Reduction of Discretisation Artifacts in $S_1(Q^2)$ Calculation

T. Schar, A. Hannaford-Gunn, K. Can, R. Horsley, P. Rakow, G. Schierholz, H. Stuben, R. Young, and J. Zanotti

QCDSF Collaboration

Motivation

- Within the last decade, determinations of both the proton and deuteron charge radii exhibited significant discrepancies.
- Similarly, tensions arose over the electromagnetic contribution to the proton-neutron mass difference, with earlier calculations suggesting $m_{\rm QED} = 0.76(30)$ MeV but more recent evaluations proposing larger values.

Method

Forward Compton Amplitude

• We define the forward VVCS amplitude as

$$\mathcal{T}_{\mu
u}=i\int d^4z\,\,e^{iq\cdot z}\langle p|\mathcal{T}\{j_\mu(z)j_
u(0)\}|p
angle,$$

where j_{μ} denote an electromagnetic current.

• Amplitude describes process of photon-proton scattering $\gamma^*(q)p(p) \rightarrow \gamma^*(q)p(p)$.

Motivation	Background	Method	Results
O	0●0000000	oo	0000000
Amplitude Decomposition			

• $T_{\mu\nu}$ can be decomposed into two structure functions, T_1 and T_2 :

$$T_{\mu\nu} = \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right)T_1(\omega, Q^2) + \left(p_{\mu} - \frac{p \cdot q}{q^2}q_{\mu}\right)\left(p_{\nu} - \frac{p \cdot q}{q^2}q_{\nu}\right)\frac{T_2(\omega, Q^2)}{m_p^2},$$

where $Q^2 = -q^2$ and $\omega = 2p \cdot q/Q^2$.

Motivation	Background	Method	Results
O	00●000000	oo	0000000
Subtraction Function			

• In turn, T_1 and T_2 satisfy the dispersion relations:

$$egin{aligned} T_1(\omega,Q^2) &= T_1(0,Q^2) + rac{2\omega^2}{\pi} \int_1^\infty d\omega' rac{\mathrm{Im}\, T_1(\omega',Q^2)}{\omega'(\omega'^2-\omega^2-i\epsilon)} \ T_2(\omega,Q^2) &= rac{2\omega}{\pi} \int_1^\infty d\omega' rac{\mathrm{Im}\, T_2(\omega',Q^2)}{\omega'^2-\omega^2-i\epsilon}. \end{aligned}$$

• $T_1(0, Q^2)$ is called the subtraction function: $S_1(Q^2)$.

- $T_{\mu\nu}$ is an input for both the μ H Lamb shift calculation of the proton radius, and for the calculation of the proton-neutron mass difference.
- Unlike Im $T_1(\omega, Q^2)$ and Im $T_2(\omega, Q^2)$, $S_1(Q^2)$ cannot be accessed from inclusive processes.
- $S_1(Q^2)$ thus contributes significant theoretical uncertainty.

Models of $S_1(Q^2)$

Method

- For $Q^2 \ll m_P^2$, $S_1(Q^2)$ can be calculated in a variety of formalisms but these calculations have sizable errors and are not always consistent.
- For Q² >> Λ²_{QCD}, S₁(Q²) can be evaluated model-independently using the Operator Product Expansion (OPE).

Figure 1: Hill & Paz, 2017

- This uncertainty motivated a first-principles determination of $S_1(Q^2)$ using lattice QCD and the Feynman-Hellmann method.
- Employed simplest kinematics to extract $S_1(Q^2)$: $\mu = \nu = 3$ and $p_3 = q_3 = 0$.

Motivation

Prior $S_1(Q^2)$ Result

Background 000000●00

Methoo 00

Figure 2: Hannaford-Gunn, et al. (preliminary)

- Result suffers from either discretisation artifacts or finite volume effects (ΔS_1).
 - EFT calculation has shown $T_{\mu\nu}$ varies minimally with volume¹.
 - Naturally turn to lattice artifacts as the cause of the discrepancy.

$$S_1^{\mathsf{phy}}(Q^2) = S_1^{\mathsf{latt}}(Q^2) - \Delta S_1.$$

• This motivates a Lattice Operator Product Expansion of the Compton amplitude².

¹Lozano, Agadjanov, Gegelia, et al., 2021

²Extending work done by QCDSF collaboration - see Göckeler, Horsley, Perlt, et al., 2006

Motivation	Background	Method	Results
O	0000000●	oo	0000000
Operator Product F	vnansion		

An OPE expresses two operators O₁(x)O₁(0), in the limit x → 0, as a linear combination of local operators:

$$\lim_{q\to\infty}\int d^4x\,e^{iq\cdot x}\mathcal{O}_1(x)\mathcal{O}_2(0)=\sum_n C_n(q)\mathcal{O}_n(0)$$

• All q-dependence is isolated in the 'Wilson coefficients', $C_n(q)$.

• By Wick-rotating and discretising, we convert $T_{\mu\nu} \rightarrow T^L_{\mu\nu}$. At tree level, we need only consider two contributions:

$$T^L_{\mu
u} = ar{u}(p)\gamma_\mu ilde{S}_W(p+q)\gamma_
u u(p) + ar{u}(p)\gamma_
u ilde{S}_W(p-q)\gamma_\mu u(p),$$

where \tilde{S}_W is the Wilson fermion propagator

$$ilde{S}_W(k) = a rac{M(k,m_0) - i\sum_\mu \gamma_\mu \sin(ak_\mu)}{M(k,m_0)^2 + \sum_\mu \sin^2(ak_\mu)}$$

with $M(k, m_0) = m_0 + \frac{r}{a} \sum_{\rho} [1 - \cos(ak_{\rho})].$

Method

- Since $sin(ap_{\mu}) \ll sin(aq_{\mu})$, Taylor expand in $sin(ap_{\mu})$.
- Simplify Dirac gamma matrices using Euclidean relations.

• Associate
$$\mathsf{sin}(\mathsf{ap}_\mu) \leftrightarrow -i \overset{\leftrightarrow}{\mathsf{D}}_\mu$$
 .

 Motivation
 Background
 Method
 Results

 OPE Result
 OPE Result
 OPE Result

$$\begin{split} T^{L}_{\mu\nu} &= \frac{2a^{2}}{\Omega(q,m_{0})} \Big[\big[M(q,m_{0}) - m_{0} \big] \delta_{\mu\nu} \langle p | \bar{\psi} \psi | p \rangle - \frac{i}{a} \sum_{\tau,\sigma} \epsilon_{\sigma\mu\tau\nu} \sin(aq_{\tau}) \langle p | \bar{\psi} \gamma_{\sigma} \gamma_{5} \psi | p \rangle \Big] \\ &- \frac{2a^{2}}{\Omega(q,m_{0})} \Big[r \sum_{\tau} \sin(aq_{\tau}) \langle p | \bar{\psi} \sigma_{\mu\nu} \overleftrightarrow{D}_{\tau} \psi | p \rangle + \cos(aq_{\mu}) \langle p | \bar{\psi} \gamma_{\nu} \overleftrightarrow{D}_{\mu} \psi | p \rangle + \cos(aq_{\nu}) \langle p | \bar{\psi} \gamma_{\mu} \overleftrightarrow{D}_{\nu} \psi | p \rangle \\ &+ 2\delta_{\mu\nu} \sum_{\tau} \sin^{2}(aq_{\tau}/2) \langle p | \bar{\psi} \gamma_{\tau} \overleftrightarrow{D}_{\tau} \psi | p \rangle \Big] \\ &+ \frac{4a^{4}}{\Omega^{2}(q,m_{0})} \Big[M(q,m_{0}) \sum_{\tau} \frac{1}{a} \sin(aq_{\tau}) \big[\cos(aq_{\tau}) + raM(q,m_{0}) \big] \langle p | \bar{\psi} \sigma_{\mu\nu} \overleftrightarrow{D}_{\tau} \psi | p \rangle \Big] \\ &+ \frac{4a^{4}}{\Omega^{2}(q,m_{0})} \Big[\sum_{\alpha,\tau} \frac{1}{a} \sin(aq_{\alpha}) \frac{1}{a} \sin(aq_{\tau}) \big[\cos(aq_{\tau}) + raM(q,m_{0}) \big] \big[\delta_{\mu\alpha} \langle p | \bar{\psi} \gamma_{\nu} \overleftrightarrow{D}_{\tau} \psi | p \rangle \\ &+ \delta_{\nu\alpha} \langle p | \bar{\psi} \gamma_{\mu} \overleftrightarrow{D}_{\tau} \psi | p \rangle - \delta_{\mu\nu} \langle p | \bar{\psi} \gamma_{\alpha} \overleftrightarrow{D}_{\tau} \psi | p \rangle \Big] \Big] + \mathcal{O} (\overleftrightarrow{D}^{2}). \end{split}$$

Motivation	Background	Method	Results
O	00000000	00	0●00000
OPE Result			

• Taking
$$\mu = \nu = 3$$
 abd $q_3 = p_3 = 0$:

$$T_{33}^{L(0)} = \frac{2ar\sum_{\rho} \left[\cos(aq_{\rho}) - 1\right]}{\sum_{\rho} \sin^2(aq_{\rho}) + a^2 M^2(q, m_0)} \langle p | \bar{\psi} \psi | p \rangle$$

• In limit
$$a \rightarrow 0$$
, $T_{33}^{L(0)} \rightarrow 0$.

Motivation	Background	Method	Results
O	00000000	00	00●0000
Structureless Free Fer	mion Correction		

• The correction for a free fermion is given by:

$$\Delta S_1 = rac{r\sum_{
ho} igl[\cos(aq_{
ho}) - 1 igr]}{\sum_{
ho} \sin^2(aq_{
ho}) + a^2 M^2(q,m_0)} 4am_0 g_S^{ ext{bare}}.$$

• For a structureless fermion, $S_1^{\rm phy}(Q^2)=0$, thus

$$S_1^{\mathsf{latt}}(Q^2) = \Delta S_1.$$

Motivation	Background	Method	Results
0	000000000	00	000●000
Structureless Free Fermion F	Result		

Methoo 00

Structureless Free Fermion Result

Proton Correction

• The correction for the proton is given by:

$$\Delta S_1 = rac{r\sum_{
ho} igl[\cos(aq_{
ho})-1 igr]}{\sum_{
ho} \sin^2(aq_{
ho})+a^2 M^2(q,m_0)} 4am_p Z_V^2 g_S^{ ext{bare}},$$

where the bare scalar charge is determined from Feynman-Hellmann³.

³Rose, Batelaan, Horsley, et al., 2023

Final Proton Result

Lattice Specifications

N _f	$L^3 imes T$	eta	κ	<i>a</i> [fm]	$m_{\pi}[{ m MeV}]$	Z_V
2 + 1	$32^3 imes 64$	5.50	0.120900	0.074	470	0.86
2 + 1	$48^3 imes96$	5.65	0.122005	0.068	410	0.87
2 + 1	$48^3 imes 96$	5.80	0.122810	0.058	430	0.88

Lattice Specifications

$\kappa = 0.1$	$\kappa = 0.120900$		$\kappa = 0.122005$		$\kappa = 0.1$	122810
eta= 5.50		β	eta= 5.65		eta= 5.80	
q	Q^2	q	Q^2		q	Q^2
$[2\pi/L]$	$[\text{GeV}^2]$	$[2\pi/L]$] [GeV ²]		$[2\pi/L]$	$[\text{GeV}^2]$
(1, 1, 0)	0.55	(3, 1, 0) 1.43		(4, 3, 0)	4.81
(2, 0, 0)	1.10	(3, 2, 0) 1.86		(5, 3, 0)	6.54
(2, 1, 0)	1.37	(4, 2, 0) 2.86		(7, 1, 0)	9.62
(3, 1, 0)	2.74	(4, 3, 0) 4.86	:		
(3, 2, 0)	3.57	(7, 1, 0) 7.14			
(4, 0, 0)	4.39	(7, 4, 0) 9.29			
(4, 1, 0)	4.66			=		
(4, 2, 0)	5.48					
(4, 3, 0)	6.86					
(5, 1, 0)	7.13					
(6, 3, 0)	12.3					
(7, 3, 0)	15.9					

Feynman-Hellmann Specifications

• In the Feynman-Hellmann method, we perturb the action S by an operator \mathcal{O} with some unphysical coupling $\lambda: S \to S + \lambda \mathcal{O}$. In our context:

$$\mathcal{S}(\lambda) = \mathcal{S} + \lambda \int d^3 z \left(e^{i \mathbf{q} \cdot \mathbf{z}} + e^{-i \mathbf{q} \cdot \mathbf{z}}
ight) j_\mu(z),$$

where j_{μ} is the local Minkowski vector current: $j_{\mu} = Z_V \bar{\psi} \gamma_{\mu} \psi$.

• The FH theorem gives the following relationship:

$$\left. \frac{\partial^2 E_{\lambda}}{\partial \lambda^2} \right|_{\lambda=0} = -\frac{T_{33}(\mathbf{p}, \mathbf{q})}{E_N(\mathbf{p})}$$

Covariant Derivative & $sin(ap_{\mu})$

- The continuum Euclidean Dirac equation is given by $(\partial \!\!/ + m)\psi = 0$.
- Taking positive plane-wave solution ψ = u(p)e^{ip·z}, this becomes (ip + m)u(p) = 0.
- Thus associate $p_{\mu} \leftrightarrow -i\partial_{\mu}$.
- Adjusting for lattice and gauge fields, we have:

$$rac{1}{a}\sin(ap_{\mu})\leftrightarrow -i\overset{\leftrightarrow}{D}_{\mu}$$

Forward Compton Amplitude of Structureless Fermion

Additional Details

• From standard QED, the VVCS amplitude of a structureless fermion is given by

$$\mathcal{T}_{\mu
u} = rac{2\omega^2}{1-\omega^2}iggl[rac{p_\mu q_
u + p_
u q_\mu}{p\cdot q} + rac{Q^2}{(p\cdot q)^2}p_\mu p_
u - g_{\mu
u}iggr] + rac{2\omega}{1-\omega^2}rac{i}{p\cdot q}\epsilon_{\mu
u au\sigma}q^ au s^\sigma.$$

• Taking $\mu = \nu = 3$, $p_3 = q_3 = 0$ and $\omega = 0$:

$$S_1(Q^2) = T_1(0, Q^2) = T_{33} = \frac{2\omega^2}{1-\omega^2}\Big|_{\omega=0} = 0$$