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A computational question

Lower orders Ag, A1, Ao, ... needed to interpret experimental data.

What is the value of Ag, A1, As, Az, ...7

How can we calculate them efficiently?

Is there an algorithm to compute A,?

What is its runtime?
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F(n) = time to evalute n-loop Feynman integral

‘Analytic calculation’:

e Unclear: What is an analytic answer for an integral?
e Can ask for an expression within a specific function space
e No function space is known that works for all F. integrals

= complicated to formulate the question
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In this talk

Cut the middle man!
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Direct evaluation
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Via the Schwinger trick we can rewrite the Feynman integral as

o) = e /P TR (15283) ‘

with wg = E — 5 Dhy1(G).
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where

e ) is the standard volume form on PE—1:
Q=1 (—Dkdxg A ... Adx A ... A dxg.

o Wg=> 1 [leqT Xe (sum over spanning trees)
de=>"Fllp(F)|? [egrxetVe . mZ2xe(sum over 2-forests)

e Vi and ®¢g are homogeneous polynomials in xq, ..., xg.

e We assume that the integral exists.
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Vs (x) and ®g(x) exhibit complicated geometric structures.

= These integrals are hard to evaluate

= These integrals are very interesting
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Obstruction for direct numerical evaluation

Integrand has singularities on the boundary of Pial.

|.e. vanishing locus of W and ®; meets the boundary of Pgal.

= Singularities have to be blown up first



Established solutions

Q We(x)\™° [L; pi(x)"
/Pigl \IJD/Z(x) <¢G(X)> - prst L CIj(X)”"Q

G
Sector decomposition approach

e Algorithms to perform blowups in the general case:

Binoth, Heinrich '03; Bogner, Weinzierl '07; (Hironaka 1964)

e Simple geometric interpretation:
Kaneko, Ueda '09

All algorithms are oblivious to the specific structures on the left!
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Established solutions
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Numerical evaluation using sector decomposition for blowups:
e Runtime to evaluate the integral up to d-accuracy
~O(V?.672)
where V' is the number of monomials in %

e For Feynman integrals V grows =~ exponentially with n.
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Results MB 2020:

1. Numerical integration is an exercise in tropical geometry.

2. The general (oblivious) approach can be accelerated:
O(V?.572) — O(V? +677)

= achievable accuracy ‘decouples’ from integral complexity.

3. Euclidean Feynman integration can be accelerated extremely:
O(V?-672) = 0" -67%) —  On2"+52)

with ¢ > 1 where n is the number of edges of the graph.
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Theorem MB 2020

There is a ‘fast’ algorithm to approximate the Feynman integral.
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Theorem MB 2020

There is a ‘fast’ algorithm to approximate the Feynman integral.

e 3 loops is already a tough challenge for existing programs.
e New: > 17 loops possible (with basic implementation).

e Caveat: Only Euclidean - no Minkowski regime (so far).
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Figure 1: A non-generalized polylog/non-MZV 8-loop (*-graph.
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e ~ 10 CPU secs to compute up to 10 3-accuracy at 8 loops.
e ~ 30 CPU days to compute up to 10~%-accuracy at 8 loops.

e Higher orders in € can also be computed.

Interesting example
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The Tropical Approach




Tropical geometry

Deform geometry to sacrifice smoothness for simplicity.

Various applications in algebraic geometry.
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Application to Feynman graph polynomials
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Application to Feynman graph polynomials
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Feynman integral: o(G) :/
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Feynman integral: (G) :/
P

= Tropicalized version:  ¢"(G) = /
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Q v\ Y6
Feynman integral: #(G) :/ ( G)
P

_ D/2
e51 (Vg)P/2 \ @
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— Tropicalized version: t1”6:/ =
ropicalized version: ¢ (G) pe (V)02 (q)t(];f)

QFT tropicalization

Replace all instances of W and & with their tropicalized versions.
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Tropical approach

Computations are easy for the tropicalized QFTs:

e Tropicalized Feynman integrals are easily calculated exactly.
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Tropical approach

Computations are easy for the tropicalized QFTs:

e Tropicalized Feynman integrals are easily calculated exactly.
e They correspond to volumes of certain polytopes.

e All observables are rational numbers/functions.
Panzer 2019; MB 2020

e \When the tropical version is known exactly, numerical
integration of the original integrals is just an extra step.
MB 2020

= Better understanding of tropical geometry
leads to faster numerical integration.
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Relevant polytopes: Generalized permutahedra

X3 Y3
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(a) The permutahedron M3 C R°. (b) Dual of MM3: The corresponding

braid arrangement fan.

Gen. permutahedra are well understood thanks to Postnikov 2008
and Aguiar, Ardila 2017.
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Current limitations

Problem: Non-Euclidean kinematic regions are not as fast, because

e The generalized permutahedron structure breaks down at
singular momentum configurations (IR singularities).
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Current limitations

Problem: Non-Euclidean kinematic regions are not as fast, because

e The generalized permutahedron structure breaks down at
singular momentum configurations (IR singularities).

e O can vanish in the integration domain
(= analytic continuation is necessary).
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Conclusions
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e Fast numerical evaluation of Euclidean Feynman integrals
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e Fast numerical evaluation of Euclidean Feynman integrals
e Loop order =~ 15 or ~ 30 edges are easily possible.

e Applications:

e (Calculations in the Euclidean regime.
e Renormalization group calculations.
e (Massive) form factor calculations.
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e Applications:
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e Much left to explore:

e Tropical amplitudes
e What is the role of the generalized permutahedra?
e IR singularities/Minkowski space
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e Fast numerical evaluation of Euclidean Feynman integrals
e Loop order =~ 15 or =~ 30 edges are easily possible.

e Applications:

e (Calculations in the Euclidean regime.
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e Renormalization group calculations.
e (Massive) form factor calculations.

e Much left to explore:

e Tropical amplitudes
e What is the role of the generalized permutahedra?
e IR singularities/Minkowski space

https://github.com/michibo/tropical-feynman-quadrature
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