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Why do we care about this work

The Diagrammatic Coaction

A conjectural statement on feynman integrals, interpreted diagrammatically
through pairs of contracted and cut diagrams.

|

The coaction reveals the analytic structure of Feynman integrals

Encodes all the information Governs the space
about the basis of master solutions of the
integrands/contours. differential equations.

Can be used to compute
cuts of Feynman diagrams.
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Feynman Integrals

A Feynman Integral

L’YE €

(D) = dPk
(D) = (I7TD/2 / H l ,IDO"

Integration contour: DifFerentiaI form
0= lw) = o7y [Ty 4Pk
Y y (mD/z L / 1 T, o™ Da,
@ Prescribes the loop momentum o Provides the set of propagators
integration path. & numerators to be integrated.
@ Generates homology group of o Generates co-homology group
the integral. of the integral.

Integral defined by pairing

/(D) = (v|w)
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The co-homology group; IBP identities

The form of the propagators

D,-:(A,’""k ko + B km o+ G P - pn+2(m”)>

Total Derivatives Vanish under the integral
L
k:. p:1#
/HdeI 0 {r{7pj}a- =0
=1 Ok \ITi D

Integration by parts (IBP) identities

Integrals with different integer powers of propagators and numerator
insertions are related:
@ 1 Loop: Natural basis with no non-unit powers or numerator insertions.

@ 2 Loop and beyond: Basis requires non-unit propagator powers
propagators/numerators.
v
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The co-homology group; An example

The case of zero-mass 1-loop box

The integral with propagators raised to square powers is a linear combination of
1-loop integrals of unit power propagators:

» » p1Ltps
— Cl + C2 1M+[’z><><m+m + C3

The integrands of the RHS are the co-homology space basis

In terms of contour/ differential form notation:

P2 D4

P2+ ps

(Ylw) =G (vlw1) + G (y|w2) + G5 (y|ws) =
|w) =G |w1) + G |wa) + G5 |ws)

where |w1) , |w2) and |w3) are the basis vectors.
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The homology group; The cut diagrams

The homology group is spanned by the independent cut diagrams

Generally, for an on-shell propagator (k + g;)?, we have:

1 1
——— — 276 ((k + g;)?) = 2miRes Y2 [— ]
(k+ qi)2 (( q) ) (k+qi)>=0 (k—l- qi)2

Modify the integration contours to encircle the poles of the integral

+oo
/de :/ dPk — | dPk
Y — Yi

where v; € (—00,+00) but now encircles the poles of the on-shell

propagators.

The bases of homology/co-homology group can be made dual

(ylig) = 5+ O(e) )
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The homology group; The contour choice

Not all cut results are correct for a dual basis choice:

(m|wr) = ﬂ- - =1+ elog(...) + O(€%)

(Talw1) = = Cunitarity < ) = Discg ( )

= 7% +elog(...) + O(€?)

Define:

(ol = (G142 ul) =

)
(y1lwr) = -+ 1 = =

(alwn) = (Falwor) + = <1, .

elog(...) + O(€?)
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The period matrix for the box

Mmlw) = 1+ 1 (mlw2) =0 (m|w3) =0
= 1-|- (9‘(‘ )
n 7 <,.y ‘w > — m+m><><m+m
(yolwi) = = 0O(e) o (72lws) =0
=1+ O(e)
(Blo) = 1+ + =0(e) (y3lw2) =0 (r3lws) = {}

s

=14+ 0(¢)
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The Diagrammatic Coaction

The master formula

A {y|w) = Z {(y|wi) ® (Vilw) (Abreu et al., 2017)

i

v

For the case of the zero-mass 1-loop box

A (y|lw1) = (ylw1) ® (11lw1) + (y|w2) @ (y2|wr) + (V|ws) ® (v3|w1)

Diagrammatically:

n Py n Py 2 Py n Py 2 Py

| |
A = ® + + + o xe +( )® -
| |
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Establish the Two-Loop Diagrammatic Coaction

Check the extent that the one-loop conjecture holds.

L

Focus On the Case of the On-Shell Double Box

Prefer results in a closed form in € to establish the coaction. Direct inte-
gration proved unsatisfactory.

4

Turn to Differential Equations to compute cuts

Use the homology theory of cuts and the cohomology theory of integrands
to find solutions.

4
Apply the coaction

See how the space of solutions of the differential equations are governed by
the coaction.
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The two-loop frontier; The zero-mass double box

o Pa I Ps
DBi(s, t) = DBy(s, t) =
» Pa D2 P
e e dPkd®1 ((k—p1)?)((I—p1)?)"
(V|wa,p) = 2 | KPPI+K)2(ktp1)2(I+p3)? (k+p1+p2)? (I=(p1+p2))?

(%)
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The hierarchy of the differential forms

. P n P

)1+ P
" Pt ps

P+ D2 Ps

P+,

P2t
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The hierarchy of the differential forms; 1st Family

P P ‘
" Wmu "o

P2 P1
m+ps ‘
p2tps
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The hierarchy of the differential forms; 2nd Family

. P n P

)1+ P
" Pt ps

n+p2 P3tp
D

2
P2t
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The hierarchy of the differential forms, The two families
meet

P+,

P
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The hierarchy of the differential forms; The 4th family

.

p3

3

pLtpy

Pt ps

» +>@<m+n
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The diagrammatic coaction of the double box; a conjecture

n
I
|
P2 P P i P T
21 P i ] 21 3
l l
T T
l l
2 I P, T T P 2 ps
» P » ”
|
T
+ © 1 1 1 + 30w
|
P2 P I3 I P
P n 3
|
T
+ PP, ® - -+ _|_ R Ps+pa ®
|
Pi P2 I i
PDs n ”
23 s

>+ s

Aris loannou

(

U

MOV R M NI ME [T T he diagrammatic coaction and cuts of the d.

1
|
” 1
s
| |
T T
| |
I T i
s
|
T
n
May 2021

18/33



The Diagrammatic Coaction of the double box maximal cut

Restricting the differential equation to the maximal cut subspace

Forj > 3: (m1|wj) = (12|w;) =0

Diagrams with less propagators than cut vanish in the differential equation.

Restrict the coaction to the maximal cut subspace

A (y1fwr) = (mlwr) ® (rlwi) + (11lw2) @ (y2lwr)

Diagrammatically:

3

»” D p

| | | | | |
I I I I I I

Al 4+ 4+ L = 1 4 1 ® 4+ 4+ 4

| | | | | |
” T T Pa P2 T T Ps I3 T T Pa

P2 Py 21
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Finding the homology basis; The first contour

Start with a generic differential form

2TE € dPknd®1 ((k—p1)?)’((1-p1)?)”

|wa,b) = (iﬂ%>2 k212 (I+k)?(k+p1)?(I+-p3)? (k+p1+p2)*(I=(p1+p2))?

v

Compute a maximal cut

{(71|wap) = —72?2(1‘5265(;(;?;; ) t=32etathy—2-2e+b(1 _ x),F; (1426, b— €14+ b—a;x)

= t*3*25+3+bfa’b (x)2F1(b—€,1+2€61+ b—a;x), withx = —3 (Bosma et al., 2017)

The hypergeometric function F;

2F1 (Ol,ﬁ;'}’;x) = %/0 du UB_]'(]. — U)’Y_B_l(]. — UX)_a
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The second contour and the choice of integrand

Restrict Integration Between Critical Points

r1+b—a
r(1+2e)r(b—a—

Fi(b—€14+261+b—a;x) = > )/ duub=c~ Y1 —u)” b'"‘(l—uXrl*26
€

/ duub=¢=1( “hte(1—ux)TI2e / duu®= 711 — u) b (1 — ux) "1 72¢(Abreau et al., 2019)
0

Obtain the second maximal cut

- 1
(v2|lwap) = t_3_2€+a+bfa,b (x) 2F1 (b— €,a—¢€a+b—3¢ ;) , withx = —'—;

v

Maximal Cuts of the Double Box

(M1lwa=0,=0) = (Mm|w1) =1+ 0 (e), (M|wa=o,b=1) = (71|w2) = O(€)
(V2lwa=0,6=0) = (12lw1) = O(€), (12lwa=op=1) = (12w2) =1+ O (e)
(Smirnov, 1999), (Anastasiou et al., 2000)

T ————— — Ty
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The maximal cut subspace

I I I I
k= 1] ey = L 1]
| | | |
P T T P n I I :u
=t7372¢f 5 (x) 2F1 (— 6,1 + 26 1; %) =t h 1 (x)2F1 (1 -6, 14262 %)
P | | Ps P | | P3
T T T T
eloy= L 1T o= | L]
! ! | |
12 T T P 23 I I Ps
t7372¢F 0 (x)2F1 (me,a—6a+b—361) =t722¢f (x)oF (-6, —e1-361l)
» »
n n " ” | |
| | | | ' '
Al L L 1L =1 1L 1 & 4+ + 4+
| | | | | |
P I I 2 P I I P P2 1 I Py
n | | Ps n | | P
T T T T
+ + -+ -+ ® + -+ -+
| | | |

» 1 1 n

P I I P
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The Double Box differential equation

Apply a differential operator on (7y|w1):

d
dx
P P
+G + G4

P2 Ps P2

+G

PLt+ps

P+

where C, = C,(x,D),n € [1,8].

P P2 Pa

ps 3
+ G '”ﬂm“ﬂ” + Con ><D
P 2
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The maximal cut of the Double Box differential equation

For diagrams with less than seven propagators (Eg: Double Edged Box)

»n 3

—0
P2 P

The maximal cut differential equations:

n I I Py P I I Ps P I I b
d
s e =G + T T +6G T T T
dx | | | | | |

P2 T T Pa P T T P1 . I I P

St S St
d - -
— T T T =G T T 7T +G& T T 7T
dx | | | | | |
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The homogeneous maximal cut differential equation

d ’ T T T T l T T
o L T 1~ Glx D)I J I I + Gl D)“_ J I
i"‘* T ’ _ &ix D)"‘” S 4 i D)"‘* T
dX“, I I R I I 25 . } } 5

T T » P2 T T 12

Using the fact that {71 |w,) obeys a similar differential equation we obtain a
second order homogeneous differential equation:

d? A D)i"‘ R— B D)" R— ’70
dX2 77IAVI77 X7 dX 77IAVI77 X7 77IAVI77 B

n T T n I T T 3 n T T n

The differential equation defines the maximal cut homology group subspace

The function (y1|w;) is a solution to this equation. So is (y2|ws), all cuts in the
subspace obey the same differential equation.

™ = — — S e
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A non-maximal cut differential equation

Non-maximal cut differential equations

Each equation features cut subtpologies as inhomogeneous terms of the
maximal cut homogeneous differential eqaution

An unknown cut diagram:
A differential equation with an inhomogeneous term:

ge LT o 1T w0l LT =coon)

The maximal cut is part of the solution space

Finding the particular solution amounts to finding the new element of the space.
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How to solve the differential equations

Recall the form of the homogeneous solution:

n | |
T T

L L b = (ewtwr) =t7372h0 (%) 2F1 (— 6,1 + 26 1; %)

] ]
T T 2

Divide all cut diagrams by the maximal cut scale:

<’7cut|wl>

&) = 32ch 0 (x)

The choice is motivated by:
gi(x) =2F1(—€1+2¢1;x)

Obtain a third order differential equation for the normalised form:

d®geut(x)
dx3

dgeu
+ B d;(x) + C'geu(x) = 0

d*geut(x)

CI
T4 dx?
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The differential equation form

The differential equation becomes the 3F, hypergeometric function

defining equation

(1 — x)x2 el 1 9x(1 — 2x)7d2gwf(x)
+ (x(3e2+2e—2¢) +4¢€(l +¢€)) dgc”t( — (1 +2€)gau(x) =0

Read off the three independent solutions of the differential equation and restore
the scale

@ (mlwi) =51 =ci(e) 73 2% o(x)2F1(—€,1+2¢€1;x)

@ (p|wi) =% =c(e) t*3*25f070(x) (1—x)"“2F1 (1 +2¢,1+42¢2+ 3¢ %)

@ (ylwr) =S3=c3(e) 17326 0(x) (1—x)""2 3R (1,1,243€62+62+261—x)

| \

We can aIways guarantee an orthogonal basis

(yalw2) = 3 + O(€), Modify the contour : (34| = (ya| — 3 (72| = (Falwa) = O(e)
Orthogonality not affected for the rest of the comohomology:
(alw1) = O(€), (Falwa) = (yalwa) =1+ O(e)

v

= = = =
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Determining the Coefficents

Use the already known solutions:

= a(e) t 3 2ho(x)oF1 (— e, 1+26 L x) +a (€) t 22 fo(x) (1—x) 2F1 (1 +261+262+3¢ i)
X
I
P 1 n

+ s (€) f7372'ﬂ).0(x) (1*X)1+2‘ 3F2(1,1,2+362+¢€2+2€61—x)

n P n s

d? I d? I
-+ + + +4G= 4+ + 4+
dx . dx .
I3 I ” I3 I I3
d n I Ps » I s
df 2/ -+ -+ -+ +C§ 4 4 =0=
| |
P T 2 P: T 2
n | P3
I
ca — 12¢(143¢€) x*P2e(1—x)'72¢ | | _ 12¢(143¢) T(1436)T(1+2¢)
3 = [IFeo)(1+2¢) t—3-2¢ | (IFe)(1+2¢€) T(1+e)
P2 I 2
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Focus on the second graph of each family

P ps

n P

)1+ P
” Pt ps

IRy Pstp
D

P
P2t
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The Next level of Cut Differential Equations
Three unknown cut diagrams:
jRERER SN
Three differential equations with different inhomogeneous terms:
GBI a0 I o FFT -omo B
S I o T csen FET caeo i
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The cut diagram coactions

! » " , »
! ! v | ’ v ! !
T t T T
| | | |
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1. . P 1 12 s
! I ! ! ! ! ! |
T T T T T
1 | | 1 |
pe T 2 P T T I P T P P T P
. » , » , »
! I ! I ! I I
T T T T
I I I I
P T P P T ” » T T P
] . " » ) ) . »
. . . » » ‘ ‘ » ) » » ,
T T T T T T
| | ! ! I |
P T T P P T T »m P: T n P T P
, » " » »
! | | ! | | ! I I
T T T T T T
| | | | I I
I T T P P T T P P T T I
,, n n m ) »
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® Prtp2 PstEs ®
Il Il 1 1
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Il Il
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The homology theory of Hypergeometric Functions

Integrating between different branch points provides inequivalent contours.

L

The differential equations

The maximal cut space are defined by the homogenous differential equation.
Non maximal cuts appear as inhomogeneous terms.

L

The differential equations solutions

The non-maximal cut differential equation always features the maximal cut
solution. Using this solves the higher order differential equation.

{

The coaction governs the contour/integrand relations

The coaction reveals the duality between the two bases and knowing the
form that the coaction should take can reveal the results integrals.
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