

Developments in the Forward Physics Facility and FLArE

Matteo Vicenzi (mvicenzi@bnl.gov) on behalf of the FLArE technical working group

BNL Intensity Frontier briefing January 16th, 2025

<u>**HL-LHC</u>**: Large flux of high energy (>100 GeV) light particles in the forward direction ($\eta \ge 7$) from</u> the ATLAS IP that would be missed by the big high- p_T detectors:

- pions, kaons, D-mesons, and neutrinos of <u>all</u> flavors;

Unique opportunity for a Forward Physics Facility hosting a diverse suite of medium-size detectors.

Experiment), a liquid argon time-projection chamber for the FPF.

RECENT OVERVIEW: https://arxiv.org/abs/2411.04175

• but also possible LLPs: dark photons, axions, millicharged particles, light dark matter, etc.

BNL is actively involved in the design and development of FLArE (Forward Liquid Argon

FPF Site

The site is on CERN land in France, ~600m from ATLAS.

Shielded by ~200m of rock.

Disconnected and independent from LHC tunnel.

Vibration studies: construction will NOT disrupt LHC operations

Radiation studies: can work in FPF while LHC is running (HL-LHC starts 2030)

https://cds.cern.ch/record/2851822

FPF site geology study completed

2600 ATLAS

88m deep 75m long ~12m wide

https://indico.cern.ch/event/1275380/contributions/5387310/

Physics: μ , e, τ **neutrinos!**

HL-LHC: most intense artificial source of neutrinos of all **3 flavors**!

Energies **bridge the gap** between accelerator and atmospheric data.

Rate: 20-50 events/ton/fb⁻¹

LAr TPC (FLArE) is an excellent option for a broad purpose neutrino detector:

- Muon, electron ID is easy
- Tau ID requires much more work (~mm resolution)

Evts/ton/fb ⁻¹	u
е	2.
mu	1
tau	0.

https://doi.org/10.1088/1361-6471/ac865e

Physics: Standard Model and QCD ...using neutrinos as probes

- Small-x gluon & large-x (intrinsic) charm
- **D-meson** fragmentation
- Cross-sections for UHE neutrinos
- Cosmic rays modeling (muon puzzle)

- DIS with TeV neutrinos ("Neutrino-Ion Collider")
- Cross-sections for atmospheric neutrinos
- Nuclear PDFs, strangeness from charm
- Neutrino flavor universality (τ neutrinos)

 W^{-}

neutrino scattering @ LHC forward detector

> Juan Rojo's BNL HET seminar https://indico.bnl.gov/event/17262/

Physics: BSM and Dark Matter

Direct DM detection from <u>nuclear</u> or <u>electron</u> scattering:

- Need high kinematic resolution. LAr TPCs can go as low as ~10-20 MeV thresholds.
- Target sensitivity indicated by relic density can be achieved with 10 tons of LAr.
- Dominant background is neutrino (elastic) scattering and muons coming from IP.

LArTPC (FLArE) can combine low thresholds, high spatial resolution (~mm), and sufficient target mass (10 ton) for the job.

FLArE @ Forward Physics Facility Baseline design SPS

Good energy containment (high density), high spatial resolution (for τ neutrinos) and <u>low threshold</u> (for DM scattering)

FPF and FLArE Simulations

Full **GEANT4 simulation** of all detectors in the FPF is ready and installed on **Ixplus.cern.ch**:

Flexible geometry implementation for study of different hall configurations.

Multiple event generators:

- μ, e, τ neutrino fluxes;
- backgrounds from IP (from FLUKA radiation studies);
- + working on FORESEE (package for DM models).

simulated in FLArE

Gray: other

Muon background

mu_minus fluence in XY averaged over z=(61600,61800)cm

Muon rate at the FPF from CERN FLUKA team. Hotspots at +/- 2m from LOS.

Muon flux: 0.6 Hz/cm² at $5*10^{34}$ /cm²/sec (0.15 mu+, 0.45 mu-).

http://cds.cern.ch/record/2851822

mu_plus fluence in XY averaged over z=(61600,61800)cm

• Space charge/track overlaps sustainable if TPC drift length is ~30 cm, but trigger R&D needed!

Muon background

Event display from G4 simulations

ZX projection

Muon rate at the FPF from CERN FLUKA team. Hotspots at +/- 2m from LOS.

Muon flux: 0.6 Hz/cm² at $5*10^{34}$ /cm²/sec (0.15 mu+, 0.45 mu-).

• Space charge/track overlaps sustainable if TPC drift length is ~30 cm, but trigger R&D needed!

Overlayed background events in 187.5 us (FLArE acquisition window)

FLArE Detector design Baseline: foam-insulated cryostat, "filing cabinet" concept 10-ton fiducial LAr mass, 30-ton active volume

1.8 m

Modules "hanging" from the door, installed from the side of the cryostat

3x7 modular LAr TPC: segmentation for light collection (trigger) and background mitigation (small drift gap ~30cm).

LAr volume: **1.8 m x 1.8 m x 7 m 1.8 m**

> Limited space in the cavern, baseline option is **side installation** ("filing cabinet" cryostat).

From **ATLAS IP**

TPC modules

Photodetection: ~50 SiPMs/anode Cathode HV: ~15kV (E ~ 500V/m)

Inspired by the DUNE near detector concept

https://doi.org/10.3390/instruments5040031

Anode plane

Each module is two "mini" TPCs, sharing a cathode plane in the middle

Drift gap ~30 cm

Downstream calorimeter BabyMIND concept

Simulations show the need for a downstream calorimeter to improve event/energy containment.

Bonus if magnetized: momentum measurement for uncontained "soft" (<20 GeV) muons that don't reach FASER2

(a) Energy containment without HadCal for the size $1.8 \times 1.8 \times 7 \text{ m}^3$.

(b) Energy containment with HadCal for the size $1.8 \times 1.8 \times 7$ m³.

Other simulation studies

Mostly studies supporting technical design. Note in preparation, should be ready soon!

- Muon acceptance/reconstruction studies:
 - Synergy with FASER2 magnet (45-55%) acceptance). Need optimization of BabyMIND.
- Effect of **pitch size** (nominal: 5mm):
 - Balance between spatial resolution, number of readout channels (72k/anode) and heat load
- AI/ML techniques for particle ID:
 - Looking at statistical Tau ID from dE/dx distributions
- **Background** studies.

Momentum resolution @ FASER2

Single electron

Single electron (w/ diffusion)

Summary

Diverse and exciting physics potential from **neutrino physics** to **QCD** and wide range of **BSM** searches at the Forward Physics Facility (FPF) at CERN.

simulations for a liquid argon detector (FLArE) at the FPF.

- Backgrounds and engineering considerations necessitates a modular detector.
- Cryogenics and baseline TPC design quite advanced. Further field cage calculations needed to finalize HV distribution.
- Great benefits from DUNE ND-LAr past R&Ds (pixellated readout, etc..).
- Full Geant4 simulation package has been developed for FLArE/FPF. Studies ongoing for detector design (backgrounds, acceptance, ...)

Particle Physics Strategy Update (EPPSU).

BNL Intensity Frontier & Instrumentation groups involved in the development of technical design and

Two technical notes on detector design and simulation are in preparation towards the 2026 European

Thank you!

Alternative option ARIADNE @ FLArE

Fully-optical readout using **Timepix cameras** in double-phase TPCs.

- Electrons drift towards the extraction grid situated below the liquid level
- A THGEM (THick-Gaseous Electron Multiplier) amplifies drift charge, generating secondary scintillation light (S2)
- WLS (Wavelength Shifting) before imaging with Timepix3 camera.

Discussions for a possible implementation in FLArE (Kostas Mavrokoridis, Liverpool U.)

Backgrounds

mu_plus fluence in XY averaged over z=(61600,61800)cm

mu_plus flux at FPF entrance

mu_minus fluence in XY averaged over z=(61600,61800)cm

Neutron fluence in XY at FPF entrance z=[61660.5,61757.1] cm

mu_minus flux at FPF entrance

neut flux at FPF entrance

Pathfinder programs **First neutrinos @ LHC!**

- ~150 (muon) neutrino candidates at FASER over basically no background!
- Expected $O(10^3)$ by the end of Run 3

 $x \rightarrow z$

Magnets & decay volume

Candidate	Events
n _o	153 (151 ± 41)
n ₁₀	4
n ₀₁	6
n ₂	64014695

https://doi.org/10.1103/PhysRevLett.131.031801

ν_e candidate: Pika-nu!

- Vertex with 11 tracks
 - 615 µm inside tungsten
- e-like track from vertex
 - Single track for 2X₀
 - Shower max @ $7.8X_0$
 - $\theta_e = 11 \text{ mrad to beam}$

Back-to-back topology

Brookhaven

National Laboratory

https://moriond.in2p3.fr/QCD/2023/WednesdayMorning/Gwilliam.pdf

