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Motivations

• To establish conditions under which operator mixing reduces to the multiplicatively 
renormalizable case


• To revisit the problem of operator mixing with a more systematic approach [Buras '80, Sonoda '91]


• Operator mixing occurs in a number of applications


• Applications within the framework of establishing ultraviolet constraints on a candidate solution 
to QCD in the large-N limit [Bochicchio ’17] [MB,Bochicchio,Papinutto,Scardino ’21]



Operator mixing

A set of local operators  mix under renormalization if:





The mixing matrix  satysfies the ODE:
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Operator mixing
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Geometrical Interpretation

•  satisfies the ODE:





•  is a covariant derivative and  a 
meromorphic connection with Fuchsian 
singularity at 
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•  can be seen as a Wilson line:





•  transforms as:





•  holomorphic gauge 
transformation
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Example:  systems with elementary methods2 × 2

• We consider the system of 2 operators that mix under renormalization:
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Nonresonant diagonalizable

• We refer to nonresonant 
diagonalizable mixing as:





, with  a positive integer


•  is gauge equivalent to the diagonal 
matrix:
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 is the holomorphic gauge 
transformation
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Resonant diagonalizable

• We refer to resonant diagonalizable 
mixing as:





, with  positive integer


•  is not diagonalizable 
by a holomorphic gauge 
transformation
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Nondiagonalizable

• We refer to nondiagonalizable 
mixing as:





•  is not diagonalizable by a 
holomorphic gauge transformation.
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Poincare’-Dulac Theorem

The most general ODE system with Fuchsian singularity at , with meromorphic connection 





can be set, by a holomorphic gauge transformation, in the Poincare’-Dulac-Levelt normal form:
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Poincare’-Dulac Theorem

•  is the Jordan normal form of ;


• , with  ;


•  are nilpotent upper triangular;


• For  , i.e.  may be non vanishing only if the resonant 
condition  holds, with   and  some positive integer.

Λ + N0 A0

Λ = diag(λ1, λ2, ⋯) λ1 ≥ λ2 ≥ ⋯

N0, Nk

k = 1,2,⋯ gΛNkg−Λ = gkNk (Nk)ij
λi − λj = k i ≤ j k



Fundamental solution

• A fundamental solution to a linear system in the Poincare’-Dulac-Levelt form is:


 with 


• The solution that reduces to the identity for  is
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Nonresonant diagonalizable

Poincare’-Dulac Theorem

Diagonalizability condition
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Resonant diagonalizable
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Nondiagonalizable

Poincare’-Dulac 
Theorem

Nondiagonalizability 
condition
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Mixing vs Multiplicative renormalizability

Poincare’-Dulac theorem allows us to establish a sufficient condition such that  is 

diagonalizable at all orders in perturbation theory.

−
γ(g)
β(g)

Nonresonant 
diagonalizable 

case




One-loop exact

A(g) =
γ0

β0

1
g

 is diagonal at all 
order in perturbation 

theory

Z(x, μ)

Operator mixing reduces 
to the multiplicative 
renormalizable case



Ultraviolet asymptotic behaviour

Leading UV asymptotic


Z(x, μ) ∼ ( g(μ)
g(x) )

Λ

eN0 log g(μ)
g(x)

Resonant diagonalizable 
case


N0 = 0

Nonresonant 
diagonalizable case


N0 = 0
 is 

diagonal at the 
leading UV order

Z(x, μ)

Nondiagonalizable case

N0 ≠ 0

Leading UV of
 contains 

 terms

Z(x, μ)
log

g(μ)
g(x)



Unitarity constraint for massless QCD-like theories

• Massless QCD-like theories are conformal invariant up to order  in perturbation theory


• Nondiagonalizable mixing can happen also in conformal field theories (CFTs) if , the conformal 
dimension matrix, is nondiagonalizable [Gurarie ’93] [Hogervorst, Paulos, Vichi ‘17]


• CFTs with nondiagonalizable  are non unitary theories [Gurarie ’93] [Hogervorst, Paulos, Vichi ‘17]


•

g2

Δ

Δ

Unitarity




 is always diagonalizable for a system of 
Hermitian gauge-invariant operators in a 

massless QCD-like theory

⇒
γ0



Conclusions

• The Poincare’-Dulac theorem allows us to classify operator mixing in a systematic way


• It is possible to establish from a one-loop computation whether it exists an operator basis 
where the mixing matrix is diagonal to all orders in perturbation theory


• Unitarity rules out the nondiagonalizable mixing case for Hermitian gauge-invariant operators in 
massless QCD-like theories



Thank you for your 
attention!


