QCHSC2024, Cairns, Australia (Aug 19—Aug 24, 2024)

Lambda Hypernuclear Spectroscopy by Electron Scattering at JLab

Graduate School of Science, Kyoto University

Toshiyuki Gogami

Aug 22, 2024

Hypernuclei

Nucleon only up, down quarks

Hyperon (u, d +) strange (s) quark

Hypernucleus

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

Baryon interaction study through hypernuclei

Hyperon(Y)-nucleon(N) interaction
 More general baryon-baryon interaction

Hyperons in neutron stars

(Nature Astro. 4 (2020) 72) 2.8 140 J0740+6620 (2019/9/18 2.14 M_☉, Green Bank Obs.) 2.4 **PNM** 120 particle fraction PSR J0348+0432 10⁻¹ 2.0 100 PSR J1614-2230 $\Lambda N + \Lambda NN$ (II) 10⁻² E [MeV] 80 $\Lambda N + \Lambda NN (I)$ 1.6 $\rho_{\Lambda}^{th} > 0.56 \text{ fm}^{-3}$ M [M₀] 0.2 0.3 0.4 0.5 0.6 $1.36(5)M_{\odot}$ 60 ρ **[fm⁻³]** 1.2 $\Lambda N + \Lambda NN (I)$ ΛN $\rho_{\Lambda}^{th} = 0.34(1) \text{ fm}^{-3}$ 40 0.8 $0.66(2)M_{\odot}$ 20 0.4 ΛN $\rho_{\Lambda}^{th} = 0.24(1) \text{ fm}^{-3}$ 0 0.0 0.2 0.5 0.0 0.1 0.3 0.4 0.6 11 12 13 14 15 10 16 ρ [fm⁻³] R [km]

D. Lonardoni et al., Phys. Rev. Lett. 114, 092301 (2015)

Multi-body force may play an important role

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

New astronomical observations

Gravitation Wave from neutron star mergers LIGO/Virgo PRL **119**, 161101 (2017)

Goddard Space Flight Cente

NICER : NS x-ray hot spot measurement Physics 14, 64 (Apr. 29, 2021)

Macroscopic features of NS : Tidal deformability, masses and radii

VS.

Microscopic investigation of NS: Inner composition

HYPERNUCLEAR SPECTROSCOPY

New constrains from astronomical observations

C.F. Burgio et al. Prog. Part. Nucl. Phys 120 (2021) 103879.

Microscopic study (← nuclear/Hypernuclear research) has become more important as the macroscopic study is in great progress

YN/YY interaction study

Scattering experiments

T. Nanamura et al., PTEP 2022, 9, 093D01 (2022)

Femtoscopy

S. Acharya et al., Phys. Rev. Lett. 123, 112002 (2019)

Hypernuclear spectroscopy

H. Hotchi et al., Phys. Rev. C 64, 044302 (2001)

Missing mass spectroscopy for A hypernuclei

S-2S (2025 \sim) A = 7, 10, 12

T. Gogami et al., <u>EPJ Web Conf. 271, 11002 (2022)</u>.

HES-HKS (2027~) A = 6, 9, 11, 12, 27, 40, 48, 208

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

Reactions used at J-PARC and JLab

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

Charge Symmetry Breaking (CSB), the mystery

*1) J.H.E.Mattauch et al., Nucl. Pys. 67, 1 (1965).

81 keV after Coulomb correction

[R.A.Brandenburg, S.A.Coon et al., NPA294, 305 (1978)]

Figure from proposal of <u>JLab E12-19-002</u>

~400 KeV after Coulomb correction

5 times larger CSB than NN interaction!

/27

Previous study of CSB effect for A = 7 at JLab

E. Hiyama et al., PRC80, 054321 (2009) Phenomenological CSB potential

$$V_{\Lambda N}^{\text{CSB}}(r) = -\frac{\tau_z}{2} \left[\frac{1+P_r}{2} \left(v_0^{\text{even},\text{CSB}} + \boldsymbol{\sigma}_{\Lambda} \cdot \boldsymbol{\sigma}_N v_{\sigma_{\Lambda} \cdot \sigma_N}^{\text{even},\text{CSB}} \right) e^{-\beta_{\text{even}} r^2} + \frac{1-P_r}{2} \left(v_0^{\text{odd},\text{CSB}} + \boldsymbol{\sigma}_{\Lambda} \cdot \boldsymbol{\sigma}_N v_{\sigma_{\Lambda} \cdot \sigma_N}^{\text{odd},\text{CSB}} \right) e^{-\beta_{\text{odd}} r^2} \right],$$

Parameters were adjusted to reproduce the binding energies of ${}^{4}_{\Lambda}$ He, ${}^{4}_{\Lambda}$ H, ${}^{8}_{\Lambda}$ Li, ${}^{8}_{\Lambda}$ Be hypernuclei

The above CSB potential seems to be too naïve

TG et al., PRC 94, 021302(R) (2016)

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

ΛN-ΣN coupling effect

A. Gal and D. Gazda, J. Phys.: Conf. Ser. 966 012006 (2018)

Mirror hypernuclear data for p-shell systems

Isomultiplet	$^4_{\Lambda}{\rm He}{-}^4_{\Lambda}{\rm H}$	$^{7}_{\Lambda}\mathrm{Be}{-}^{7}_{\Lambda}\mathrm{Li}^{*}$	$^{7}_{\Lambda}\mathrm{Li}^{*}-^{7}_{\Lambda}\mathrm{He}$	$^{8}_{\Lambda}\mathrm{Be}{-}^{8}_{\Lambda}\mathrm{Li}$	$^9_\Lambda \mathrm{B}{-}^9_\Lambda \mathrm{Li}$	$^{10}_{\Lambda}\mathrm{B}{-}^{10}_{\Lambda}\mathrm{Be}^{*}$
Shell model (Gal et al.) [41]	+226	-17	-28	+49	-54	-136
Cluster model (Hiyama et al.) [39, 40]		+150	+130			+20
No-core shell model (Le $et al.$) [43]	+238	-35	-16	+143		
Experiment	$+233 \pm 92$	-100 ± 90	-20 ± 230	$+40 \pm 60$	-210 ± 220	-220 ± 250

A. Gal, and D. Gazda, Jour. Phys.: Conf. Ser. 966, 012006 (2018)
E. Hiyama et al., Prog. Theor. Phys. 128, 105 (2012).
H. Le et al., Phys. Rev. C 107, 24002 (2023)

Existing data accuracy is not sufficient for CSB study ($\Delta B_{diff} > 200 \text{ keV}$) $\rightarrow \Delta B_{diff} \sim 100 \text{ keV}$ for A = 6, 7, 9, 10, 11, 12

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

Approved Hypernuclear Experiments (proposed by JLab Hypernuclear Collaboration)

 E12-15-008 (Contact Person: S.N. Nakamura (Univ. Tokyo)) → ⁴⁰_ΛK, ⁴⁸_ΛK "Isospin dependence of ΛN interaction"
 E12-19-002 (CP: TG) → ³_ΛH, ⁴_ΛH

"Hypertriton puzzle, s-shell CSB"

③ E12-20-013 (CP: F. Garibaldi (INFN)) → $^{208}_{\Lambda}$ TI

" ΛNN three body force"

- ④ E12-24-004 (CP: TG) → ${}^{6}_{\Lambda}$ He, ${}^{9}_{\Lambda}$ Li, ${}^{11}_{\Lambda}$ Be "p-shell CSB"
- ⓑ E12-24-011 (CP: S.N. Nakamura) → $^{27}_{\Lambda}Mg$

" Search for triaxially deformation states in ²⁶Mg"

Approved Hypernuclear Experiments (proposed by JLab Hypernuclear Collaboration)

① E12-15-008 (Contact Person: S.N. Nakamura (Univ. Tokyo)) → ${}^{40}_{\Lambda}K$, ${}^{48}_{\Lambda}K$ "Isospin dependence of ΛN interaction" (2) E12-19-002 (CP: TG) $\rightarrow {}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H$ "Hypertriton puzzle, s-shell CSB" ③ E12-20-013 (CP: F. Garibaldi (INFN)) → ²⁰⁸/_ΛTI " Λ NN three body force" (4) E12-24-004 (CP: TG) $\rightarrow {}^{6}_{\Lambda}$ He, ${}^{9}_{\Lambda}$ Li, ${}^{11}_{\Lambda}$ Be Will be performed "p-shell CSB" in 2027~ 5 E12-24-011 (CP: S.N. Nakamura) $\rightarrow {}^{27}_{\Lambda}Mg$ " Search for triaxially deformation states in ²⁶Mg"

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

New experiment at JLab Hall-C (2027~)

High resolution: 0.6 MeV FWHM High accuracy: 0.07 MeV Wide mass number: A = 6-208

Particle Detectors

TG et al., NIMA 900, 69—83 (2018) TG et al., NIMA 729, 816—824 (2013) **Cherenkov detectors**

K⁺, π⁺, p

- Aerogel (n=1.05)
- Water (n=1.33)

TOF walls (Plastic scintillators)

Drift chambers

HES | HKS

TOF walls (Plastic scintillators)

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

Energy Calibration Calibration is common with approved experiments

\Rightarrow Systematic error $|\Delta B_{\Lambda}^{\text{sys.}}| \simeq 60 \text{ keV}$

c.f.) T. Toyoda, Master's Thesis, *Kyoto University*, Kyoto, Japan, 2021 (in Japanese)

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

Expected Spectra

Total accuracy:

$$\left|\Delta B_{\Lambda}^{\text{total}}\right| = \sqrt{\left(\Delta B_{\Lambda}^{\text{stat.}}\right)^{2} + \left(\Delta B_{\Lambda}^{\text{sys.}}\right)^{2}} \leq$$
70 keV

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

 $^{27}Al(e, e'K^+)^{27}Mg$

 $^{26}Mg \times p_{\Lambda} \rightarrow Probing triaxially deformation$

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

High accuracy experiment \rightarrow 3-body force study

Missing mass spectroscopy with the world best accuracy $|\Delta B_{\Lambda}| \leq 100 \text{ keV}$

M.M. Nagels et al., PRC 99 (2019) 044003.

New information for 3-body force

Summary

Λ hypernuclear spectroscopy

♦ Baryon interaction (YN, YNN)

JLab Hypernuclear Collaboration

- \diamond (e,e'K⁺) reaction \rightarrow High resolution/accuracy spectroscopy
- ♦ The method was established at JLab
- ♦ Future experiment ($^{3}_{\Lambda}$ H, $^{4}_{\Lambda}$ H, $^{6}_{\Lambda}$ He, $^{11}_{\Lambda}$ Be, $^{27}_{\Lambda}$ Mg, $^{40}_{\Lambda}$ K, $^{48}_{\Lambda}$ K, $^{208}_{\Lambda}$ Tl)
 - ♦ hypertriton puzzle (biding energy vs. lifetime)
 - ♦ Charge symmetry breaking
 - ♦ (Triaxially) deformation
 - $\Lambda N-\Sigma N \ coupling$
 - $\Leftrightarrow\,$ iso-spin dependence of ANN force

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

Backup

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

Hall A

- K. Okuyama et al., PRC 110, 025203 (2024)
- B. Pandey et al., PRC 105, L051001 (2022)
- K.N. Suzuki et al., PTEP 2022, 1, 013D01 (2022)
- F. Garibaldi et al., PRC 99, 054309 (2019)
- G. M. Urciuoli et al., PRC 91, 034308 (2015)
- F. Cusanno et al., PRL 103, 202501 (2009)
- G. M. Urciuoli et al., NIMA612, 56–68 (2009)
- M. lodice et al., PRL 99, 052501 (2007)

Hall C

- TG et al., PRC 103, L041301 (2021)
- TG et al., NIMA 900, 69-83 (2018)
- TG et al., PRC 94, 021302(R) (2016)
- TG et al., PRC 93, 034314 (2016)
- Y. Fujii et al., NIMA795, 351—363 (2015)
- L. Tang et al., PRC 90, 034320 (2014)
- S.N. Nakamura et al., PRL 110, 012502 (2013)
- TG et al., NIMA 729, 816-824 (2013)
- L. Yuan et al., PRC 73, 044607 (2006)
- T. Miyoshi et al., PRL 90, 232502 (2003)

Experimental parameters for the next JLab Experiment

	Value		
Baser (a)	Energy (/GeV)	2.24	
Beam (e)	(Required) energy spread and drift	1×10^{-4} (FWHM)	
	Central momentum $p_{e'}^{\text{cent.}}$ [/(GeV/c)]	0.74	
$\mathbf{P}_{CS} + \mathbf{H}_{ES}(a')$	Central angle $\theta_{ee'}^{\text{cent.}}$	8.5°	
$PCS + HES(e^{-})$	Solid angle acceptance $\Omega_{e'}$ (/msr) (at $p_{e'}^{\text{cent.}}$)	3.4	
	Momentum resolution $\Delta p_{e'}/p_{e'}$	4.4×10^{-4} (FWHM)	
	Central momentum $p_{K^+}^{\text{cent.}}$ [/(GeV/c)]	1.20	
$DCS + HVS (K^{\pm})$	Central angle $\theta_{eK^+}^{\text{cent.}}$	11.5°	
$\Gamma CS + \Pi KS (K^+)$	Solid angle acceptance Ω_{K^+} (/msr) (at $p_{K^+}^{\text{cent.}}$)	7.0	
	Momentum resolution $\Delta p_{K^+}/p_{K^+}$	2.9×10^{-4} (FWHM)	
	$\sqrt{s} = W \; (/{ m GeV})$	1.912	
	$Q^2 \left[/({ m GeV}/c)^2 ight]$	0.036	
$p(e, e'K^+)\Lambda$	K^+ scattering angle wrt virtual photon, $\theta_{\gamma^*K^+}$	7.35°	
	ϵ	0.59	
	ϵ_L	0.0096	

TABLE II. Summary of the kinematics parameters in the proposed experiment.

Limited data for the CSB study

 \bigcirc : Data w/ \leq 100 keV accur. exists

Shall A		Component	Isospin			CSB study	
Shen	A	component	T<0	T=0	T>0	w/ 100 keV accur.	
S	4	d N \Lambda (0+ / 1+)	0	-	0 0	Yes	
	6	αΝΔ		-			
p	7	αΝΝΛ	O (JLab)	0	0	Yes	
	8	α d N Λ	0	-	Ο	Yes	
	9			0			
	10	ααΝΔ	O (JLab)	-			
	11	ααΝΝΛ					
	12	α α d N Λ	O (JLab)	-			

Limited data for the CSB study

 \bigcirc : Data w/ \leq 100 keV accur. exists

Shell A	٨	Component	Isospin			CSB study	
	A	Component	T<0	T=0	T>0	w/ 100 keV accur.	
S	4	d N \Lambda (0+ / 1+)	O E12- 19-002	-	0 0	Yes Yes	
	$6 \alpha N \Lambda$		This prop.	-	J-PARC	Yes	
p	7	αΝΝΛ	O (JLab)	Ο	0	Yes	
	8	α d N Λ	0	-	Ο	Yes	
	9		This prop.	Ο		Yes	
	10	ααΝΔ	O (JLab)	-	J-PARC E94	Yes	
	11	ααΝΝΛ	This pro.	J-PARC		Yes	
	12	α α d N Λ	O (JLab)	-	J-PARC E94	Yes	

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

Limited data for the CSB study

 \bigcirc : Data w/ \leq 100 keV accur. exists

Cho11	٨	A Component		lsospin	CSB study			
Snell	A		T<0	T=0	T>0	w/ 100 k	eV accur.	
							Yes Yes	
Data from JLab ($_{\Lambda}^{\circ}$ He, $_{\Lambda}^{\circ}$ Li, $_{\Lambda}^{\circ}$ Be)							Yes	
are unique and necessary to pin							Yes	
							Yes	
down the CSB origin							es	
	10	ααΝΛ	O (JLab)		J-PARC E94	Ye	es	
	11	ααΝΝΛ	This pro.	J-PARC		Ye	es	
	12	aadNA	O (JLab)		J-PARC E94	Ye	es	

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

Recent progress in YN scattering experiment

K. Miwa et al., PRC 104, 045204 (2021)

J-PARC E40 Experiment

Σ -p elastic

 $\Sigma^{-}p \rightarrow \Lambda n$: K. Miwa et al., Phys. Rev. Lett. 128, 072501 (2022) $\Sigma^{+}p$: T. Nanamura et al., <u>arXiv:2203.08393</u> [nucl-ex] (2022) Λp : J. W. Price et al., AIP Conf. Proc. 2130, 020004 (2019) Λp : K. Miwa et al., Proposal to J-PARC, P86 (2021)

Japan Proton Accelerator Research Complex (J-PARC), Ibaraki, Japan

T. Gogami et al., <u>EPJ Web Conf. 271, 11002 (2022)</u>.

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

Expected spectra (J-PARC E94)

[QCHSC2024 at Cairns, Australia] T. Gogami (Kyoto Univ.), Aug 22, 2024

Missing mass spectroscopy of hypernuclei at JLab and J-PARC

JLab (HES-HKS, 0.6 MeV FWHM, 0.07 MeV accuracy, 2027—)
♦ (e, e'K⁺) reaction at ω = 1.5 GeV
♦ Approved: ³_ΛH, ⁴_ΛH, ⁶_ΛHe, ⁹_ΛLi, ¹¹_ΛBe, ²⁷_ΛMg, ⁴⁰_ΛK, ⁴⁸_ΛK, ²⁰⁸_ΛTl
→ Λ N CSB, Λ NN, tri-axial deformation

<u>J-PARC</u> (S-2S, 1.0 MeV FWHM, 0.1 MeV accuracy, 2024—)

- (π^+, K^+) and (K^-, K^+) reactions at p = 1.05 and 1.8 GeV/c
- ♦ Approved: ${}^{6}_{\Lambda}$ Li, ${}^{10}_{\Lambda}$ B, ${}^{12}_{\Lambda}$ C, ${}^{7}_{\Xi}$ H, ${}^{12}_{\Xi}$ Be
- ♦ New additional plan: ${}^{6}_{\Lambda}$ Li, ${}^{11}_{\Lambda}$ B etc.
 - \rightarrow AN CSB, \equiv N interaction