The tropical approach to numerical Feynman integration

M. Borinsky, Nikhef Amsterdam May 17, Radcor & Loopfest 2021

Talk based on arXiv:2008.12310, to appear in Annales de l'Institut Henri Poincaré D

Motivation

Quantum field theory

Quantum field theory

e.g.
$$\mathcal{L}=-rac{1}{2}(\partial arphi)^2+\lambdarac{arphi^4}{4!}$$

Quantum field theory

e.g.
$$\mathcal{L} = -\frac{1}{2}(\partial \varphi)^2 + \lambda \frac{\varphi^4}{4!}$$

perturbative expansions

$$\mathcal{O}(\hbar) = \sum_{n \geq 0} A_n \hbar^n = \sum_{\text{graphs } G} \frac{\phi(G)}{|\operatorname{Aut} G|} \hbar^{L_{\Gamma}}$$

where
$$\phi(G) = \prod_{\ell} \int d^D \mathbf{k}_{\ell} \prod_{e \in E} \frac{1}{D_e(\{\mathbf{k}\}, \{\mathbf{p}\}, m_e)}$$
.

A computational question

$$\mathcal{O}(\hbar) = \sum_{n \geq 0} A_n \hbar^n$$

Lower orders A_0, A_1, A_2, \ldots needed to interpret experimental data.

A computational question

$$\mathcal{O}(\hbar) = \sum_{n \geq 0} A_n \hbar^n$$

Lower orders A_0, A_1, A_2, \ldots needed to interpret experimental data.

Practical question

What is the value of $A_0, A_1, A_2, A_3, \ldots$?

How can we calculate them efficiently?

A computational question

$$\mathcal{O}(\hbar) = \sum_{n \geq 0} A_n \hbar^n$$

Lower orders A_0, A_1, A_2, \ldots needed to interpret experimental data.

Practical question

What is the value of $A_0, A_1, A_2, A_3, \ldots$?

How can we calculate them efficiently?

Associated 'meta' question

Is there an algorithm to compute A_n ?

What is its runtime?

$$\mathcal{O}(\hbar) = \sum_{n \geq 0} A_n \hbar^n = \sum_{\text{graphs } G} \frac{\phi(G)}{|\operatorname{Aut} G|} \hbar^{L_{\Gamma}}$$

Runtime to compute A_n for n large:

$$O(\alpha^n\Gamma(n+\beta))$$
 × $F(n)$

Shumber of Feynman graphs

with n toops for $n \to \infty$

localuate a single

(a and β depend on treory

and observable)

Feynman integral

of order n

F(n) = time to evalute n-loop Feynman integral

'Analytic calculation':

- Unclear: What is an analytic answer for an integral?
- Can ask for an expression within a specific function space
- No function space is known that works for all F. integrals
 ⇒ complicated to formulate the question

In this talk

Cut the middle man!

-> direct numerical evaluation

Tegunan graph

+ leinematics

Num erical
value

Direct evaluation

$$\mathcal{O}(\hbar) = \sum_{n \geq 0} A_n \hbar^n = \sum_{\text{graphs } G} \frac{\phi(G)}{|\operatorname{Aut} G|} \hbar^{L_{\Gamma}}$$
where $\phi(G) = \prod_{\ell} \int d^D \mathbf{k}_{\ell} \prod_{e \in E} \frac{1}{D_e(\{\mathbf{k}\}, \{\mathbf{p}\}, m_e)}$

$$\mathcal{O}(\hbar) = \sum_{n \geq 0} A_n \hbar^n = \sum_{\text{graphs } G} \frac{\phi(G)}{|\operatorname{Aut} G|} \hbar^{L_{\Gamma}}$$
 where $\phi(G) = \prod_{\ell} \int \mathrm{d}^D \boldsymbol{k}_{\ell} \prod_{e \in F} \frac{1}{D_e(\{\boldsymbol{k}\}, \{\boldsymbol{p}\}, m_e)}$

Via the Schwinger trick we can rewrite the Feynman integral as

$$\phi(G) = \Gamma(\omega_G) \int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_G(\mathbf{x})^{D/2}} \left(\frac{\Psi_G(\mathbf{x})}{\Phi_G(\mathbf{x})} \right)^{\omega_G}.$$

with
$$\omega_G = E - \frac{1}{2}Dh_1(G)$$
.

$$\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_{G}(\mathbf{x})^{D/2}} \left(\frac{\Psi_{G}(\mathbf{x})}{\Phi_{G}(\mathbf{x})} \right)^{\omega_{G}}$$

where

$$\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_G(\mathbf{x})^{D/2}} \left(\frac{\Psi_G(\mathbf{x})}{\Phi_G(\mathbf{x})} \right)^{\omega_G}$$

where

- Ω is the standard volume form on \mathbb{P}^{E-1} :
 - $\Omega = \sum_{k=1}^{E} (-1)^k dx_1 \wedge ... \wedge \widehat{dx_k} \wedge ... \wedge dx_E.$
- $\Psi_G = \sum_T \prod_{e \notin T} x_e$ (sum over spanning trees)
- $\Phi_G = \sum_F \|\boldsymbol{p}(F)\|^2 \prod_{e \notin F} x_e + \Psi_G \sum_e m_e^2 x_e \text{(sum over 2-forests)}$
- Ψ_G and Φ_G are homogeneous polynomials in x_1, \ldots, x_E .
- We assume that the integral exists.

$$\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_G^{D/2}(\mathbf{x})} \left(\frac{\Psi_G(\mathbf{x})}{\Phi_G(\mathbf{x})} \right)^{\omega_G}$$

 $\Psi_G(x)$ and $\Phi_G(x)$ exhibit complicated geometric structures.

- ⇒ These integrals are hard to evaluate
- ⇒ These integrals are very interesting

$$\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_G^{D/2}(\mathbf{x})} \left(\frac{\Psi_G(\mathbf{x})}{\Phi_G(\mathbf{x})} \right)^{\omega_G}$$

Obstruction for direct numerical evaluation

Integrand has singularities on the boundary of $\mathbb{P}^{E-1}_{>0}$.

I.e. vanishing locus of Ψ_G and Φ_G meets the boundary of $\mathbb{P}^{E-1}_{>0}$.

⇒ Singularities have to be blown up first

Established solutions

$$\int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{\Psi_G^{D/2}(\mathbf{x})} \left(\frac{\Psi_G(\mathbf{x})}{\Phi_G(\mathbf{x})} \right)^{\omega_G} \quad \rightarrow \quad \int_{\mathbb{P}^{n-1}_{>0}} \frac{\prod_i p_i(\mathbf{x})^{\mu_i}}{\prod_j q_j(\mathbf{x})^{\nu_i}} \Omega$$

Sector decomposition approach

- Algorithms to perform blowups in the general case:
 Binoth, Heinrich '03; Bogner, Weinzierl '07; (Hironaka 1964)
- Simple geometric interpretation:
 Kaneko, Ueda '09

All algorithms are oblivious to the specific structures on the left!

Established solutions

$$\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_G^{D/2}(\mathbf{x})} \left(\frac{\Psi_G(\mathbf{x})}{\Phi_G(\mathbf{x})} \right)^{\omega_G} \longrightarrow \int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_i p_i(\mathbf{x})^{\mu_i}}{\prod_j q_j(\mathbf{x})^{\nu_i}} \Omega$$

Sector decomposition approach

- Algorithms to perform blowups in the general case:
 Binoth, Heinrich '03; Bogner, Weinzierl '07; (Hironaka 1964)
- Simple geometric interpretation:
 Kaneko, Ueda '09

All algorithms are oblivious to the specific structures on the left!

Established solutions

$$\int_{\mathbb{P}_{>0}^{E-1}} \frac{\Omega}{\Psi_G^{D/2}(\mathbf{x})} \left(\frac{\Psi_G(\mathbf{x})}{\Phi_G(\mathbf{x})} \right)^{\omega_G} \longrightarrow \int_{\mathbb{P}_{>0}^{n-1}} \frac{\prod_i p_i(\mathbf{x})^{\mu_i}}{\prod_j q_j(\mathbf{x})^{\nu_i}} \Omega$$

Numerical evaluation using sector decomposition for blowups:

ullet Runtime to evaluate the integral up to δ -accuracy

$$\approx \mathcal{O}(V^2 \cdot \delta^{-2})$$

where V is the number of monomials in $\frac{\prod_i p_i(\mathbf{x})^{\mu_i}}{\prod_i q_j(\mathbf{x})^{\nu_i}}$.

• For Feynman integrals V grows \approx exponentially with n.

Results MB 2020:

- 1. Numerical integration is an exercise in tropical geometry.
- 2. The general (oblivious) approach can be accelerated:

$$\mathcal{O}(V^2 \cdot \delta^{-2})$$
 \rightarrow $\mathcal{O}(V^2 + \delta^{-2})$

- ⇒ achievable accuracy 'decouples' from integral complexity.
- 3. Euclidean Feynman integration can be accelerated extremely:

$$\mathcal{O}(V^2 \cdot \delta^{-2}) \approx \mathcal{O}(2^{cn} \cdot \delta^{-2}) \qquad \rightarrow \qquad \mathcal{O}(n2^n + \delta^{-2})$$

with $c \gg 1$ where n is the number of edges of the graph.

There is a 'fast' algorithm to approximate the Feynman integral.

There is a 'fast' algorithm to approximate the Feynman integral.

• 3 loops is already a tough challenge for existing programs.

There is a 'fast' algorithm to approximate the Feynman integral.

- 3 loops is already a tough challenge for existing programs.
- New: ≥ 17 loops possible (with basic implementation).

There is a 'fast' algorithm to approximate the Feynman integral.

- 3 loops is already a tough challenge for existing programs.
- New: ≥ 17 loops possible (with basic implementation).
- Caveat: Only Euclidean no Minkowski regime (so far).

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

$$\Gamma(\varepsilon) \int_{\mathbb{P}^{E-1}} \frac{1}{\Psi_G(\mathbf{x})^{2-\varepsilon}} \left(\frac{\Psi_G}{\Phi_G} \right)^{\varepsilon} \Omega \approx \frac{1}{\epsilon} 422.9610 \cdot (1 \pm 10^{-6}) + \dots$$

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

$$\Gamma(\varepsilon) \int_{\mathbb{P}^{E-1}_{>0}} \frac{1}{\Psi_G(\mathbf{x})^{2-\varepsilon}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\varepsilon} \Omega \approx \frac{1}{\epsilon} 422.9610 \cdot (1 \pm 10^{-6}) + \dots$$

 \bullet \sim 10 CPU secs to compute up to 10^{-3} -accuracy at 8 loops.

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

$$\Gamma(\varepsilon) \int_{\mathbb{P}_{>0}^{E-1}} \frac{1}{\Psi_G(\mathbf{x})^{2-\varepsilon}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\varepsilon} \Omega \approx \frac{1}{\epsilon} 422.9610 \cdot (1 \pm 10^{-6}) + \dots$$

- $\bullet \sim 10$ CPU secs to compute up to 10^{-3} -accuracy at 8 loops.
- $\bullet \sim 30$ CPU days to compute up to 10^{-6} -accuracy at 8 loops.

Figure 1: A non-generalized polylog/non-MZV 8-loop φ^4 -graph.

$$\Gamma(\varepsilon) \int_{\mathbb{P}_{>0}^{E-1}} \frac{1}{\Psi_G(\mathbf{x})^{2-\varepsilon}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\varepsilon} \Omega \approx \frac{1}{\epsilon} 422.9610 \cdot (1 \pm 10^{-6}) + \dots$$

- $\bullet \sim 10$ CPU secs to compute up to 10^{-3} -accuracy at 8 loops.
- \bullet \sim 30 CPU days to compute up to 10^{-6} -accuracy at 8 loops.
- Higher orders in ϵ can also be computed.

The Tropical Approach

Tropical geometry

Philosophy

Deform geometry to sacrifice smoothness for simplicity.

Various applications in algebraic geometry.

$$1 = x^{2} + y^{2} \qquad \rightarrow \qquad 1 = (x^{2} + y^{2})^{tr} = \max\{x^{2}, y^{2}\}$$

Application to Feynman graph polynomials

$$\Psi_G = \sum_{T} \prod_{e \notin T} x_e$$
 \Rightarrow $\Psi_G^{\text{tr}} = \max_{T} \prod_{e \notin T} x_e$

Application to Feynman graph polynomials

$$\Psi_{G} = \sum_{T} \prod_{e \notin T} x_{e} \qquad \Rightarrow \qquad \Psi_{G}^{\text{tr}} = \max_{T} \prod_{e \notin T} x_{e}$$

$$\Phi_{G} = \sum_{F} \|p(F)\|^{2} \prod_{e \notin F} x_{e} \qquad \Rightarrow \qquad \Phi_{G}^{\text{tr}} = \max_{F} \prod_{e \notin F} x_{e}$$
s.t.
$$\|p(F)\|^{2} \neq 0 \text{ eff}$$

Feynman integral:
$$\phi(G) = \int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{(\Psi_G)^{D/2}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\omega_G}$$

$$\phi(G) = \int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{(\Psi_G)^{D/2}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\omega_G}$$

$$\Rightarrow$$
 Tropicalized version: $\phi^{\mathrm{tr}}(G) = \int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{(\Psi_G^{\mathrm{tr}})^{D/2}} \left(\frac{\Psi_G^{\mathrm{tr}}}{\Phi_G^{\mathrm{tr}}}\right)^{\omega_G}$

Feynman integral:
$$\phi(G) = \int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{(\Psi_G)^{D/2}} \left(\frac{\Psi_G}{\Phi_G}\right)^{\omega_G}$$

$$\Rightarrow \text{Tropicalized version:} \quad \phi^{\text{tr}}(G) = \int_{\mathbb{P}^{E-1}_{>0}} \frac{\Omega}{(\Psi_G^{\text{tr}})^{D/2}} \left(\frac{\Psi_G^{\text{tr}}}{\Phi_G^{\text{tr}}}\right)^{\omega_G}$$

QFT tropicalization

Replace all instances of Ψ and Φ with their tropicalized versions.

Computations are easy for the tropicalized QFTs:

• Tropicalized Feynman integrals are easily calculated exactly.

Computations are easy for the tropicalized QFTs:

- Tropicalized Feynman integrals are easily calculated exactly.
- They correspond to volumes of certain polytopes.

Computations are easy for the tropicalized QFTs:

- Tropicalized Feynman integrals are easily calculated exactly.
- They correspond to volumes of certain polytopes.
- All observables are rational numbers/functions.

Panzer 2019; MB 2020

Computations are easy for the tropicalized QFTs:

- Tropicalized Feynman integrals are easily calculated exactly.
- They correspond to volumes of certain polytopes.
- All observables are rational numbers/functions.

Computations are easy for the tropicalized QFTs:

- Tropicalized Feynman integrals are easily calculated exactly.
- They correspond to volumes of certain polytopes.
- All observables are rational numbers/functions.

Panzer 2019; MB 2020

• When the tropical version is known exactly, numerical integration of the original integrals is just an extra step.

MB 2020

Computations are easy for the tropicalized QFTs:

- Tropicalized Feynman integrals are easily calculated exactly.
- They correspond to volumes of certain polytopes.
- All observables are rational numbers/functions.

Panzer 2019; MB 2020

• When the tropical version is known exactly, numerical integration of the original integrals is just an extra step.

MB 2020

⇒ Better understanding of tropical geometry leads to faster numerical integration.

Relevant polytopes: Generalized permutahedra

- (a) The permutahedron $\Pi_3 \subset \mathbb{R}^3$.
- (b) Dual of Π_3 : The corresponding braid arrangement fan.

Gen. permutahedra are well understood thanks to Postnikov 2008 and Aguiar, Ardila 2017.

Current limitations

Problem: Non-Euclidean kinematic regions are not as fast, because

• The generalized permutahedron structure breaks down at singular momentum configurations (IR singularities).

Current limitations

Problem: Non-Euclidean kinematic regions are not as fast, because

- The generalized permutahedron structure breaks down at singular momentum configurations (IR singularities).
- Φ_G can vanish in the integration domain (\Rightarrow analytic continuation is necessary).

Conclusions

Tropical approach to Fegunay integration

• Fast numerical evaluation of Euclidean Feynman integrals

Tropical approach to Feynman integration

- Fast numerical evaluation of Euclidean Feynman integrals
- ullet Loop order pprox 15 or pprox 30 edges are easily possible.
- Applications:
 - Calculations in the Euclidean regime.
 - Renormalization group calculations.
 - (Massive) form factor calculations.
 - ...

Tropical approach to Feynman integration

- Fast numerical evaluation of Euclidean Feynman integrals
- Loop order ≈ 15 or ≈ 30 edges are easily possible.
- Applications:
 - Calculations in the Euclidean regime.
 - Renormalization group calculations.
 - (Massive) form factor calculations.
 - ...
- Much left to explore:
 - Tropical amplitudes
 - What is the role of the generalized permutahedra?
 - IR singularities/Minkowski space
 - ...

Tropical approach to Feynman integration

- Fast numerical evaluation of Euclidean Feynman integrals
- Loop order ≈ 15 or ≈ 30 edges are easily possible.
- Applications:
 - Calculations in the Euclidean regime.
 - Renormalization group calculations.
 - (Massive) form factor calculations.
 - ...
- Much left to explore:
 - Tropical amplitudes
 - What is the role of the generalized permutahedra?
 - IR singularities/Minkowski space
 - ...

https://github.com/michibo/tropical-feynman-quadrature

