Power Corrections to event shapes using eikonal dressed gluon exponentiation

Souray Pal

Collaborators: Neelima Agarwal, Ayan Mukhopadhyay, Anurag Tripathi

Indian Institute of Technology Hyderabad Department of Physics

RADCOR-LoopFest 2021

May 18, 2021

Outline

- Event Shape Variables
- Power Corrections
- Eikonal Dressed gluon exponentiation
- Summary

Event Shapes

What are Event Shapes

• Most basic final state observable in e^+e^- colliders.

- two-jet event T=1
- three-jet event $2/3 \le T \le 1$

Event shapes

- Thrust
- C parameter
- Angularity
- Jet Mass
- Jet boardening

5 / 25

Definition of event shapes

Thrust [Farhi (1977)]

$$T = \operatorname{Max}_{n} \frac{\sum_{i} |\vec{p_i} \cdot \vec{n}|}{\sum_{i} E_i},$$

• C-parameter [Parisi (1978)]

$$C = 3 - \frac{3}{2} \sum_{i,i} \frac{(p^{(i)} \cdot p^{(j)})^2}{(p^{(i)} \cdot q)(p^{(j)} \cdot q)} \qquad Q = \sum_i E_i, \\ q = p_1 + p_2$$

$$Q = \sum_i E_i,$$

 $q = p_1 + p_2 + p_3 + \dots p_N$

Angularity [Berger, Sterman (2003)]

$$au_{\mathsf{a}} = rac{1}{Q} \sum_{i} \mathsf{E}_{i} (\sin heta_{i})^{\mathsf{a}} (1 - |\cos heta_{i}|)^{1-\mathsf{a}}$$

Power Corrections

Power corrections

A physical quantity has the form

$$\sigma = \sigma_{\text{pert}} + \sum_{n} \sigma_{n} \left(\frac{\Lambda}{Q}\right)^{n}$$

• Calculation of Power corrections from perturbative corrections.

Power corrections

• A physical quantity has the form

$$\sigma = \sigma_{\text{pert}} + \sum_{n} \sigma_{n} \left(\frac{\Lambda}{Q}\right)^{n}$$

- Calculation of Power corrections from perturbative corrections.
- σ_{Pert} is not well defined: factorial growth.
- σ_n is ambiguous
- ullet Ambiguity in σ_n is compensated by the factorial growth of σ_{Pert} .

Borel summation

A physical quantity

$$R \approx \sum_{n=0}^{\infty} r_n \, \alpha^{n+1}$$

Borel transform

$$B[R](u) = \sum_{n=0}^{\infty} r_n \frac{u^n}{n!}$$

Borel sum

$$\tilde{R} = \int_0^\infty du \, e^{-\frac{u}{\alpha}} \, B[R](u)$$

Borel summation

A physical quantity

$$R \approx \sum_{n=0}^{\infty} r_n \, \alpha^{n+1}$$

Borel transform

$$B[R](u) = \sum_{n=0}^{\infty} r_n \frac{u^n}{n!}$$

Borel sum

$$\tilde{R} = \int_0^\infty du \, e^{-\frac{u}{\alpha}} \, B[R](u)$$

• pole for B[R](u) is p/β_0 , ambiguity $\delta \tilde{R} \propto (\frac{\Lambda}{Q})^{2p}$ $\alpha_s \approx \frac{1}{\beta_0 \log(Q^2/\Lambda^2)}$

Dressed gluon exponentiation

• Single Dressed gluon [Beneke, Braun (1994))

$$rac{1}{\sigma}rac{d\sigma}{de}(e,Q^2)\,=\,-rac{C_F}{2eta_0}\int_0^1d\xi\,rac{d\mathcal{F}(e,\xi)}{d\xi}\,A(\xi Q^2)\,,$$

- F is Characteristic function
- Running Coupling

$$A(\xi Q^{2}) = \int_{0}^{\infty} du (Q^{2}/\Lambda^{2})^{-u} \frac{\sin \pi u}{\pi u} e^{\frac{5}{3}u} \xi^{-u}$$

May 18, 2021

Contd...

• Interchanging the order of integration

$$\frac{1}{\sigma}\frac{d\sigma}{de}(e,Q^2) \,=\, \frac{C_F}{2\beta_0}\int_0^\infty du (Q^2/\Lambda^2)^{-u}B(e,u)$$

Borel function

$$B(e,u) = -\frac{\sin \pi u}{\pi u} e^{\frac{5}{3}u} \int_0^\infty d\xi \, \xi^{-u} \frac{d\mathcal{F}(e,\xi)}{d\xi}$$

• B(e, u) is free from any u = 0 poles.

Sudakov Logs

- Additive property of the event shape variables with respect to multiple gluon emissions
- Exponentiation in Laplace space

$$\frac{1}{\sigma}\frac{d\sigma(e,Q^2)}{de} = \int \frac{d\nu}{2\pi i} e^{\nu e} \exp[S(\nu,Q^2)]$$

Sudakov Logs [Gardi (2001)]

$$S(\nu,Q^2)=rac{C_F}{2eta_0}\int_0^\infty du \left(rac{Q^2}{\Lambda^2}
ight)^{-u} B^e_
u(u)$$

Borel function is Laplace space

$$B_{\nu}^{e}(u) = \int_{0}^{1} de \, B(e, u) \, (e^{-\nu e} - 1).$$

Eikonal dressed gluon exponentiation

Steps for EDGE

- Soft approximated Matrix element.
- Factorization of phase space
- Soft approximated version of the relevant event shapes
- Produces the Leading terms without the painful calculations

Matrix element

Energy fractions

$$x_1 = \frac{2p_1 \cdot Q}{Q^2}, \quad x_2 = \frac{2p_2 \cdot Q}{Q^2}, \quad x_3 = \frac{2k \cdot Q}{Q^2}.$$

• Soft approximated matrix element

$$\mathcal{M}_{\mathrm{soft}}(x_1, x_2, \xi) = \frac{2}{(1 - x_1)(1 - x_2)}.$$

Phase Space

• Characteristic function [Webber et.al. (1995)]

$$\mathcal{F}(e,\xi) \,=\, \int d\mathsf{x}_1 d\mathsf{x}_2 \,\mathcal{M}_{\mathsf{soft}}(\mathsf{x}_1,\mathsf{x}_2,\xi) \,\delta\left(e - ar{e}_{\mathsf{eik}}(\mathsf{x}_1,\mathsf{x}_2,\xi)
ight)$$

16 / 25

Eikonal definitions of event shapes

Т	$Max\left\{x_1, x_2, \sqrt{x_3^2 - 4\xi}\right\}$
$c_{eik}(x_1, x_2)$	$\frac{(1-x_1)(1-x_2)}{(1-x_1)+(1-x_2)}$
$\tau_a^{eik}(x_1,x_2,\xi)$	$(1-x_1)^{1-a/2}(1-x_2)^{a/2}$

Borel function under EDGE

$$B(t,u) \qquad 4\frac{\sin \pi u}{\pi u} e^{\frac{5u}{3}} \frac{1}{u} \frac{1}{t} \left(\frac{1}{t^{2u}} - \frac{1}{t^{u}} \right)$$

$$B(c,u) \qquad 4\frac{\sin \pi u}{\pi u} e^{\frac{5u}{3}} \frac{1}{c} \left[\frac{1}{(2c)^{2u}} \frac{\sqrt{\pi}\Gamma(u)}{\Gamma(u+\frac{1}{2})} - \frac{1}{uc^{u}} \right]$$

$$B(\tau_{a},u) \qquad 4\frac{\sin \pi u}{\pi u} e^{\frac{5}{3}u} \frac{1}{1-a} \frac{1}{\tau_{a}} \left[\frac{1}{\tau_{a}^{2u}} - \frac{1}{\tau_{a}^{2u}} \right]$$

[Agarwal, Mukhopadhyay, SP, Tripathi (2021)]

- B(e, u) are free from any u = 0 poles.
- B(t, u), B(c, u) and $B(\tau_a, u)$ produces the leading order terms correctly as compared to the full results.

Event shapes in k_{\perp} and y

• In the soft limit [Salam, Wicke (2001)]

$$\bar{e}(k,Q) = \sqrt{\frac{k_{\perp}^2 + k^2}{Q^2}} h_e(y)$$

• $h_e(y)$

1-Thrust
$$(t)$$
 $e^{-|y|}$

c-parameter
$$\frac{1}{\cosh y}$$

Angularity
$$e^{-|y|(1-a)}$$

Characteristic function in these co-ordinates

$$\mathcal{F}(e,\xi) = \frac{8}{e} \int_{V_{-i-}} dy$$

Borel function using these co-ordinates

• y_{\min} for different event shapes

t	$\ln\left(\frac{1}{t}\sqrt{\xi}\right)$
С	$\cosh^{-1}\left(\sqrt{\xi}/(2c).\right)$
$ au_a$	$\frac{1}{1-a} \ln \left(\frac{1}{\tau_a} \sqrt{\xi} \right)$

- Reproduces the same \mathcal{F} .
- Reproduces the same Borel function B(t, u), B(c, u) and $B(\tau_a, u)$. compared to energy fractions.

Borel function in Laplace space

$$B_{\nu}^{t,\text{eik}}(u) = 2 e^{\frac{5}{3}u} \frac{\sin \pi u}{\pi u} \times \left[\Gamma(-2u) \left(\nu^{2u} - 1 \right) \frac{2}{u} - \Gamma(-u) \left(\nu^{u} - 1 \right) \frac{2}{u} \right]$$

[Agarwal, Mukhopadhyay, SP, Tripathi (2021)]

$$B_{\nu}^{t}(u) = 2e^{\frac{5}{3}u} \frac{\sin \pi u}{\pi u} \times \left[\Gamma(-2u) \left(\nu^{2u} - 1 \right) \frac{2}{u} - \Gamma(-u) \left(\nu^{u} - 1 \right) \left(\frac{2}{u} + \frac{1}{1 - u} + \frac{1}{2 - u} \right) \right]$$

[Gardi, Rathsman (2001)]

- No extra renormalon singularities as compared to full result.
- $B_t^{\nu,\text{eik}}$ has renormalon poles only at half-integer values of u.

Expansion

$$B_{\nu}^{t,\text{eik}}(u) = -2 L^2 - 2.31 L$$

$$+ (-2 L^3 - 6.79 L^2 - 15.71 L) u$$

$$+ (-1.167 L^4 - 6.02 L^3 - 19.10 L^2 - 44.56 L) u^2$$

$$+ \dots$$

[Agarwal, Mukhopadhyay, SP, Tripathi (2021)]

$$B_{\nu}^{t}(u) = -2L^{2} + 0.691L$$

$$+ (-2L^{3} - 5.297L^{2} - 6.485L) u$$

$$+ (-1.167L^{4} - 5.527L^{3} - 14.491L^{2} - 31.655L) u^{2}$$

$$+ \dots,$$

[Gardi, Magnea (2003)]

 $L = \log(\nu)$, the leading log terms are produced correctly.

Soft and collinear corrections

$$S(\nu,Q^2) pprox \int_0^\infty du \left(rac{Q^2}{\Lambda^2}
ight)^{-u} B_{
u}^t(u)$$

order	soft correction	collinear correction
ν^1	$8\frac{\overline{\Lambda}}{Q}$	$-rac{2}{\pi}(rac{\overline{\Lambda}}{Q})^2$

In LEP the ratio of the size of the collinear correction to the soft correction for ν^1 is approximately -0.0017

Summary and Conclusions

- Perturbative series has a factorial growth which makes the series divergent.
- Power corrections can be estimated from the ambiguity in the perturbative series.
- Eikonal approximation of matrix element and event shapes produces the leading order terms correctly in few simple steps.
- EDGE works in both energy fraction and light cone co-ordinates.
- This process may be useful for complicated hadron event shapes in future.

