Renormalization of the flavor-singlet axial-vector current and its anomaly at N^3LO in QCD

Long Chen

Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University

Radcor+LoopFest 2021, May 17

Ref. JHEP05 (2021) 087 [arXiv:2101.09479] with T. Ahmed and M. Czakon

The Adler-Bell-Jackiw anomaly

The anomalous axial-vector divergence equation [Adler 69; Bell, Jackiw 69]

$$\partial_{\mu}\,\bar{\psi}\,\gamma^{\mu}\gamma_{5}\,\psi = 2m_{f}\bar{\psi}\,i\gamma_{5}\,\psi \,-\,\frac{\alpha}{4\pi}\,\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}\,.$$

Diagrammatically,

The Adler-Bardeen theorem [Adler, Bardeen 69]: "one-loop" exact

- gauge/internal anomalies must cancel!
 - ► The Standard Model is anomaly free
 - ► Anomaly matching ['t Hooft et al. 80], Spontaneous chiral symmetry breaking ...
- global/external anomalies are allowed and important
 - $\pi o \gamma \gamma$ decay [Steinberger 49; Sutherland, Veltman 67; Adler 69; Bell, Jackiw 69]
 - $U(1)_A/\eta'$ problem [Weinberg 75; 't Hooft 76]
 - ► Strong CP problem and Axion [Peccei, Quinn 77] ...

Calculating the axial anomaly in DR

The axial anomaly

"vanishes" with translational invariant loop integrals and an anticommuting γ_5 .

In addition,

$$\gamma_5 = i\gamma^{\rm o}\,\gamma^{\rm 1}\,\gamma^{\rm 2}\,\gamma^{\rm 3}$$

is intrinsically a D = 4 dimensional object:

A fully anticommuting γ_5 is algebraically incompatible with the Dirac algebra in a general $D \neq 4$ dimensions.

Within the Dimensional Regularization, two classes of γ_5 prescriptions:

- A non-anticommuting γ₅ (constructively given)
 I't Hooft Veltman 72: Breitenlohner Maison 77: Larin Vermaseren 91 ...
- An anticommuting γ₅ (with a careful re-definition of "γ₅-trace")
 [Bardeen 72, Chanowitz et al. 79; Kreimer 90; Zerf 20 ...]

The γ_5 prescription in use

The HV/BM $_{\text{[72,79]}}$ prescription of γ_5 in dimensional regularization:

$$\gamma_5 = \frac{i}{4!} \epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$$

$$\gamma_{\mu} \gamma_5 \to \frac{1}{2} \Big(\gamma_{\mu} \gamma_5 - \gamma_5 \gamma_{\mu} \Big) = \frac{i}{6} \epsilon_{\mu\nu\rho\sigma} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} ,$$

where the $e^{\mu\nu\rho\sigma}$ is treated outside the R-operation formally in D dimensions [Larin, Vermaseren 91; Zijlstra, Neerven 92] (conveniently called Larin's prescription).

The γ_5 no longer anticommutes with all γ^μ in D dimensions \Longrightarrow "spurious anomalous terms" calling for non-trivial UV renormalization [Chanowitz et al. 79; Trueman 79; Kodaira 79; Espriu, Tarrach 82; Collins 84; Larin, Vermaseren 91; Bos 92; Larin 93, ... 1

The properly renormalized singlet axial current reads

$$\begin{split} \left[J_5^{\mu}\right]_R &= Z_J \, \mu^{4-D} \, \bar{\psi}_B \, \gamma^{\mu} \gamma_5 \, \psi_B \\ &= Z_5^f Z_5^{ms} \, \mu^{4-D} \, \bar{\psi}_B \, \frac{-i}{3!} \epsilon^{\mu\nu\rho\sigma} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \, \psi_B \end{split}$$

Operator mixing under renormalization

The all-order axial-anomaly equation [Adler 69; Adler, Bardeen 69]

$$\left[\partial_{\mu}J_{5}^{\mu}\right]_{R}=a_{s}\,n_{f}\,\mathrm{T}_{F}\left[F\tilde{F}\right]_{R}$$

in terms of renormalized local composite operators, with $T_F = 1/2$ and $F\tilde{F} \equiv -\epsilon^{\mu\nu\rho\sigma}F^a_{\mu\nu}F^a_{\rho\sigma}$ in QCD with n_f massless quarks.

The renormalization of the operators involved: [Adler 69; Espriu, Tarrach 82; Breitenlohner, Maison, Stelle 84; Bos 92; Larin 93 ...]

$$\begin{pmatrix} \begin{bmatrix} \partial_{\mu} J_{5}^{\mu} \end{bmatrix}_{R} \\ \begin{bmatrix} F\tilde{F} \end{bmatrix}_{R} \end{pmatrix} = \mu^{4-D} \begin{pmatrix} Z_{J} & o \\ Z_{FJ} & Z_{F\tilde{F}} \end{pmatrix} \cdot \begin{pmatrix} \begin{bmatrix} \partial_{\mu} J_{5}^{\mu} \end{bmatrix}_{B} \\ \begin{bmatrix} F\tilde{F} \end{bmatrix}_{B} \end{pmatrix}$$

with the matrix of anomalous dimensions:

$$\frac{\mathrm{d}}{\mathrm{d}\,\ln\mu^2} \begin{pmatrix} \left[\partial_\mu J_5^\mu\right]_R \\ \left[\tilde{F}\tilde{F}\right]_R \end{pmatrix} = \begin{pmatrix} \gamma_J & \mathrm{o} \\ \gamma_{FJ} & \gamma_{F\tilde{F}} \end{pmatrix} \cdot \begin{pmatrix} \left[\partial_\mu J_5^\mu\right]_R \\ \left[\tilde{F}\tilde{F}\right]_R \end{pmatrix}$$

Form factor decomposition of the AVV amplitude

Determine UV Z_5 s via computing the 2-gluon matrix elements of $[\partial_\mu J_5^\mu]_R = a_s \, n_f \, T_F \, [F\tilde{F}]_R$ The 1PI AVV amplitude without external polarization vectors:

$$\Gamma^{\mu\mu_1\mu_2}_{lhs}(p_1,p_2) \equiv \int d^4x d^4y \, e^{-ip_1 \cdot x - iq \cdot y} \, \langle \mathbf{o} | \hat{\mathbf{T}} \left[J_5^{\mu}(y) \, A_a^{\mu_1}(x) \, A_a^{\mu_2}(\mathbf{o}) \right] | \mathbf{o} \rangle |_{\text{amp}}$$

Form factor decomposition:

$$\begin{split} \Gamma^{\mu\mu_1\mu_2}_{lhs}(p_1,p_2) &= F_1 \, \epsilon^{\mu \, \mu_1 \, \mu_2 \, (p_2-p_1)} \\ &+ F_2 \, \left(p_1^{\mu_1} \, \epsilon^{\mu \, \mu_2 \, p_1 \, p_2} - p_2^{\mu_2} \epsilon^{\mu \, \mu_1 \, p_1 \, p_2} \right) \\ &+ F_3 \, \left(p_1^{\mu_2} \, \epsilon^{\mu \, \mu_1 \, p_1 \, p_2} - p_2^{\mu_1} \, \epsilon^{\mu \, \mu_2 \, p_1 \, p_2} \right) \end{split}$$

taking into account the odd parity and Bose symmetry w.r.t gluons $(p_1 \leftrightarrow p_2, \mu_1 \leftrightarrow \mu_2)$.

The zero momentum insertion limit

The axial anomaly reads

$$q_{\mu}\Gamma_{lhs}^{\mu\mu_{1}\mu_{2}}(p_{1},p_{2}) = 2F_{1} e^{\mu_{1}\mu_{2}p_{1}p_{2}}$$

with $q=p_1+p_2$ and on-shell kinematics $p_1^2=p_2^2={
m o}.$

In addition to the apparent vanishing of the anomaly at $q^{\mu} = 0$, there is the *low-energy PCAC* theorem $F_1(q^2)|_{q^2=0} = 0$ [Sutherland, Veltman 67] (gauge invariance and analyticity).

Despite $q_{\mu}\Gamma_{lhs}^{\mu\mu_1\mu_2}(p_1,-p_1)=$ o, the form factor F_1 is not zero if the p_1 is set **off-shell**.

$$\begin{split} \Gamma^{\mu\mu_1\mu_2}_{lhs}(p_1,-p_1) &= -2F_1 \, \epsilon^{\mu \, \mu_1 \, \mu_2 \, p_1} \,, \\ \mathcal{P}_{\mu\mu_1\mu_2} &= -\frac{1}{6 \, p_1 \cdot p_1} \, \epsilon_{\mu\mu_1\mu_2\nu} \, p_1^{\nu} \,, \\ \mathcal{M}_{lhs} &= \mathcal{P}_{\mu\mu_1\mu_2} \, \Gamma^{\mu\mu_1\mu_2}_{lhs}(p_1,-p_1) \propto -2F_1 \end{split}$$

 $\frac{1}{(6-11D+6D^2-D^3)\,p_1\cdot p_1}\,\,\epsilon_{\mu\mu_1\mu_2p_1}\longrightarrow \frac{-1}{6p_1\cdot p_1}\,\epsilon_{\mu\mu_1\mu_2p_1}\,\,\text{albeit with indices in}\,\,D\,\,\text{[LC 19; Ahmed et al. 19; Peraro, Tancredi 20]}$

The matrix element at q = 0

The reduced anomaly matrix element [Bos 92; Larin 93]

$$\begin{split} \mathbf{M} &= R_{\overline{\mathrm{MS}}} \epsilon_{\mu_1 \mu_2 \rho \sigma} \frac{p_1^{\rho}}{p_1^{\rho}} \, \frac{\partial}{\partial q_{\sigma}} \int d^4 x d^4 y \, e^{-i p_1 \cdot x - i q \cdot y} \, \langle \mathbf{o} | \hat{\mathbf{T}} \left[\frac{\partial}{\partial y^{\mu}} J_5^{\mu}(y) \, A_a^{\mu_1}(x) \, A_a^{\mu_2}(\mathbf{o}) \right] | \mathbf{o} \rangle |_{q \to \mathbf{o}} \,, \\ &= R_{\overline{\mathrm{MS}}} \, \epsilon_{\mu_1 \mu_2 \rho \sigma} \, \frac{p_1^{\rho}}{p_1^{\rho}} \, i \left(\Gamma_{lhs}^{\rho \mu_1 \mu_2}(p_1, q - p_1) + q_{\overline{\mu}} \, \frac{\partial}{\partial q_{\sigma}} \Gamma_{lhs}^{\mu \mu_1 \mu_2}(p_1, q - p_1) \right) |_{q \to \mathbf{o}} \,, \end{split}$$

where $R_{\overline{\rm MS}}$ denotes the $\overline{\rm MS}$ R-operation.

Evaluating
$$\mathcal{M}_{lhs}=\mathcal{P}_{\mu\mu_1\mu_2}\,\Gamma^{\mu\mu_1\mu_2}_{lhs}(p_{\scriptscriptstyle 1},-p_{\scriptscriptstyle 1})$$
 at $q={
m o}$ with off-shell gluon momenta $p_1^2\neq{
m o}$:

- possible IR divergences nullified owing to the IR-rearrangement [Vladimirov 79]
- 4-loop massless propagator-type master integrals available [Smirnov, Tentyukov 10, Baikov, Chetyrkin 10; Lee, Smirnov, Smirnov 11]
- gauge-dependent $\mathcal{M} \Longrightarrow \mathsf{UV}$ renormalization of gauge parameter ξ !

Treatment of the operator $F\tilde{F}$

The axial-anomaly (topological-charge density) operator $F\tilde{F}$ with the Chern-Simons current K^{μ}

$$F\tilde{F} = \partial_{\mu}K^{\mu}$$

$$= \partial_{\mu} \left(-4 \epsilon^{\mu\nu\rho\sigma} \left(A^{a}_{\nu} \partial_{\rho} A^{a}_{\sigma} + g_{s} \frac{1}{3} f^{abc} A^{a}_{\nu} A^{b}_{\rho} A^{c}_{\sigma} \right) \right)$$

by the virtue of total antisymmetry of $\epsilon^{\mu\nu\rho\sigma}$ [Bardeen 74]. Unlike J_5^μ , the current K^μ is not gauge-invariant.

$$\begin{split} \Gamma^{\mu\mu_1\mu_2}_{rhs}(p_1,p_2) \; &\equiv \; \int d^4x d^4y \, e^{-ip_1\cdot x - iq\cdot y} \\ & \quad \langle {\rm o} |\hat{\rm T} \left[K^{\mu}(y) \, A^{\mu_1}_a(x) \, A^{\mu_2}_a({\rm o}) \right] |{\rm o} \rangle |_{\rm amp} \\ \\ \mathcal{M}_{rhs} \; &= \; \mathcal{P}_{\mu\mu_1\mu_2} \, \Gamma^{\mu\mu_1\mu_2}_{rhs}(p_1,-p_1) \, . \end{split}$$

The Feynman Rules in use:

Feynman diagrams

The Work Flow:

- Generating Feynman diagrams
- Applying Feynman Rules,
 Dirac/Lorentz algebra, Color algebra
- ► IBP reduction of loop integrals
- ► Inserting Master integrals

Loop order	DiaGen		Qgraf	
	l.h.s.	r.h.s.	l.h.s.	r.h.s.
1	2	3	2	4
2	20	57	21	64
3	429	1361	447	1488
4	11302	37730	11714	40564

IBP reduction and master integrals

Loop integrals in diagrams, reduced by IBP [Tkachov 81; Chetyrkin, Tkachov 81];

Analytic results of p-master integrals, up to 4 loop [Baikov, Chetyrkin 10; Lee, Smirnov, Smirnov 12].

- DiaGen/IdSolver [Czakon] + Forcer [Ruijl, Ueda, Vermaseren]
 - ► Amplitude projection: about 3 + 6 days @ 24 cores (Intel® Xeon® Silver 4116)
 - ► Forcer (pre-solved IBP): about 12 + 24 hours @ 8 cores (Intel® Xeon® E3-1275 V2)
- QGRAF [Nogueira] + FORM [Vermaseren] + Reduze 2 [Manteuffel, Studerus] + FIRE [Smirnov] combined with LiteRed [Lee]
 - ► IBP (by Laporta): about one month @ 32 cores (Intel® Xeon® Silver 4216)
 - a few hundred GB RAM

At 4-loop: $\sim 10^5$ loop integrals in Feynman amplitudes reduced to 28 masters.

The analytical results were found to be identical between the two set-ups.

UV renormalization

$$\overline{\text{MS}}: \quad \hat{a}_s \ S_{\epsilon} = Z_{a_s}(\mu^2) \, a_s(\mu^2) \, \mu^{2\epsilon} \,, \quad a_s \equiv \frac{\alpha_s}{4\pi} = \frac{g_s^2}{16\pi^2} \,, \quad S_{\epsilon} = (4\pi)^{\epsilon} \, e^{-\epsilon \gamma_E}$$

By the multiplicative renormalizability of the QCD Lagrangian and of J_5^{μ} and K^{μ} :

$$\begin{split} \mathcal{M}_{lhs} &= Z_{J} Z_{3} \, \hat{\mathcal{M}}_{lhs} \, \big(\hat{a}_{s} \,, \, \hat{\xi}\big) \\ &= Z_{5}^{f} Z_{5}^{ms} \, Z_{3} \, \hat{\mathcal{M}}_{lhs} \, \big(Z_{a_{s}} \, a_{s} \,, \, \mathbf{1} - Z_{3} + Z_{3} \, \xi\big) \equiv Z_{5}^{f} \, \bar{\mathcal{M}}_{lhs} \\ \mathcal{M}_{rhs} &= Z_{F\tilde{F}} \, Z_{3} \, \hat{\mathcal{M}}_{rhs} \, \big(\hat{a}_{s} \,, \, \hat{\xi}\big) \, + \, Z_{FJ} \, Z_{3} \, \hat{\mathcal{M}}_{lhs} \, \big(\hat{a}_{s} \,, \, \hat{\xi}\big) \\ &= Z_{F\tilde{F}} \, Z_{3} \, \hat{\mathcal{M}}_{rhs} \, \big(Z_{a_{s}} \, a_{s} \,, \, \mathbf{1} - Z_{3} + Z_{3} \, \xi\big) \, + \, Z_{FJ} \, Z_{3} \, \hat{\mathcal{M}}_{lhs} \, \big(Z_{a_{s}} \, a_{s} \,, \, \mathbf{1} - Z_{3} + Z_{3} \, \xi\big) \end{split}$$

where the QCD gauge-fixing parameter ξ is defined via $\frac{i}{k^2}\left(-g^{\mu\nu}+\xi\,\frac{k^\mu k^\mu}{k^2}\right)$.

- ▶ The renormalization $1 \hat{\xi} = Z_3(1 \xi)$ is crucial here.
- ► The overall wavefunction Z₃ is not necessary (for determining Z₅).

Results on $Z_J \equiv Z_5^{ms} Z_5^f$

The $\overline{\rm MS}$ renormalization constant $Z_5^{\it ms}$ can be extracted from the ϵ poles of the 4-loop expression of $\hat{\mathcal{M}}_{\it lhs}$:

$$\begin{split} Z_{5}^{ms} &= 1 + a_{s}^{2} \left\{ C_{A} C_{F} \left(\frac{22}{3\epsilon} \right) + C_{F} n_{f} \left(\frac{5}{3\epsilon} \right) \right\} \\ &+ a_{s}^{3} \left\{ C_{A}^{2} C_{F} \left(\frac{3578}{81\epsilon} - \frac{484}{27\epsilon^{2}} \right) + C_{A} C_{F} n_{f} \left(\frac{149}{81\epsilon} - \frac{22}{27\epsilon^{2}} \right) + C_{A} C_{F}^{2} \left(-\frac{308}{9\epsilon} \right) \right. \\ &+ C_{F}^{2} n_{f} \left(-\frac{22}{9\epsilon} \right) + C_{F} n_{f}^{2} \left(\frac{20}{27\epsilon^{2}} + \frac{26}{81\epsilon} \right) \right\}. \end{split}$$

agreement with [Larin, Vermaseren, 91] was found.

By perturbatively expanding the ratio of the *finite* $\bar{\mathcal{M}}_{lhs}$ and $a_s n_f T_F \mathcal{M}_{rhs}$ to $\mathcal{O}(a_s^3)$,

$$\begin{split} Z_5^f &= 1 + a_s \Big\{ - 4C_F \Big\} + a_s^2 \Big\{ C_A C_F \Big(- \frac{107}{9} \Big) + C_F^2 \Big(22 \Big) + C_F n_f \Big(\frac{31}{18} \Big) \Big\} \\ &+ a_s^3 \Big\{ C_A^2 C_F \Big(56\zeta_3 - \frac{2147}{27} \Big) + C_A C_F^2 \Big(\frac{5834}{27} - 160\zeta_3 \Big) + C_A C_F n_f \Big(\frac{110}{3} \zeta_3 - \frac{133}{81} \Big) \\ &+ C_F^3 \Big(96\zeta_3 - \frac{370}{3} \Big) + C_F^2 n_f \Big(\frac{497}{54} - \frac{104}{3} \zeta_3 \Big) + C_F n_f^2 \Big(\frac{316}{81} \Big) \Big\} \,. \end{split}$$

The first application of the new result:

the 3-loop singlet contribution to the massless axial quark form factor [Gehrmann, Primo 21]

The anomalous dimension of the axial current

The difference is proportional to $n_f C_F$:

$$Z_5^{ms} - Z_{5,NS}^{ms} = C_F n_f \left(\frac{3}{\epsilon} a_s^2 + \frac{1}{9\epsilon^2} \left((-66 + 109\epsilon) C_A - 54\epsilon C_F + (12 + 2\epsilon) n_f \right) a_s^3 \right) + \mathcal{O}(a_s^4) ,$$

$$Z_5^f - Z_{5,NS}^f = C_F n_f \left(\frac{3}{2} a_s^2 + \frac{1}{54} \left((-326 + 1404\zeta_3) C_A + (621 - 1296\zeta_3) C_F + 176 n_f \right) a_s^3 \right) + \mathcal{O}(a_s^4) ,$$

The result for Z_5^f in QED: $a_s \to \frac{\alpha}{4\pi}$, $\frac{n_f}{2} \to n_f$, $C_A \to 0$, $C_F \to 1$.

The anomalous dimension γ_I of the $\left[J_5^{\mu}\right]_p$:

$$\begin{split} \gamma_{I} &= \varepsilon + \mu^{2} \frac{\mathrm{d}}{\mathrm{d} \, \mu^{2}} \ln \left(Z_{5}^{f} Z_{5}^{ms} \right) \\ &= \varepsilon + a_{s} \Big\{ 4 C_{F} \varepsilon \Big\} + a_{s}^{2} \Big\{ C_{A} C_{F} \Big(\frac{214}{9} \varepsilon \Big) - C_{F}^{2} \Big(28 \varepsilon \Big) + C_{F} n_{f} \Big(-\frac{31}{9} \varepsilon - 6 \Big) \Big\} \\ &+ a_{s}^{3} \Big\{ C_{A}^{2} C_{F} \Big(\frac{2147}{9} \varepsilon - 168 \varepsilon \zeta_{3} \Big) + C_{A} C_{F}^{2} \Big(480 \varepsilon \zeta_{3} - \frac{4550}{9} \varepsilon \Big) \\ &+ C_{A} C_{F} n_{f} \Big(-110 \varepsilon \zeta_{3} + \frac{133}{27} \varepsilon - \frac{142}{3} \Big) + C_{F}^{3} (170 \varepsilon - 288 \varepsilon \zeta_{3}) \\ &+ C_{F}^{2} n_{f} \Big(104 \varepsilon \zeta_{3} - \frac{869}{18} \varepsilon + 18 \Big) + C_{F} n_{f}^{2} \Big(\frac{4}{3} - \frac{316}{27} \varepsilon \Big) \Big\} \,. \end{split}$$

- The 4-dimensional limit ($\epsilon = 0$) is in agreement with [Larin 93].
- The ϵ -dependent parts to $\mathcal{O}(a_{\rm S}^2)$ agree with [Ahmed, Gehrmann, Mathews, Rana, Ravindran 15].

The (non-Abelian) Adler-Bardeen theorem

The equality verified to 4-loop order in QCD for the first time:

$$Z_{F\tilde{F}}=Z_{a_s}$$

where non-quadratic Casimirs start to appear.

The axial-anomaly equation in QCD in terms of the bare fields:

$$\mu^{2\epsilon} \left(Z_{J} - n_{f} T_{F} a_{s} Z_{FJ} \right) \left[\partial_{\mu} J_{5}^{\mu} \right]_{B} = \hat{a}_{s} n_{f} T_{F} \left[F \tilde{F} \right]_{B}$$

- In an Abelian theory in Pauli-Villar regularization (with an anticommuting γ_5), the coefficient is 1 to all orders (Adler 69; Adler, Bardeen 69)
- The coefficient is not 1 with a non-anticommuting γ_5 in DR in QCD, but the LHS current remains **RG-invariant** (albeit in D=4 limit):

$$\gamma_{FF} = -\mu^2 \frac{\mathrm{d} \ln a_s}{\mathrm{d}\mu^2} = -\beta + \epsilon$$
, $\gamma_J = n_f T_F a_s \gamma_{FJ}$.

- An all-order argument of the non-Abelian extension was sketched [Breitenlohner, Maison, Stelle 84]; Finally, a proof is completed only recently (!) [Lúscher, Weisz 21]
- However, Z_I is not predicted and still needs to be computed order by order ...

Summary and Outlook

- We have described a set-up for computing the renormalization constants of axial-vector currents in QCD with a non-anticommuting γ_5 in dimensional regularization.
- We have extended the result of $Z_{\bar{J}}$, and in particular, of the finite non- $\overline{\rm MS}$ factor Z_5^f , of the flavor-singlet axial-vector current to $\mathcal{O}(\alpha_s^3)$.
- Furthermore, we have verified explicitly up to 4-loop order $Z_{FF} = Z_{\alpha_s}$ in the $\overline{\rm MS}$ scheme, from which follows $\gamma_I = a_s \, n_f \, {\rm T}_F \, \gamma_{FI}$ valid to $\mathcal{O}(\alpha_s^4)$.
- ullet A proof of $Z_{F ilde{F}}=Z_{lpha_s}$ in dimensionally regularized QCD to all orders is recently completed [Lúscher, Weisz 21].
- Our result has found its first practical application in the computation of the 3-loop singlet contribution to the massless axial quark form factor [Gehrmann, Primo 21].
- It could be used also in places such as singlet contributions to the polarized structure functions in charged-current deep-inelastic scattering...

Summary and Outlook

- We have described a set-up for computing the renormalization constant of axial-vector currents in QCD with a non-anticommuting γ_5 in dimensional regularization.
- We have extended the result of $Z_{\bar{I}}$, and in particular, of the finite non- $\overline{\rm MS}$ factor Z_5^f , of the flavor-singlet axial-vector current to $\mathcal{O}(\alpha_s^3)$.
- Furthermore, we have verified explicitly up to 4-loop order $Z_{FF} = Z_{\alpha_s}$ in the $\overline{\rm MS}$ scheme, from which follows $\gamma_I = a_s \, n_f \, {\rm T}_F \, \gamma_{FI}$ valid to $\mathcal{O}(\alpha_s^4)$.
- ullet A proof of $Z_{F ilde{F}}=Z_{lpha_s}$ in dimensionally regularized QCD to all orders is recently completed [Lúscher, Weisz 21].
- Our result has found its first practical application in the computation of the 3-loop singlet contribution to the massless axial quark form factor [Gehrmann, Primo 21].
- It could be used also in places such as singlet contributions to the polarized structure functions in charged-current deep-inelastic scattering...

Backup Slides

The r.h.s. of eq. (19) of [Phys.Lett.B303 113] reads

$$\mathbf{M} = R_{\overline{\mathrm{MS}}} \, \epsilon_{\mu_1 \mu_2 \rho \sigma} \, \frac{p_1^{\rho}}{p_1^2} \, \frac{\partial}{\partial q_{\sigma}} \, \int d^4 x d^4 y \, e^{-i p_1 \cdot x - i q \cdot y} \, \langle \mathbf{o} | \hat{\mathbf{T}} \left[\frac{\partial}{\partial y^{\mu}} J_5^{\mu}(y) \, A_a^{\mu_1}(x) \, A_a^{\mu_2}(\mathbf{o}) \right] |\mathbf{o} \rangle |_{\mathrm{amp}} \, ,$$

where $R_{\overline{\rm MS}}$ denotes the R-operation in the $\overline{\rm MS}$ scheme.

Since the equal-time commutator between $J_5^{\rm o}(y)=\sum_\psi \bar{\psi}(y)\gamma^{\rm o}\gamma_5\psi(y)$ and $A_a^\mu(x)$ vanishes, the derivative w.r.t y can be pulled in front of the integral

$$\begin{split} \mathbf{M} &= R_{\overline{\mathrm{MS}}} \, \epsilon_{\mu_1 \mu_2 \rho \sigma} \, \frac{p_1^{\rho}}{p_1^2} \, \frac{\partial}{\partial q_{\sigma}} \, \int d^4 x d^4 y \, e^{-i p_1 \cdot x - i q \cdot y} \, \frac{\partial}{\partial y^{\mu}} \langle \mathbf{o} | \hat{\mathbf{T}} \left[J_5^{\mu}(y) \, A_a^{\mu_1}(x) \, A_a^{\mu_2}(\mathbf{o}) \right] | \mathbf{o} \rangle |_{\mathrm{amp}} \\ &= R_{\overline{\mathrm{MS}}} \, \epsilon_{\mu_1 \mu_2 \rho \sigma} \, \frac{p_1^{\rho}}{p_1^2} \, \frac{\partial}{\partial q_{\sigma}} \, \int d^4 x d^4 y \, e^{-i p_1 \cdot x - i q \cdot y} \\ &\qquad \qquad \frac{\partial}{\partial y^{\mu}} \left(\int \frac{d^4 k_1}{(2\pi)^4} \, \frac{d^4 Q}{(2\pi)^4} \, e^{i k_1 \cdot x + i Q \cdot y} \, \Gamma_{lhs}^{\mu \mu_1 \mu_2}(k_1, -Q - k_1) \right) \\ &= R_{\overline{\mathrm{MS}}} \, \epsilon_{\mu_1 \mu_2 \rho \sigma} \, \frac{p_1^{\rho}}{p_1^2} \, \frac{\partial}{\partial q_{\sigma}} \left(i q_{\mu} \Gamma_{lhs}^{\mu \mu_1 \mu_2}(p_1, q - p_1) \right) \\ &= R_{\overline{\mathrm{MS}}} \, \epsilon_{\mu_1 \mu_2 \rho \sigma} \, \frac{p_1^{\rho}}{p_1^2} \, i \left(\Gamma_{lhs}^{\rho \mu_1 \mu_2}(p_1, q - p_1) + q_{\mu} \, \frac{\partial}{\partial q_{\sigma}} \Gamma_{lhs}^{\mu \mu_1 \mu_2}(p_1, q - p_1) \right), \end{split}$$

where in the second line the Fourier transformation of the correlation function in coordinate space in terms of the momentum-space matrix element $\Gamma_{lis}^{\mu\mu_1\mu_2}(p_1,p_2)$ has been inserted.

The second term should not contribute in the limit $q \to o$ assuming $\Gamma_{llis}^{\rho\mu_1\mu_2}(p_1,q-p_1)$ has no power divergence $q \to o$