we obtain the following contour plot:

« The green dots represents points between which 50\

we transport. In particular, we consider lines from the Euclidean

point (s, mZ,, m#) = (—2,4,16), towards the outer green points.

The points have been chosen in order to cross as many of the

poles as possible.

-100 ¢ P : 2 -
-100 -50 0 50 100

3-loop topology

Optional: upgrading the boundary conditions

« Adding two additional points that cross m; = 0 as well, we end up with the following 8 points to

which we transport from (s, m3,, m?) = (—2,4,16):

s -29, mj » 50, mf-> 17}
s - 25, my » 65, m{ » 17}
s - 37, m;»>-30, mf-> 17}

s> =22, mj > 20, m{ »-106}

s-»-90, mj > -50, m{ > 17}
s - 90, mj » 20, m{ » 17}
s> -26, m; »-18, m{ » -10}
S-> 70, my > 40, m{ » -106}

{ {
{ {
{ {
{ {

3-loop topology

Optional: upgrading the boundary conditions

* Next, we repeat the computation with |« Lastly, we impose the same behavior around the singular

S O O O O O o o o O

a set of unfixed boundary conditions:

0

Cy2

o O O © © O

SO O O o © O

C10,4

C70,4
Cr14
C72,4

C13,4

S o O

C10,5

Cro,5
5
C725
Cr35
Cas
C75,5

C76,5

Ci6
G
C3,6
Cs6
Cs.6
Cs,6
C76
Cs,6
Co6

C10,6

Ce8,6
Co9,6
Cr0,6
71,6
C72,6
C73,6
Cra6
C75,6
C76,6

C77.6

C10,7

Ces,7
Co9,7
Cr0,7
Cn,7
C72,7
Cr3,7
Cr4,7
C75,7
C76,7

Cr7,7

S oL Lo e

PR e T

000217014

Scoeooooooo0

SeEeSee e e

0.

0.

0.
—0.000994722
0.00883742
0.00861711
0.00713239
0.00547568
0.

0.

0.

0.

0.0171007
0.000711127
0.

PeeEe e

0.0104167

0.

0.
0.00289226
—0.0437098
—-0.0431707
—-0.0443696
—0.0308585
0.00260417
0.000202142
0.

0.
—-0.172654
—0.00496931
0.0668526
0.0211336

0.

0.
0.
0

points, which fixes the coefficients:

—-0.00525246
0.00970283
0.0148169
—-0.00649465
0.155112
0.153748
0.173696
0.118034
—-0.00492326
—0.000940769
0.

0.

1.06597
0.0221132
—-0.323007
-0.170294
0.0544231
0.00711423
0.00118868
0.

0.0344235
—0.0055748
—-0.0007125
0.012447
—0.438363
—-0.436032
—0.53395
—-0.356945
0.0129286
0.00275984

0.138799
0.0413123
-5.11074
—-0.0760124
1.56549
0.931839
—-0.289769
—0.0309455
—0.00406291
0.133953

—-0.023964
0.0324391
0.0491314
Cy,7

1.10301
1.09904
1.4213
0.945135
—0.0203394
—0.00624196

—-0.384399
—-0.0991391

C70,7

0.414657 — 0.00910467 Cyq -
-1. Cy9,7 — 0.790243 C,7 + 4.6316
0.0474158 ¢;0,7 — 5.06544

1.13232
0.110314
0.0123885

Crr,7

3-loop topology

Optional: upgrading the boundary conditions

We see that order €° has not been fully determined, and we would need to expand up to order €7 in

order to fully fix this order.
Furthermore, we manually added high precision results for the basis integrals 1, 4, 23 and 26:
l Id=6—2€ l Id=6—2€ l Id=8—2€ l Id=6—2€
62 4,2,2,2,2,0,0,0,0,0,0,0° 64 4,0,2,2,0,0,0,4,0,0,0,0’ 64 5,3,0,3,0,0,0,0,3,0,0,0” E5 3,0,2,0,0,0,0,3,2,0,0,0
which were obtained by integrating the Feynman parametrization analytically.

We performed the lifting procedure twice by transporting along different lines, in order to check

consistency of the results. We obtain the following (preliminary) results at (s, m3,, m?) =

(—2,4,16):
1854 101111000 = 0.133952666444160183902749812

at an expected precision of about 10725,

Conclusion

Conclusions

Without spending significant effort on simplification of the basis, we can numerically solve the

differential equations of non-trivial 3-loop Feynman integrals.

By choosing the basis representatives to be finite integrals, we can obtain precise numerical

boundary conditions in the Euclidean region using pySecDec.

We find that the precision of the boundary conditions in the Euclidean region carries over to the

physical region.

We can upgrade the boundary conditions to a higher precision by reading of the scaling behavior of

the integrals around singular points.

The process can be almost fully automated.

Thank you for listening!

