Evaluation of two-loop EW box diagrams for $e^+e^- \rightarrow ZH$

Qian Song
Ayres Freitas
17 May, Monday

LoopFest2021

Content

- Introduction
- Evaluation method: planar box diagram
 non-planar box diagram
- Numerical result
- Summary

LoopFest2021

- Discovery of Higgs boson(2012,LHC): last fundamental particle in SM
- Experiments at the ATLAS and CMS: agrees with the result SM predicted
- Problems not solved: electroweak symmetry breaking, Higgs coupling to SM particles/DM, hierarchy problem... Require new physics beyond SM
- One promising way probing new physics: precision measurements of the properties of H
- LHC is difficult to reach very high precision due to complicated background

- FCC-ee, CEPC, ILC: e+e- collider, large statistics, high luminosity, clean environment, measure H properties with very high precision (\sqrt{s} =240-250GeV)
- ILC: $\sigma_{ZH} \sim 1.2\%$, 250fb-1 (H. Baer et al. [arXiv:1306.6352 [hep-ph]])
- FCC-ee: $\sigma_{ZH} \sim 0.4\%$, 5ab-1(A.Abada et al[FCC Collaboration])
- CEPC: $\sigma_{ZH} \sim 0.5\%$, 5.6ab-1(arXiv:1811.10545)

LoopFest2021

- LO on σ(e⁺e⁻ → ZH):
 only consider s channel
 t,u channel amplitude is zero due to
 small Yukawa coupling
- NLO on $\sigma(e^+e^- \rightarrow ZH)$: unpolarized beam: 5-10%; (A. Denner et al,Phys. C 56, 261(1992)) polarized beam: 10-20%;

(S.Bondarenko, Phys. Rev. D 100,073002(2019))

$$\sigma(P_{e^-}, P_{e^+}) = \frac{1}{4} \sum_{\chi_1, \chi_2} (1 + \chi_1 P_{e^+}) (1 + \chi_2 P_{e^-}) \sigma_{\chi_1 \chi_2},$$

TABLE I. Hard $(E_{\gamma} > 1 \text{ GeV})$, Born, and one-loop cross sections in fb and relative corrections δ in % for the c.m. energy $\sqrt{s} = 250 \text{ GeV}$ and various polarization degrees of the initial particles.

P_{e^-}	P_{e^+}	$\sigma^{ m hard}$, fb	σ^{Born} , fb	$\sigma^{ m one-loop},~{ m fb}$	δ, %
0	0	82.0(1)	225.59(1)	206.77(1)	-8.3(1)
-0.8	0	96.7(1)	266.05(1)	223.33(2)	-16.1(1)
-0.8	-0.6	46.3(1)	127.42(1)	111.67(2)	-12.4(1)
-0.8	0.6	147.1(1)	404.69(1)	334.99(1)	-17.2(1)

• NNLO:(s= 240-250GeV)

EW+QCD:0.4-1.3% ($\alpha(0)$, $\alpha(M_z)$, G_{μ})

(Q.F.Sun, Phys.Rev.D 96,051301(2017))

EW+QCD:1.3% (\overline{MS} , $\alpha(M_Z)$)

(Q.F.Sun, Phys.Rev.D 96,051301(2017))

\sqrt{s}	schemes	$\sigma_{ m LO}~({ m fb})$	$\sigma_{ m NLO}$ (fb)	$\sigma_{ m NNLO}$ (fb)
	$\alpha(0)$	223.14 ± 0.47	229.78 ± 0.77	$232.21^{+0.75+0.10}_{-0.75-0.21}$
240	$\alpha(M_Z)$	252.03 ± 0.60	$228.36^{+0.82}_{-0.81}$	$231.28^{+0.80+0.12}_{-0.79-0.25}$
	G_{μ}	239.64 ± 0.06	$232.46^{+0.07}_{-0.07}$	$233.29^{+0.07+0.03}_{-0.06-0.07}$
	$\alpha(0)$	223.12 ± 0.47	229.20 ± 0.77	$231.63^{+0.75+0.12}_{-0.75-0.21}$
250	$\alpha(M_Z)$	252.01 ± 0.60	0.01	$230.58^{+0.80+0.14}_{-0.79-0.25}$
	G_{μ}	239.62 ± 0.06	231.82 ± 0.07	$232.65^{+0.07+0.04}_{-0.07-0.07}$

• NNLO:(s= 240-250GeV)

EW+QCD:0.4-1.3% ($\alpha(0), \alpha(M_z), G_{\mu}$)

(Q.F.Sun, Phys.Rev.D 96,051301(2017))

EW+QCD:1.3% (\overline{MS} , $\alpha(M_Z)$)

(Q.F.Sun, Phys.Rev.D 96,051301(2017))

\sqrt{s}	schemes	$\sigma_{\rm LO}$ (fb)	$\sigma_{ m NLO}$ (fb)	$\sigma_{ m NNLO}$ (fb)
	$\alpha(0)$	223.14 ± 0.47	229.78 ± 0.77	$232.21_{-0.75-0.21}^{+0.75+0.10}$
240	$\alpha(M_Z)$	252.03 ± 0.60	$228.36^{+0.82}_{-0.81}$	$231.28^{+0.80+0.12}_{-0.79-0.25}$
	G_{μ}	239.64 ± 0.06	$232.46^{+0.07}_{-0.07}$	$233.29^{+0.07+0.03}_{-0.06-0.07}$
				$231.63^{+0.75+0.12}_{-0.75-0.21}$
250	$\alpha(M_Z)$	252.01 ± 0.60	$227.67^{+0.82}_{-0.81}$	$230.58^{+0.80+0.14}_{-0.79-0.25}$
	G_{μ}	239.62 ± 0.06	231.82 ± 0.07	$232.65^{+0.07+0.04}_{-0.07-0.07}$

TABLE II. Total cross sections at various collider energies in the $\alpha(m_Z)$ scheme.

\sqrt{s} (GeV)	$\sigma_{ m LO}$ (fb)	$\sigma_{ m NLO}$ (fb)	$\sigma_{ m NNLO}$ (fb)	$\sigma_{ m NNLO}^{ m exp}$ (fb)
240	252.0	228.6	231.5	231.5
250	252.0	227.9	230.8	230.8
300	190.0	170.7	172.9	172.9
350	135.6	122.5	124.2	124.0
500	60.12	54.03	54.42	54.81

- EW+QCD:0.4-1.3% ($\alpha(0)$, $\alpha(M_Z)$, G_{μ}) (Q.F.Sun, Phys.Rev.D 96,051301(2017)) EW+QCD:1.3% (\overline{MS} , $\alpha(M_Z)$) (Q.F.Sun, Phys.Rev.D 96,051301(2017))
- EW+EW: ~1% (arXiv:1906.05379) (25377 diagrams(arXiv:2102.15213))
 challenging type: 2250 diagrams with 7 denominators, 4 independent mass scale, 2 independent energy scale
 diagrams with closed fermion loop dominant due to large top-quark Yukawa coupling and large number of fermions in SM
 - → planar & Non-planar diagrams with closed top-quark loop (18+9)

popFest2021

Planar double-box diagrams

Non-planar double-box diagrams

9

LoopFest2021

- Analytical calculation: can be done for 1-loop, but difficult in 2-loop: require more knowledge about special functions(harmonic polylogarithmic functions, iterated elliptic integrals)
- Numerical calculation: use Feynman parametrization. Box diagram is equal to integration over 6 Feynman parameters. It requires large computing resources and takes few days because the integrand converges slowly

(F. Yuasa et al; Comput. Phys. Commun. 183, 2136-2144 (2012))

$$I_{planar} = -\int_0^1 d\rho \int_0^1 d\xi \int_0^1 du_1 \int_0^{1-u_1} du_2 \int_0^1 du_3 \int_0^{1-u_3} du_4 \frac{\mathcal{C}}{(\mathcal{D} - i\epsilon \mathcal{C})^3} \rho^3 \xi^2 (1 - \xi)^2,$$

 Our method: simplify the integrand with Feynman parametrization and dispersion relation. The box diagram is reduced to 3-fold integration, which takes few minutes to calculate.

$$M_0M_2^* = \iiint dxdyd\sigma \left(\dots \right)$$

• Feynman diagrams → FeynArts (T. Hahn, Comput. Phys. Commun. 140, 418 (2001). [hep-ph/0012260])

Square amplitude → FeynCalc (dim =4)

(V. Shtabovenko, R. Mertig and F. Orellana, "FeynCalc 9.3: New features and improvements", arXiv:2001.04407.)

- (...) → dispersion relation and Feynman parameterization(Mathematica)
- Numerical calculation → C++, LoopTools,
- Gauss-Kronrod quadrature In Boost package

(Comput.Phys.Commun.118(1999)153)

(https://www.boost.org/doc/libs/master/libs/math/doc/html/index .html)

According to Feynman rules, the amplitude for planar diagram can be written as I_{plan} . Use Feynman parametrization to simplify the denominators only involve q2

Feynman parametrizaiton:
$$\frac{1}{abc} = \int_0^1 dx \int_0^{1-x} dy \frac{1}{(ax+by+c(1-x-y))^3}$$

$$I_{plan} = \int d_{q_1}^D d_{q_2}^D \frac{1}{(q_1^2 - m_{V_1}^2)((q_1+p_1)^2 - m_{f'}^2)((q_1+p_1+p_2)^2 - m_{V_2}^2)(q_1-q_2)^2 - m_{q'}^2}$$

$$\frac{1}{(q_2^2 - m_t^2)((q_2+k_1)^2 - m_t^2)((q_2+k_1+k_2)^2 - m_t^2)}$$

$$\int_0^1 dx \int_0^{1-x} dy \frac{1}{((q_2+k')^2 - m'^2)^3} = \int_0^1 dx \int_0^{1-x} dy \partial_{m'^2}^2 \frac{1}{(q_2+k')^2 - m'^2}$$

$$= \int_0^1 dx \int_0^{1-x} dy \partial_{m'^2}^2 \int d_{q_1}^D \frac{B_0((q_1+k')^2, m_{q'}^2, m'^2)}{(q_1^2 - m_{V_1}^2)((q_1+p_1)^2 - m_{f'}^2)((q_1+p_1+p_2)^2 - m_{V_2}^2)}$$

Loop momentum q1 appears in B0 functions, so cannot integrate over q1. → use dispersion relation to put q1 outside B0 function

dispersion relation:

$$B_{0}(p^{2}, m_{1}^{2}, m_{2}^{2}) = \frac{1}{2\pi i} \oint_{C} d_{\sigma} \frac{B_{0}(\sigma, m_{1}^{2}, m_{2}^{2})}{\sigma - p^{2} - i\varepsilon}$$

$$= \int_{(m_{1} + m_{2})^{2}}^{\infty} d\sigma \frac{\Delta B_{0}(\sigma, m_{1}^{2}, m_{2}^{2})}{\sigma - p^{2} - i\varepsilon}$$

$$= \int_{(m_{1} + m_{2})^{2}}^{\infty} d\sigma \frac{1}{\pi} \frac{Im B_{0}(\sigma, m_{1}^{2}, m_{2}^{2})}{\sigma - p^{2} - i\varepsilon}$$

$$\begin{split} I_{\text{plan}} &= \int_{0}^{1} dx \int_{0}^{1-x} dy \partial_{m'^{2}}^{2} \int_{(m'+m_{q'})^{2}}^{\infty} d\sigma \Delta B_{0}(s,m'^{2},m_{q'}^{2}) D_{0}(...,\sigma) \\ &= \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{(m'+m_{q'})^{2}}^{\infty} d\sigma \partial_{m'^{2}}^{2} \Delta B_{0}(s,m'^{2},m_{q'}^{2}) (D_{0}(...,\sigma) \left(-\frac{\sigma_{0}}{\sigma} D_{0}(...,\sigma_{0})\right) \right) \\ &+ \int_{0}^{1} dx \int_{0}^{1-x} dy \sigma_{0} D_{0}(...,\sigma_{0}) \partial_{m'^{2}}^{2} B_{0}(0,m'^{2},m_{q'}^{2}) \end{split} \qquad \text{cancel the divergence at lower bound}$$

cancel the divergence at lower bound

13 LoopFest2021

Similarly, use Feynman parametrization to simplify the denominators including q2 and integrating loop momentum q2 gives B0 function

$$I_{NP} = \int d_{q_1}^D d_{q_2}^D \frac{1}{(q_1^2 - m_{V_1}^2)((q_1 + p_1)^2 - m_{f'}^2)((q_1 + p_1 + p_2)^2 - m_{V_2}^2)} \frac{1}{(q_1 - q_2)^2 - m_{q'}^2)((q_1 - q_2 + k_1)^2 - m_{q'}^2)} \underbrace{\frac{(q_2^2 - m_t^2)((q_2 + k_2)^2 - m_t^2)}{\int_0^1 dx \partial_{m'_1^2} \frac{1}{(q_1 - q_2 + (1 - x)k_1)^2 - m'_1^2}} \underbrace{\frac{(q_2^2 - m_t^2)((q_2 + k_2)^2 - m_t^2)}{\int_0^1 dy \partial_{m'_2^2} \frac{1}{(q_2 + yk_2)^2 - m'_2^2}}} = \int_0^1 dx \int_0^1 dy \partial_{m'_1^2} \partial_{m'_2^2} \int d_{q_1}^D B_0((q_1 + (1 - x)k_1 + yk_2)^2, m'_1^2, m'_2^2) \underbrace{1}{(q_1^2 - m_{V_1}^2)((q_1 + p_1)^2 - m_{f'}^2)((q_1 + p_1 + p_2)^2 - m_{V_2}^2)}$$

• For non-planar double box including $\gamma\gamma$, γZ , ZZ, use the same dispersion relation as planar

diagram

For non-planar double-box including WW:

$$m_1^{\prime 2} = m_b^2 - x(1-x)m_Z^2 < 0$$

Branch cut changes, we use a new dispersion relation

$$B_0(p^2, {m'}_1^2, {m'}_2^2) = \frac{1}{2\pi i} \oint_C d\sigma \frac{B_0(\sigma, {m'}_1^2, {m'}_2^2)}{\sigma - p^2 - i\varepsilon}$$
$$= \frac{1}{2\pi i} \int_{-\infty}^{\infty} d\sigma \frac{B_0(\sigma, {m'}_1^2, {m'}_2^2)}{\sigma - p^2 - i\varepsilon}$$

$$I_{NP-WW} = \frac{-1}{2\pi i} \int_0^1 dx \int_0^1 dy \int_{-\infty}^{\infty} d\sigma \partial_{m'_1^2} \partial_{m'_2^2} B_0(\sigma, m'_1^2, m'_2^2) D0(..., \sigma - i\epsilon)$$

2. Evaluation Method

$$I = \underbrace{\int dx \int dy \int d\sigma}_{\text{Gauss-kronrod quadrature(Boost)}} \underbrace{B_0(\sigma, m_1^2, m_2^2) \text{or} \Delta B_0(\sigma, m_1^2, m_2^2)}_{\text{analytical expression is known}} \times \underbrace{(c_A A_0 + c_B B_0 + c_C C_0 ...)}_{\text{LoopTools package}}$$

- Programming using C++
- Running time: few minutes to half an hour(non-planar WW)
- Advantages: low requirement of computer, short running time
- Precision: 4-digit, the precision is confined by the Looptools(double-precision)
- Stability: integrand is smooth

3. Result: instability

- Upper and lower bound of the integrand, $\delta \sim 10^{-3}$, $\Lambda \sim 10^{8}$ $\int_{\sigma_0}^{\infty} f(\sigma) = \int_{\sigma_0(1+\delta)}^{\Lambda} f(\sigma) + 2\sigma_0 \delta f(\sigma_0 \delta) + \Lambda f(\Lambda)$
- For non-planar diagram, the Gram determinants(tensor decomposition arXiv:0812.2134[hep-ph]) for some Passarino-Veltman tensor functions vanish when x is equal to y, and Looptools is not able to give a number.
 - a) separate the integration region of x: (0,0.5) (0.5,1)
 - b) separate the integration region of y: $(0,x-\delta)$, $(x-\delta,x+\delta)$, $(x+\delta,1)$, $\delta=10^{-2,-3,...}$
- For non-planar diagram with W bosons, $\sigma i\epsilon$, $\epsilon \sim 10^{-9} |\sigma|$ or $\epsilon \sim 10^{-5}$

3. Result

few minutes

Parameter	Value
M_Z	$91.1876 \; \text{GeV}$
M_W	80.379 GeV
M_H	125.1 GeV
$ m_t $	172.76 GeV
α	1/137
E_{CM}	240 GeV
m_{γ}	$10^{-6} {\rm GeV}$
θ	$\pi/2$

$\operatorname{Re}\{\mathcal{M}_2\mathcal{M}_0^*\}$
$-1.524(1) \times 10^{-7}$
$-1.537(1) \times 10^{-8}$
$-4.402(4) \times 10^{-8}$
$1.724(2) \times 10^{-8}$
$-1.1392(8) \times 10^{-6}$
$-5.577(5) \times 10^{-7}$

~ 30 minutes

regulate the IR divergence, no UV divergence

3. Result

Dependence of the $\gamma\gamma$ (left) and γZ (right) two-loop boxes on the photon mass m_{γ}

3. Result

few minutes

Parameter	Value
M_Z	91.1876 GeV
M_W	80.379 GeV
M_H	$125.1 \mathrm{GeV}$
$ m_t $	172.76 GeV
$ \alpha $	1/137
E_{CM}	$240 \mathrm{GeV}$
m_{γ}	10^{-6} GeV
θ	$\pi/2$

$\operatorname{Re}\{\mathcal{M}_2\mathcal{M}_0^*\}$
$-1.524(1) \times 10^{-7}$
$-1.537(1) \times 10^{-8}$
$-4.402(4) \times 10^{-8}$
$1.724(2) \times 10^{-8}$
$-1.1392(8) \times 10^{-6}$
$-5.577(5) \times 10^{-7}$

~ 30 minutes

regulate the IR divergence, no UV divergence

3. Summary

- Double-box diagrams can be efficiently evaluated by Feynman parametrization and dispersion relation (For non-planar diagrams with 2 W bosons, dispersion relation is different from other diagrams)
- Takes few minutes for numerical calculation. For non-planar diagrams with 2 W bosons, takes half an hour.
- IR divergence is controlled by giving photon a small mass without loss of numerical precision.
- The evaluation method can also be applied for the calculation of electroweak corrections to other $2 \to 2$ process, such as $e^+e^- \to W^+W^-$

Thank you!

According to Feynman rules, the amplitude for planar diagram can be written as I_{plan} . Use Feynman parametrization to simplify the denominators only involve q2

$$I_{plan} = \int d_{q_1}^D d_{q_2}^D \frac{1}{(q_1^2 - m_{V_1}^2)((q_1 + p_1)^2 - m_{f'}^2)((q_1 + p_1 + p_2)^2 - m_{V_2}^2)(q_1 - q_2)^2 - m_{q'}^2} \frac{1}{(q_2^2 - m_t^2)((q_2 + k_1)^2 - m_t^2)((q_2 + k_1 + k_2)^2 - m_t^2)} \underbrace{\int_0^1 dx \int_0^{1-x} dy \frac{1}{((q_2 + k')^2 - m'^2)^3} = \int_0^1 dx \int_0^{1-x} dy \partial_{m'^2}^2 \frac{1}{(q_2 + k')^2 - m'^2}}_{p_2}$$

Feynman parametrizaiton:
$$\frac{1}{abc} = \int_0^1 dx \int_0^{1-x} dy \frac{1}{(ax+by+c(1-x-y))^3}$$

23 LoopFest2021

Integrating over loop momentum q2 gets B0 function:

$$\begin{split} I_{plan} &= \int_{0}^{1} dx \int_{0}^{1-x} dy \partial_{m'^{2}}^{2} \int d_{q_{1}}^{D} d_{q_{2}}^{D} \frac{1}{(q_{1}^{2} - m_{V_{1}}^{2})((q_{1} + p_{1})^{2} - m_{f'}^{2})((q_{1} + p_{1} + p_{2})^{2} - m_{V_{2}}^{2})} \\ &= \frac{1}{((q_{1} - q_{2})^{2} - m_{q'}^{2})} \frac{1}{(q_{2} + k')^{2} - m'^{2}} \\ &= \int_{0}^{1} dx \int_{0}^{1-x} dy \partial_{m'^{2}}^{2} \int d_{q_{1}}^{D} \frac{B_{0}((q_{1} + k')^{2}, m_{q'}^{2}, m'^{2})}{(q_{1}^{2} - m_{V_{1}}^{2})((q_{1} + p_{1})^{2} - m_{f'}^{2})((q_{1} + p_{1} + p_{2})^{2} - m_{V_{2}}^{2})} \end{split}$$

Loop momentum q1 appears in B0 functions, so cannot integrate over q1.

→ use dispersion relation to put q1 outside B0 function

dispersion relation:

$$B_0(p^2, m_1^2, m_2^2) = \frac{1}{2\pi i} \oint_C d_\sigma \frac{B_0(\sigma, m_1^2, m_2^2)}{\sigma - p^2 - i\varepsilon}$$

$$= \int_{(m_1 + m_2)^2}^{\infty} d\sigma \frac{\Delta B_0(\sigma, m_1^2, m_2^2)}{\sigma - p^2 - i\varepsilon}$$

$$= \int_{(m_1 + m_2)^2}^{\infty} d\sigma \frac{1}{\pi} \frac{Im B_0(\sigma, m_1^2, m_2^2)}{\sigma - p^2 - i\varepsilon}$$

Integrating over q1 gets the D0 function.

Use Leibiniz's rule to put the derivative inside the integral: ΔB_0 is divergent at the lower bound, it can be fixed by subtracting one term to make the integrand become 0 at the lower bound.

$$I_{plan} = \int_{0}^{1} dx \int_{0}^{1-x} dy \partial_{m'^{2}}^{2} \int_{(m'+m_{q'})^{2}}^{\infty} d\sigma \int d_{q_{1}}^{D} \Delta B_{0}(s, m'^{2}, m_{q'}^{2})$$

$$\frac{1}{(q_{1}^{2} - m_{V_{1}}^{2})((q_{1} + p_{1})^{2} - m_{f'}^{2})((q_{1} + p_{1} + p_{2})^{2} - m_{V_{2}}^{2})(s - (q_{1} + k')^{2})}$$

$$= -\int_{0}^{1} dx \int_{0}^{1-x} \partial_{m'^{2}}^{2} \int_{(m'+m_{q'})^{2}}^{\infty} d\sigma \Delta B_{0}(\sigma, m'^{2}, m_{q'}^{2}) D_{0}(p_{1}^{2}, p_{2}^{2}, k'_{2}^{2}, k'_{1}^{2}, s, t, m_{V_{1}}^{2}, m_{f'}^{2}, m_{V_{2}}^{2}, \sigma)$$

Leibiniz's rule:

$$\frac{d}{dx}\left(\int_{a(x)}^{b(x)} f(x,t)dt\right) = \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t)dt + f(x,b(x))\frac{db(x)}{dx} - f(x,a(x))\frac{da(x)}{dx}$$

$$\begin{split} &\partial_{m'^2}^2 \int_{(m'+m_{q'})^2}^{\infty} d\sigma \Delta B_0(\sigma,m'^2,m_{q'}^2)(D_0(...,\sigma)-\frac{\sigma_0}{\sigma}D_0(...,\sigma_0)+\frac{\sigma_0}{\sigma}D_0(...,\sigma_0))\\ &=\partial_{m'^2}^2 \int_{(m'+m_{q'})^2}^{\infty} d\sigma \Delta B_0(\sigma,m'^2,m_{q'}^2)(D_0(...,\sigma)-\frac{\sigma_0}{\sigma}D_0(...,\sigma_0)) &\rightarrow 0 \text{ at the lower bound, so derivative van be put inside the integral}\\ &+\partial_{m'^2}^2 \int_{(m'+m_{q'})^2}^{\infty} d\sigma \Delta B_0(\sigma,m'^2,m_{q'}^2)\frac{\sigma_0}{\sigma}D_0(...,\sigma_0) &\rightarrow \text{integrate over } \sigma \text{ gives } B_0(0,m'^2,m_{q'}^2) \text{ (dispersion relation)} \end{split}$$

$$I_{\text{plan}} = \int_{0}^{1} dx \int_{0}^{1-x} dy \partial_{m'^{2}}^{2} \int_{(m'+m_{q'})^{2}}^{\infty} d\sigma \Delta B_{0}(s, m'^{2}, m_{q'}^{2}) D_{0}(p_{1}^{2}, p_{2}^{2}, k'_{2}^{2}, k'_{1}^{2}, s, t, m_{V_{1}}^{2}, m_{f'}^{2}, m_{V_{2}}^{2}, \sigma)$$

$$= \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{(m'+m_{q'})^{2}}^{\infty} d\sigma \partial_{m'^{2}}^{2} \Delta B_{0}(s, m'^{2}, m_{q'}^{2}) (D_{0}(..., \sigma) - \frac{\sigma_{0}}{\sigma} D_{0}(..., \sigma_{0}))$$

$$+ \int_{0}^{1} dx \int_{0}^{1-x} dy \sigma_{0} D_{0}(..., \sigma_{0}) \partial_{m'^{2}}^{2} B_{0}(0, m'^{2}, m_{q'}^{2})$$

If the numerator is not equal to 1, integrating over q2 gets B1,B00,B11 functions. They have same dispersion relation as B0.

For example, num = $p_1 \cdot q_2$

$$\operatorname{num} = p_{1} \cdot q_{2}, (p_{1} \cdot q_{2})(k_{1} \cdot q_{2})... \neq 1$$

$$\int d^{D}q_{2} \frac{p_{1} \cdot q_{2}}{(q_{2}^{2} - m_{q'}^{2})(q_{2} + q_{1} + k')^{2} - m'^{2}} = p_{1\mu} \int d^{D}q_{2} \frac{q_{2}^{\mu}}{(q_{2}^{2} - m_{q'}^{2})(q_{2} + q_{1} + k')^{2} - m'^{2}}$$

$$= p_{1\mu}B_{\mu}((q_{1} + k')^{2}, m'^{2}, m_{q'}^{2})$$

$$= p_{1\mu}(p_{1} + k')_{\mu}B_{1}((q_{1} + k')^{2}, m'^{2}, m_{q'}^{2}) \Rightarrow \frac{p_{1} \cdot (p_{1} + k')}{\sigma - (q_{1} + k')^{2}} \int d\sigma \Delta B_{1}$$

similarly,

$$\int d^D q_2 \frac{q_2^\mu q_2^\nu}{(q_2^2 - m_{q'}^2)(q_2 + q_1 + k')^2 - m'^2} \quad \Rightarrow B_{00}, B_{11} \Rightarrow \int d\sigma \Delta B_{00}, \int d\sigma \Delta B_{11}$$

$$\int d^D q_2 \frac{q_2^\mu q_2^\nu, q_2^\rho}{(q_2^2 - m_{q'}^2)(q_2 + q_1 + k')^2 - m'^2} \quad \Rightarrow B_{001}, B_{111} \Rightarrow \int d\sigma \Delta B_{001}, \int d\sigma \Delta B_{111}$$

$$\text{LoopFest2021}$$

Similarly, use Feynman parametrization to simplify the denominators including q2 and integrating loop momentum q2 gives B0 function

$$I_{NP} = \int d_{q_1}^D d_{q_2}^D \frac{1}{(q_1^2 - m_{V_1}^2)((q_1 + p_1)^2 - m_{f'}^2)((q_1 + p_1 + p_2)^2 - m_{V_2}^2)} \frac{1}{(q_1 - q_2)^2 - m_{q'}^2)((q_1 - q_2 + k_1)^2 - m_{q'}^2)} \underbrace{\frac{(q_2^2 - m_t^2)((q_2 + k_2)^2 - m_t^2)}{\int_0^1 dx \partial_{m'_1^2} \frac{1}{(q_1 - q_2 + (1 - x)k_1)^2 - m'_1^2}} \underbrace{\frac{(q_2^2 - m_t^2)((q_2 + k_2)^2 - m_t^2)}{\int_0^1 dy \partial_{m'_2^2} \frac{1}{(q_2 + yk_2)^2 - m'_2^2}}} = \int_0^1 dx \int_0^1 dy \partial_{m'_1^2} \partial_{m'_2^2} \int d_{q_1}^D B_0((q_1 + (1 - x)k_1 + yk_2)^2, m'_1^2, m'_2^2) \underbrace{1}{(q_1^2 - m_{V_1}^2)((q_1 + p_1)^2 - m_{f'}^2)((q_1 + p_1 + p_2)^2 - m_{V_2}^2)}$$

For non-planar double box including $\gamma\gamma$, γZ , ZZ, use the same dispersion relation. Put the derivative inside the integral by subtracting $\frac{\sigma_0}{\sigma}D_0$ and add it back

$$I_{NP(\gamma\gamma,\gamma Z,ZZ)} = \int_{0}^{1} dx \int_{0}^{1} dy \int_{(m'_{1}+m'_{2})^{2}}^{\infty} d\sigma \partial_{m'_{1}^{2}} \partial_{m'_{2}^{2}} \Delta B_{0}(\sigma, m'_{1}^{2}, m'_{2}^{2}) (D_{0}(...,\sigma) - \frac{\sigma_{0}}{\sigma} D_{0}(...,\sigma_{0}))$$

$$+ \int_{0}^{1} dx \int_{0}^{1} dy \sigma_{0} D_{0}(...,\sigma_{0}) \partial_{m'_{1}^{2}} \partial_{m'_{2}^{2}} B_{0}(0, m'_{1}^{2}, m'_{2}^{2})$$

For non-planar double-box including WW:

$$m_1^{\prime 2} = m_b^2 - x(1-x)m_Z^2 < 0$$

Branch cut changes, we use a new dispersion relation.

$$B_0(p^2, {m'}_1^2, {m'}_2^2) = \frac{1}{2\pi i} \oint_C d\sigma \frac{B_0(\sigma, {m'}_1^2, {m'}_2^2)}{\sigma - p^2 - i\varepsilon}$$
$$= \frac{1}{2\pi i} \int_{-\infty}^{\infty} d\sigma \frac{B_0(\sigma, {m'}_1^2, {m'}_2^2)}{\sigma - p^2 - i\varepsilon}$$

$$I_{NP-WW} = \frac{-1}{2\pi i} \int_0^1 dx \int_0^1 dy \int_{-\infty}^{\infty} d\sigma \partial_{m'_1^2} \partial_{m'_2^2} B_0(\sigma, m'_1^2, m'_2^2) D0(..., \sigma - i\epsilon)$$