Renormalization of the flavor-singlet axial-vector current
and its anomaly at N3L.O in QCD

Long Chen

Institute for Theoretical Particle Physics and Cosmology,
RWTH Aachen University

Radcor+LoopFest 2021, May 17

Ref. JHEPO5 (2021) 087 [arXiv:2101.09479]
with T. Ahmed and M. Czakon



The Adler-Bell-Jackiw anomaly

The anomalous axial-vector divergence equation (ader 69; gell, Jackiw 69]
- . o o0
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Diagrammatically,

0,35 = 2m iy + oFF

The Adler-Bardeen theorem ader, Bardeen 69] : “0ne-loop” exact

@ gauge/internal anomalies must cancel !
> The Standard Model is anomaly free

> Anomaly matching (t+Hooftetal. 80, Spontaneous chiral symmetry breaking ...

@ global/external anomalies are allowed and important
> T — YY decay [Steinberger 49; Sutherland, Veltman 67; Adler 69; Bell, Jackiw 69]
> U(1)a/n’ problem weinberg 75; 1 Hooft 76]
» Strong CP problem and Axion [peccei, Quinn 7] ...



Calculating the axial anomaly in DR

The axial anomaly

g + O

“vanishes” with translational invariant loop integrals and an anticommuting s.
In addition,

=007y
is intrinsically a D = 4 dimenisional object:

A fully anticommuting - is algebraically incompatible with the Dirac algebra in a
general D # 4 dimensions. J

Within the Dimensional Regularization, two classes of -5 prescriptions:

@ A non-anticommuting -5 (constructively given)
['t Hooft,Veltman 72; Breitenlohner,Maison 77; Larin,Vermaseren 91 ...]

@ An anticommuting «; (with a careful re-definition of “y5-trace”)
[Bardeen 72, Chanowitz et al. 79; Kreimer 90; Zerf 20 ...]



The <5 prescription in use

The HV/BM 1279 prescription of -5 in dimensional regularization:
i
Vs = Eeyvpﬂ"vvv"v"
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where the e#f7 is treated outside the R-operation formally in D dimensions (Larin, vermaseren 91; Zijstra,
Neerven 92] (CONveniently called Larin’s prescription).

The 75 no longer anticommutes with all o* in D dimensions = “spurious anomalous terms”
calling for non-trivial UV renormalization [Chanowitz et al. 79; Trueman 79; Kodaira 79; Espriu, Tarrach 82; Collins 84; Larin

Vermaseren 91; Bos 92; Larin 93, ... |

The properly renormalized singlet axial current reads

UElx = Zru* P fpv"vs s
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Operator mixing under renormalization

The all-order axial-anomaly equation iader 6s; Ader, Bardeen 69]

[0u5] = asmy Te [FF]

in terms of renormalized local composite operators, with Tz = 1/2 and
FF = —€l""f7F}, F5, in QCD with 1, massless quarks.

» The renormalization of the operators involved: [Adler 69; Espriu,Tarrach 82; Breitenlohner,Maison,Stelle 84;

Bos 92; Larin 93 ... ]
(DHH;]R) — V4_D (ZI o ) . ([aulg}g)
[FF] & Zfp Zrg [FF],

> with the matrix of anomalous dimensions:
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Form factor decomposition of the AVV amplitude

Determine UV Z;s via computing the 2-gluon matrix elements of [9,J| , = a.np Tr [FF]

The 1PI AVV amplitude without external polarization vectors:

Tt (pu,pa) = [ déxdty e P39 (o[ [Jh(y) Al (1) AL (0)] [0)lamp

Form factor decomposition:

ThEHe (ps,pa) = Fyettaka(pa=po)
Highfapipa _ ph2 fpa papa
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taking into account the odd parity and Bose symmetry w.r.t gluons (p; <> p., p1 <> Uz).



The zero momentum insertion limit

The axial anomaly reads

ot 1 H2P1 P2
qﬂrl’;z}s 2 (py,pa) = 2F, ehrFaPiP

with ¢ = p; + p. and on-shell kinematics p7 = p3 = o.

In addition to the apparent vanishing of the anomaly at g# = o, there is the low-energy
PCAC theorem F1 (C]z) ‘42 =0 — O [Sutherland, Veltman 67] (gauge invariance and analyticity).

Despite q,,I'})/*"* (p1, —p1) = o, the form factor F, is not zero if the p, is set off-shell.

Lo 2 P1
Tt (pr, —p1) = —2Fyetitarn,

_
61 'P
My = P;tylyz lhs (Pl/ —p1) & —2F1

_ v
P}l‘lllllz = Euppv Pr s

v

m (ST — 6P1 Pl (ST albeit with indices in D [Lc 19; Ahmed et al. 19; Peraro, Tancredi 20]



The matrix elementatg = o

The reduced anomaly matrix element (gos 92; Larin 03]

f 3
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where Ryg denotes the MS R-operation.

Evaluating Mus = Py, lhs (pl, —p;) at g = o with off-shell gluon momenta p? # o:

@ possible IR divergences nullified owing to the IR-rearrangement widimirov 7¢]

@ 4-loop massless propagator-type master integrals available (smimov, Tentyukov 10, Baikov,

Chetyrkin 10; Lee, Smirnov, Smirnov 11]

@ gauge-dependent M = UV renormalization of gauge parameter ¢ !




Treatment of the operator FF

The axial-anomaly (topological-charge density) operator FF with the Chern-Simons current K

FF = 9,K"

1 -
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by the virtue of total antisymmetry of €#'P7 gardeen 74].
Unlike J¥, the current K* is not gauge-invariant.

The Feynman Rules in use:
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Feynman diagrams

The Work Flow: Gy, _— Qemt
» Generating Feynman diagrams ',
“ Lhas )} L} !
> Applylng Feynman Rules, . ) S ) L
Dirac/Lorentz algebra, Color algebra ) ” . - ”
» IBP reduction of loop integrals 3 429 1361 4 s
> Insertlng MaSter |nteg|’a|S 4 11302 37730 11714 40564
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IBP reduction and master integrals

LOOp integl’a|S in diagrams, reduced by IBP [Tkachov 81; Chetyrkin, Tkachov 81],

Analytic results of p-master integrals, up to 4 100p (gaikov. Chetyriin 10: Lee, Smimov.smirmov 12].
@ DiaGen/IdSolver [Czakon] + Forcer [Ruijl,Ueda,Vermaseren]
» Amplitude projection: about 3 + 6 days @ 24 cores (Intel® Xeon® Silver 4116)

> Forcer (pre-solved IBP): about 12 + 24 hours @ 8 cores (Intel® Xeon® E3-1275 V2)

[*] QGRAF [Nogueira] + FORM [Vermaseren] + Reduze 2 [Manteuffel, Studerus] + FIRE [Smirnov] Combined
with LiteRed (Lee)

> IBP (by Laporta): about one month @ 32 cores (Intel® Xeon® Silver 4216)
> a few hundred GB RAM

At 4-loop: ~ 10° loop integrals in Feynman amplitudes reduced to 28 masters.

The analytical results were found to be identical between the two set-ups.



UV renormalization

MS: a5 Se = Zo (p2) as(p?) ¢, as = & _ &

A Se=(mf e

By the multiplicative renormalizability of the QCD Lagrangian and of ]E’ and K¥:

Mips = Z) Z My (85, &)
= 7L 7% 7y Miys (Za, a5, 1 — 75+ Z5.8) = Z5 My

Mrhs = Z,L‘P Z3 Mrhs (ﬁS/ 6) P Z ] Z3 Mlhs (&S/ 6)
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v

where the QCD gauge-fixing parameter ¢ is defined via ki (—gP“’ +¢ k;‘#)

» The renormalization 1 — ¢ = Z;(1 — ) is crucial here.
» The overall wavefunction Z; is not necessary (for determining Zs).



Results on Z; = Z1* ZJ;

The MS renormalization constant Z7* can be extracted from the e poles of the 4-loop expression
of Mlhs:

2 = v a{cacr(2) e ()}

- Rfcicr (52 - ) v cacon (38 - 25) +erch (- 22)

+C12:nf( - ;—2) +CFnJ%(2;22 + %)}

agreement with [Larin,Vermaseren, 91] WaS found.

By perturbatively expanding the ratio of the finite M,;,; and asngTpMys 10 O(a?),

ZJ; = 1+as{ —4C1:} +a§{CACp( 1;7) +CF(22) +Cpnf(31)}
- t{chc (st 7)1 (2 s ) (20, 2)

81
130 ) + oy (7 - 25) o (3)).

The first application of the new result:
the 3-loop singlet contribution to the massless axial quark form factor (Genrmann, Primo 21]



The anomalous dimension of the axial current

The difference is proportional to ny C:

gms _ zms

Ns = Cpnf( a2 +9—(( 66 + 109¢)Ca — 54€Cr + (12 4 2¢)n5)ad) + O(al)

Zf ZJ; Ns = Cr nf( a2+ — ” ((7326 +140483)Ca + (621 — 129605)Cr + 17615 )a3) + O(al) ,
The result for Zf in QED: g; — X

STy
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The anomalous dimension +; of the [J4] .:
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> The 4-dimensional limit (¢ = o) is in agreement with (Larin 93].
> The e-dependent parts to O(a2) agree with (ahmed, Gehrmann, Mathews, Rana, Ravindran 15].



The (non-Abelian) Adler-Bardeen theorem

The equality verified to 4-loop order in QCD for the first time:

ZFF - Zﬂs l

where non-quadratic Casimirs start to appear.
The axial-anomaly equation in QCD in terms of the bare fields:
W< (Zy = ng Tras Zry) [9u]5] 5 = s ny Tr [FF]
@ In an Abelian theory in Pauli-Villar regularization (with an anticommuting ), the coefficient

is 1 to all orders [Adler 69; Adler, Bardeen 69]

@ The coefficient is not 1 with a non-anticommuting 5 in DR in QCD,
but the LHS current remains RG-invariant (albeit in D=4 limit):

2dlnas __

Ve = W g = —Pte, m=nTras vy

@ An all-order argument of the non-Abelian extension was sketched [greitenionner, Maison, Stelle 84];
Finally, a proof is completed only recently (!) [Lascher, weisz 21]

@ However, Z; is not predicted and still needs to be computed order by order ...



Summary and Outlook

@ We have described a set-up for computing the renormalization constants of
axial-vector currents in QCD with a non-anticommuting -5 in dimensional
regularization.

@ We have extended the result of Z;, and in particular, of the finite non-MS factor Zf,
of the flavor-singlet axial-vector current to O(a3).

@ Furthermore, we have verified explicitly up to 4-loop order Z . = Z,_ in the MS
scheme, from which follows 1y, = as 1y Tg 7 valid to O(a?).

@ A proof of Zpr = Z,, in dimensionally regularized QCD to all orders is recently
Comp|eted [Luscher, Weisz 21].

@ Our result has found its first practical application in the computation of the 3-loop
singlet contribution to the massless axial quark form factor cenrmann, Primo 21.

@ It could be used also in places such as singlet contributions to the polarized
structure functions in charged-current deep-inelastic scattering...
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The r.h.s. of eq. (19) of [Phys.Lett.B303 113] reads

09
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oy
where Rygg denotes the R-operation in the MS scheme.
Since the equal-time commutator between J2(y) = ¥, $(y)7°7s¢(y) and Al (x) vanishes, the
derivative w.r.t y can be pulled in front of the integral
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where in the second line the Fourier transformation of the correlation function in coordinate space
in terms of the momentum-space matrix element I'}**2 (p,, p,) has been inserted.

The second term should not contribute in the limit g — o assuming Tﬁﬁlyz (p1,9 — p1) has no power

divergence g — o
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