Gravitational form factor of the proton

Latifa Elouadrhiri Jefferson Laboratory & Center of Nuclear Femography

Jefferson Lab

Basic questions about the proton

• Proton's make up nearly 90% of the (normal) matter in the universe. Elementary valence quarks contribute only few percent to the proton mass. What is the origin of its mass?

• How did quarks hadronize and form protons as the universe cooled below the Hagedorn temperature? What is the origin of confinement?

• How are the strong forces distributed in space to keep quarks confined and make protons stable particles.

Probing gravitational properties of the strong interaction

The proton has been studied in its *electromagnetic and weak* properties.

SJSA

Probing gravitational properties of the strong interaction

The proton has been studied in its *electromagnetic and weak* properties.

If we could use gravity to probe the structure of the proton, what would we learn?

Jefferson Lab

Probing basic properties of the proton

- Electromagnetic properties: probed with photons
 - Charge electromagnetic form factors, inelastic structure functions, proton charge radius, charge densities and current densities for N & N*
 - Magnetic moment helicity densities
- Gravitational properties: probed with gravitons
 - Mass: energy and mass densities

ENERGY Office of Science

- Spin: angular momentum distribution
- **D-term:** dynamical stability, normal and shear forces, pressure distribution, mechanical radius.

2018 Review of Particle Physics. M. Tanabashi <i>et al.</i> (Particle Data Group), Phys. Rev. D 98, 030001 (2018)		
GAUGE AND HIGG	as bosons $J = 2$	
graviton MASS	6	$< 6 \times 10^{-32} \text{ eV}$

5

Probing mechanical properties of the proton?

Gravitational Interaction of Fermions

Yu. Kobzarev and L.B. Okun, JETP 16, 5 (1963)

Energy-Momentum Structure Form Factors of Particles

Heinz Pagels, Phys. Rev. 144 (1966) 1250-1260

"....., there is very little hope of learning anything about the detailed mechanical structure of a particle, because of the extreme weakness of the gravitational interaction" (*H. Pagels*)

Generalized Parton Distributions (GPDs)

D. Muller (1991)

D. Müller et al., F.Phys. 42,1994X. Ji, PRL 78, 610, 1997A. Radyushkin, PLB 380, 1996

GPDs – GFFs Relations

Nucleon matrix element of the Energy-Momentum Tensor contains three scalar form factors and can be written as:

$$\langle p_2 | \hat{T}^q_{\mu\nu} | p_1 \rangle = \bar{U}(p_2) \left[\frac{M_2^q(t)}{M} \frac{P_\mu P_\nu}{M} + J^q(t) \frac{i(P_\mu \sigma_{\nu\rho} + P_\nu \sigma_{\mu\rho})\Delta^{\rho}}{2M} + \frac{d_1^q(t)}{5M} \frac{\Delta_\mu \Delta_\nu - g_{\mu\nu}\Delta^2}{5M} \right] U(p_1)$$

 $M_2(t)$: Mass/energy distribution inside the nucleon J(t): Angular momentum distribution $d_1(t)$: Forces and pressure distribution

 $\underline{\mathsf{GPDs}} \quad \longleftrightarrow \quad \underline{\mathsf{GFFs}}$

$$\int \mathrm{d}x \, x \left[\underline{H}(x,\xi,t) + \underline{E}(x,\xi,t)\right] = 2\underline{J}(t)$$
$$\int \mathrm{d}x \, x \underline{H}(x,\xi,t) = M_2(t) + \frac{4}{5}\xi^2 d_1(t),$$

X. Ji, Phys. Rev. D55, 7114 (1997)

ENERGY Office of Science

Graviton – proton scattering

GPDs & Compton Form Factors

- GPDs cannot directly be determined from current DVCS measurements alone.
- We can determine the Compton Form Factor $\mathcal{H}(\xi, t)$
- $\mathcal{H}(\xi, t)$ is related to the corresponding GPD $H(x,\xi,t)$ through an integral over the quark longitudinal momentum fraction x.

$$\mathcal{H}(\xi,t) = \int_{-1}^{+1} dx H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon}\right)$$

To determine the complex CFF $\mathcal{H}(\xi, t)$ we exploit the interference of the DVCS amplitude with the Bethe-Heitler amplitude that results in a polarized beam spin asymmetry.

M. Polyakov, Phys. Lett. B555 (2003) 57

GPDs, DVCS, Compton Form Factors (CFFs)

ENERGY

The original 6 GeV CEBAF with 3 experimental Halls

Racetrack design with two parallel linear accelerators each providing up to $\Delta E \sim 600$ MeV, with 5 re-circulations through the arcs.

→ Focus on Hall B and the CLAS Detector

JSA

The CLAS Detector

- ✓ Large acceptance
- ✓ Momentum reconstruction
- ✓ Charged particle identification
- ✓ Photon and neutron detection

JSA

Office of

ENERGY Science

In operation from 1997 to 2012 in two modes:

Photon beams: Search for excited states of the proton Electron beams: Structure of the nucleon and excited states

Electron acceptance: $\theta_e = 10^\circ - 45^\circ$ Charged Hadron acceptance: $\theta_h = 10^\circ - 140^\circ$

First DVCS-BH BSA observed in 2001

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.87.182002

JSA

Office of

Science

ENERGY

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.87.182001

DVCS Unpolarized Cross-Sections

H.S. Jo et al., Phys.Rev.Lett. 115 (2015)

U.S. DEPARTMENT OF Office of Science

(B)

Office of

JSA

Fit to DVCS data to determine **D**-Term

Samples of differential cross sections with fits

F.X. Girod et al., Phys.Rev.Lett. 100 (2008) 162002 ; H.S. Jo et al., Phys.Rev.Lett. 115 (2015) 212003,

ENERGY Office of Science

SJSA

dQ1(t) - Gravitational Form Factor

Expansion in Gegenbauer polynomials

First determination of new fundamental quantity.

The pressure distribution inside the proton

-JSA

Office of

Science

ENERGY

Shear Stress on quarks in proton

SJSA

ENERGY Office of Science

Shear stress at r = 0.6fm: $4\pi r^2 s(r) = 0.238$ GeV/fm $\sim 38 \times 10^3$ Newton

Normal & Tangential Stress on Quarks

Normal stress is positive at all r

Office of Science

ENERGY

JSA

Tangential stress: $F_t = 4\pi r^2 [-1/3 s(r) + p(r)]$

Tangential stress changes direction near r ~ 0.45 fm

The Jefferson Lab Energy Upgrade

CLAS12

ENERGY Office of Science

< JSA

- Luminosity 10³⁵cm⁻²s⁻¹
- Polarized target operation at 5T
- Charged particle tracking and ID
- Neutron and photon detection
- Data rate 1 Gigabyte/sec
- Charged Particle ID to 8 GeV/c

CEBAF Large Acceptance Spectrometer

DVCS Experiment – Projections

< JSA

ENERGY Office of Science

From GFF $D_q(t)$ to distribution of forces (pressure)

Fitting the dispersion relation to $Im \mathcal{H}(\xi,t)$, $Re \mathcal{H}(\xi,t)$

22 GeV required to cover sufficient range in t for extraction of mechanical properties.

Citations of theory papers on gravitational proton FF, and **BEG** results

A new direction in experimental nuclear/hadronic physics.

JSA

ENERGY Office of Science

Summary and Outlook

- The first determination of the proton's Gravitational Form Factor DQ(t) marks a pioneering effort in extracting the internal pressure and force distributions within the proton.
- Utilizing new CLAS12 DVCS (Deeply Virtual Compton Scattering) data, this research expands the kinematic range and enables measurements across various beam energies, target types, and beam polarizations.
- This research program is a crucial component of the Jefferson Lab's 22 GeV and positron beam program.
- This work opens-up a new frontier in hadron physics.

