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Motivations

To establish conditions
renormalizable case

under which operator mixing reduces to the multiplicatively

To revisit the problem of operator mixing with a more systematic approach [Buras '80, Sonoda '91]

Operator mixing occurs in a number of applications

Applications within the -

ramework of establishing ultraviolet constraints on a candidate solution

to QCD in the large-N |i

Mit :Bochicchio '17] [MB,Bochicchio,Papinutto,Scardino '21]




Operator mixing
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Operator mixing
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yn(g) nilpotent
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Geometrical Interpretation
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- Z(x, n) satisfies the ODE:

0
DL(x,u) =0, D=——A(g)
0g

- < is a covariant derivative and A(g) a
meromorphic connection with Fuchsian

singularity at g = 0
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g(u) g(u) v(2)
Z(x,u) = Pexp } A(g)dg | = Pexp I dg
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Z(x, i) can be seen as a Wilson line:

- Z(x, n) transforms as:

Z'(x, ) = S(g()Z(x, )S ™" (g(x))

- S(2) holomorphic gauge
transformation
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Example: 2 X 2 systems with elementary methods
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Nonresonant diagonalizable

- \We refer to nonresonant
diagonalizable mixing as:

A= (") Ny=o0
~\0 A,/ 0

Ay — Ay # 2k, with k a positive integer
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Z(x, u) = S(g())Zy(x, 1)S™' (g(x)) |

S(g) is the holomorphic gauge |
transformatior

-/ is gauge equivalent to the diagonal
matrix:
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Resonant diagonalizable

We refer to resonant diagonalizable | - 1
mixing as: | |
A=) N=0 '
~\o0 4/ "
|
Ay — A, = 2k, with k positive integer g(u) g " g(u) 4 g(u)
@) N ew) fw
- Z(x, i) is not diagonalizable 2(X, p) = )\ -
by a holomorphic gauge 0 (%)
g(X

transformation
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Nondiagonalizable
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We refer to nondiagonalizable
MIXINg as:

A0 0 v
Az(o z) NO:(O (1)2) N =0

- Z(x, ) is not diagonalizable by a
holomorphic gauge transtormation.

( g(u) )ﬂ ( g(u) )l g(u)
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Z(x, p) = ,
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Poincare’-Dulac Theorem
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The most general OD

= system with Fuchsian singularity at g = 0, with meromorphic connection A(g)

can be set, by a holomorphic gauge transtormation, in the Poincare’-Dulac-Levelt normal form:
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Poincare’-Dulac Theorem

A + N, is the Jordan normal form of A;

AN =diag(A;, Ay, =+), wWith Ay > Ay > =+ ;

Ny, N, are nilpotent upper triangular; |

Fork = 1,2,--- g"N,g™ = g"N,, i.e. (Ny);; may be non vanishing only if the resonant

condition 4; — 4; = k holds, with i < j and k some positive integer.



Fundamental solution

A fundamental solution to a linear system in the Poincare’-Dulac-Levelt form is:

Z = ghgVwith N = N, + ZNk
k=1 |
|

- The solution that reduces to the identity for g(x) = g(u) is

g(p)
A *x 2k 10
g(//t) ) . Zkzog (X)Ny log g(x)

g(x)

L(x, 1) = (



Nonresonant diagonalizable

Diagonalizability condition
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Polncare’-
Theorem

Resonant diagonalizable

Dulac L

Diagonalizability condition

N()=O

Z(x, i) = (

g(u) ) A g (x)Ny log
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g(u)
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Nondiagonalizable
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Mixing vs Multiplicative renormalizability
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Poincare’-Dulac theorem allows us to establish a sufficient condition such that —

diagonalizable at all orders in perturbation theory.

Operator mixing reduces
to the multiplicative
- e renormalizable case

Z(x, p) is diagonal atall | "
order in perturbation 1

Nonresonant |
diagonalizable K
case




Ultraviolet asymptotic behaviour

Nonresonant |
diagonalizable case  {_
N, =0 N —
— - Z(x, 1) is
—_— diagonal at the
eading UV asymptotic | Resonant diagonalizable leading UV order
A N _ |
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Unitarity constraint for massless QCD-like theories
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Massless QCD-like theories are conformal invariant up to order g2 N perturbation theory

Nondiagonalizable mixing can happen also in conformal field theories (CFTs) if A, the conformal
dimension matrix, is nondiagonalizable [Gurarie *93] [Hogervorst, Paulos, Vichi ‘17]

CFTs with nondiagonalizable A are non unitary theories [Gurarie '93] [Hogervorst, Paulos, Vichi ‘17]

Unitarity
=

Yo IS always diagonalizable for a system of

Hermitian gauge-invariant operators in a
massless QCD-like theory
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Conclusions

The Poincare’

|
-Dulac theorem allows us to classity operator mixing in a systematic way |
|

It Is possible to establish from a one-loop computation whether it exists an operator basis

where the mixing matrix is diagonal to all orders in perturation theory |

massless QC

Jnitarity rules out the nondiagonalizable mixing case for Hermitian gauge-invariant operators in

D-like theories




Thank you for your

attention!




