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Electromagnetic polarizabilities

➢ In the realm of nucleon properties, E&M polarizabilities represent crucial fundamental constants 

akin to the size and shape of the nucleon

➢ Polarizabilities offer insights into the distribution of charge and magnetism within nucleons, 

revealing their response to external electromagnetic fields
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➢ Experimental determination of polarizabilities relies on Compton scattering, wherein external 

E&M fields polarize the target nucleon or deuteron
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➢ Nucleon E&M polarizability are most central quantities relevant for Compton scattering

 Unpolarized doubly virtual Compton scattering

Nucleon polarizability and Compton scattering
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➢ In real-virtual Compton scattering

Abnormal peak of generalized proton electric polarizability at 𝑄2 ≈ 0.35 𝐺𝑒𝑉2 ?

Generalized electric polarizabilities

➢ Measured proton E&M structure deviates 

from theoretical predictions

R. Li et al., Nature 611 

(2022) 7935, 265-270

4



Generalized electric polarizabilities

➢ Measured proton E&M structure deviates 

from theoretical predictions

VS

R. Li, N. Sparveris, et. al. Nature 611 (2022) 265

➢ Different viewpoints

Figure shown by D. Higinbotham

@ 2nd Workshop on Nucleon Structure at Low Q

5



Determination of electric polarizabilities

➢ For proton

Lattice (𝑚𝜋 = 390MeV)

Experiments

𝜒𝐸𝐹𝑇
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Determination of electric polarizabilities

Lattice

Experiments

𝜒𝐸𝐹𝑇

➢ For neutron
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Determination of electric polarizabilities

① Lattice calculations are performed at unphysical pion masses, ranging from 227 - 759 MeV

② Background field technique is used, which converts 4pt function to 2pt function using Feynman-Hellman theorem

➢ What is the primary source of discrepancy between lattice QCD and other studies?

Unphysical quark mass effects

Hard to explore intermediate-state contributions and control systematics

Perform calculation at physical pion mass, using 4pt function 
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Why physical pion mass is important

➢ Pion cloud in nucleon polarizabilities ➢ LO in 𝜒𝑃𝑇:

𝛼𝐸 =
5

96

𝑔𝐴
𝑓𝜋

2
𝛼𝑒𝑚
𝑚𝜋

➢ Use two DWF 

ensembles @ 

physical π mass

Ensembles 𝒎𝝅[MeV] L/a T/a a[fm] 𝑵𝒄𝒐𝒏𝒇

24D 142.6(3) 24 64 0.1929 207

32Dfine 143.6(9) 32 64 0.1432 82

𝛼𝐸 is inversely proportional to 

pion mass
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V. Bernard et al., Phys. Rev. Lett. 67 (1991) 1515



Numerical calculations

➢ Complicated quark field contractions with two current insertions

= 𝛾0~𝛾3 (𝐸𝑀),
& 𝛾5𝛾0~𝛾5𝛾3 (𝑊𝑒𝑎𝑘)
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Examination of 4-pt function: charge conservation

Using the charge conservation to verify the contraction code
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Two currents inserted in one quark line Two currents inserted in two quark lines

= 𝛾0 charge operator

For proton: 𝐺𝐸 0 = 1
For neutron: 𝐺𝐸 0 = 0
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𝑁 𝐽0 𝑥, 𝑡 𝐽0 0 𝑁
long distance

න
𝑑3𝑄

2𝜋 3

𝑀 𝐸 +𝑀

𝐸
𝐺𝐸
2 𝑄2 𝑒𝑖𝑝𝑥𝑒− 𝐸−𝑀 𝑡

Charge radius fitted at long distance 𝑟 > 1𝑓𝑚 , with dipole model:

𝐺𝐸 𝑄2 = 1/ 1 + 𝑄2 𝑟𝐸
2 /12

2

PDG 

 𝑁 𝐽0 𝑥, 𝑡 𝐽0 0 𝑁 as a function of |𝑥|

Examination of 4-pt function: charge radius
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➢ Compton tensor

𝑇𝜇𝜈 = න𝑑4𝑥 𝑒𝑖𝑞𝑥 𝑁 𝐽𝜇 𝑥, 𝑡 𝐽𝜈 0 𝑁 = 𝑇𝐵𝑜𝑟𝑛
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+ 𝛼𝐸 + 𝛽𝑀 + 𝑂(𝑞) 𝐾2
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Lattice QCD input 𝐻𝜇𝜈 𝑥
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Electric polarizability from 4-pt function
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𝑃

𝑞

• 𝑃 = 𝑀, 0 , 𝑞 = 0, Ԧ𝜉 : 𝛼𝐸 = −
𝛼𝑒𝑚

12𝑀
𝑑4𝑥׬ Ԧ𝑥2 𝐻00 𝑥 − 𝐻𝐺𝑆

00 𝑥 + 𝛼𝐸
𝑟

• 𝑃 = 𝑀, 0 , 𝑞 = 𝜉, 0,0, 𝜉 : 𝛼𝐸=
𝛼𝑒𝑚

4𝑀
𝑑4𝑥׬ 𝑡 + 𝑥𝑖

2 𝐻0𝑖 𝑥 − 𝐻𝐺𝑆
0𝑖 𝑥 + 𝛼𝐸

𝑟

• 𝑃 = 𝑀, 0 , 𝑞 = 𝜉, 0 : 𝛼𝐸 = −
𝛼𝑒𝑚

12𝑀
𝑑4𝑥׬ 𝑡2𝐻𝑖𝑖 𝑥 + 𝛼𝐸

𝑟

➢ Derive 3 formula to calculate 𝛼𝐸

Our choice

𝐻𝑖𝑖 𝑥, 𝑡 = ⟨𝑁|𝐽𝑖 𝑥 𝐽𝑖 0 |𝑁⟩➢ Residual term 𝛼𝐸
𝑟 is analytically known

𝛼𝐸
𝑟 =

𝛼𝑒𝑚

𝑀

𝐺𝐸
2 0 +𝜅2

4𝑀2 +
𝐺𝐸 0 ⟨𝑟𝐸

2⟩

3
,

anomalous magnetic moment & charge radius

𝐺𝐸 0 = 1/0, for proton/neutron



Signal of hadronic function
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෍

Ԧ𝑥

𝐻𝑖𝑖(𝑡, Ԧ𝑥) =෍

𝑘

𝑝 𝐽𝑖 0 𝑘 𝑒− 𝐸𝑘−𝑀 𝑡 𝑘 𝐽𝑖 0 𝑝

Truncation Truncation

Δ𝑡 = Δ𝑡1 + Δ𝑡2 = ቊ
0.96 𝑓𝑚 (24D)

0.86 𝑓𝑚 (32Dfine)
, truncation at 𝑡0 = ቊ

0.77 𝑓𝑚 (24D)
0.72 𝑓𝑚 (32Dfine)

In total, Δ𝑡1 + Δ𝑡2 + 𝑡0~1.6-1.8 fm

signal region



However, lattice results are significantly below the PDG value. 

Polarizability 𝜶𝑬 from 𝑯𝒊𝒊(𝒙)

𝛼𝐸 = −
𝛼𝑒𝑚
12𝑀

න𝑑4𝑥𝑡2𝐻𝑖𝑖 𝑥 + 𝛼𝐸
𝑟Polarizability extraction

Our truncation at 𝑡0

PDG
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Polarizability 𝜶𝑬 from 𝑯𝒊𝒊(𝒙)

𝛼𝐸 = −
𝛼𝑒𝑚
12𝑀

න𝑑4𝑥𝑡2𝐻𝑖𝑖 𝑥 + 𝛼𝐸
𝑟Polarizability extraction

Our truncation at 𝑡0

PDG

However, lattice results are significantly below the PDG value. 

Need new insight to turn the decent to the magic!
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Structure of hadronic function න𝑑4𝑥 𝑡2𝐻𝑖𝑖 𝑥, 𝑡 = න𝑑𝑡 𝑡2෍

𝑘

𝑝 𝐽𝑖 0 𝑘 𝑒− 𝐸𝑘−𝑀 𝑡 𝑘 𝐽𝑖 0 𝑝

= 4෍

𝑘

𝑝 𝐽𝑖 0 𝑘 𝑘 𝐽𝑖 0 𝑝

𝐸𝑘 −𝑀 3

The dominant contribution is given by 𝑘 = |𝑁𝜋⟩ states

|𝑁𝜋⟩

𝑡2

|𝑁𝜋⟩ states contribution exhibits a peak at 𝑡 = 2.8 𝑓𝑚, far exceeding our truncation at 𝑡0 ≈ 0.75 𝑓𝑚
Must calculate 𝑁𝜋 contribution directly!

Weight 

function|𝑁𝜋⟩ |𝑁𝜋⟩

Nucleon polarizabilities and 𝑁𝜋 scattering
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Wick contraction of 𝑵𝝅 rescattering
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𝐼 = 1/2: 𝑂𝑁𝜋
𝐼3=+

1
2 = 𝑂𝑝𝑂𝜋0 − 2𝑂𝑛𝑂𝜋+ , 𝑂𝑁𝜋

𝐼3=−
1
2 = 2𝑂𝑛𝑂𝜋0 − 𝑂𝑝𝑂𝜋−

𝐼 = 3/2: 𝑂𝑁𝜋
𝐼3=+

1
2 = 2𝑂𝑝𝑂𝜋0 + 𝑂𝑛𝑂𝜋+ , 𝑂𝑁𝜋

𝐼3=−
1
2 = 𝑂𝑛𝑂𝜋0 + 2𝑂𝑝𝑂𝜋−

} Operators

𝑁 𝑁



Wick contraction of 𝑁𝜋 Rescattering

➢ 19 diagrams for 𝑁𝜋 rescattering ➢ 20 diagrams for 𝑁 + γ → 𝑁𝜋
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Results of 𝑵𝝅 Scattering

𝑅 =
𝐶2
𝑁𝜋 𝑡

𝐶2
𝑁 𝑡 𝐶2

𝜋 𝑡

=
𝐴𝑁𝜋
𝐴𝑁𝐴𝜋

𝑒−𝐸𝑁𝜋𝑡

𝑒−(𝑀𝑁+𝑀𝜋)𝑡

≈ 𝑅0(1 − Δ𝐸𝑡)

with Δ𝐸 = 𝐸𝑁𝜋 −𝑀𝑁 −𝑀𝜋

➢ Scattering for different isospin channel

• 𝐼 = 1/2, Δ𝐸 < 0, attractive interaction

• 𝐼 = 3/2, Δ𝐸 > 0, repulsive interaction

Results using data at threshold

𝑎0
1/2

𝑚𝜋 = 0.0127 24 , 𝑎0
3/2

𝑚𝜋 = −0.127 14

ETMC [arXiv: 2307.12846] 𝑎0
3/2

𝑚𝜋 = −0.13 4

Analysis based on cross section and πH, πD spectrum

𝑎0
1/2

𝑚𝜋 = 0.170 2 , 𝑎0
3/2

𝑚𝜋 = −0.087 2

➢ Nπ scattering at mπ=142 MeV

M. Hoferichter et al, PLB 843 (2023) 138001

~3σ
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Results of 𝑵𝝅 Scattering

➢ Use Nπ operators with 4 

lowest momenta & apply 

GEVP method

21

combined

fit

Results using GEVP

𝑎0
1/2

𝑚𝜋 = 0.152 28 , 𝑎0
3/2

𝑚𝜋 = −0.107 17

Analysis based on cross section and πH, πD spectrum

𝑎0
1/2

𝑚𝜋 = 0.170 2 , 𝑎0
3/2

𝑚𝜋 = −0.087 2

M. Hoferichter et al, PLB 843 (2023) 138001

~1σ

➢ After GEVP, energy eigenvalues 

shift downwards for both I=1/2 

& 3/2



Matrix elements of 𝑁𝛾→𝑁𝜋

➢Normalization for 𝐼⟨𝑁𝜋|𝐽𝑖
𝐼′|𝑁⟩

𝑅 =
𝐶𝑁𝐽𝑁𝜋 𝑡1, 𝑡2
𝐶𝑁𝜋 𝑡1 + 𝑡2

×
𝐶𝑁 𝑡1 𝐶𝑁𝜋 𝑡2 𝐶𝑁𝜋(𝑡1 + 𝑡2)

𝐶𝑁𝜋 𝑡1 𝐶𝑁 𝑡2 𝐶𝑁(𝑡1 + 𝑡2)

➢ Summed insertion

𝑆 𝑇𝑠 = ෍

𝑡1+𝑡2=𝑇𝑠

𝑅(𝑡1, 𝑡2)

𝑇𝑠→∞
𝑐0 +

1

2𝑀
𝐼 ⟨𝑁𝜋|𝐽𝑖

𝐼′|𝑁⟩ ⋅ 𝑇𝑠

➢ Linear fit 𝑆 𝑇𝑠 with 𝑇𝑠 to extract

Maiani L. NPB, 

293, 420(1987)
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Nπ at the threshold



Matrix elements of 𝑁𝛾→𝑁𝜋

Nπ in the center of mass frame with mom. mode (100)
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Matrix elements of 𝑁𝛾→𝑁𝜋

Nπ in the center of mass frame with mom. mode (110)
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Matrix elements of 𝑁𝛾→𝑁𝜋

Nπ in the center of mass frame with mom. mode (111)
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(000)

(001)
(011) (111)

Proton Neutron

Matrix elements of 𝑁𝛾→𝑁(p)𝜋(-p) with 4 lowest mom modes

Not convergent for 𝜒PT

Limitations in the comparison between lattice QCD and χPT: 
For lattice, momentum modes are limited

For 𝜒PT, photon is very timelike & 𝜒PT does not work well

large gap
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Momentum dependence of A∞

γ* π

N N

s

u

t

• Keep quasi-singular in denominator

• Taylor expansion in numerator
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Finite-volume effects

➢ Always positive and thus only 

exponentially suppressed FV effects

➢ It is crucial to replace mom. 

summation by mom. integral

After replacement, residual FV 

effects are estimated to be < 10-5 fm3
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Numerical results

24D 32Dfine PDG

Proton
𝛼𝐸
𝑁𝜋 5.65(53) 6.5(1.2)

𝛼𝐸 10.0(1.3) 9.3(2.2) 11.2(4)

Neutron
𝛼𝐸
𝑁𝜋 8.33(75) 9.8(1.5)

𝛼𝐸 9.7(1.4) 10.1(2.4) 11.8(1.1)

➢ Our results of 𝛼𝐸, in units of 10−4𝑓𝑚3

• More sophisticated study to control systematic effects

• Confirm large contributions of 𝑁𝜋 states

29

• Develop the methodology for lattice QCD computation of polarizabilities

Larger volume to have more momentum modes 

Excited-state contamination from initial and final states

Finer lattice spacing for continuum extrapolations

X. Wang, Z. Zhang, et. al., arXiv:2310.01168



Extended projects – threshold pion EW production

➢ Consider the process γ*(k)+N(p1) → π(q)+N(p2)

➢ Threshold pion production means that in the γ*N center of mass frame, pion is at threshold qμ=(Mπ,0,0,0)

• Multipole amplitude describes the transverse and longitudinal coupling of γ* to the nucleon spin

• Parameters are define as 

V. Bernard, N. Kaiser, T.-S. Lee, U.-G. Meissner, Phys. Rept. 246 (1994) 315
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Extended projects – threshold pion EW production

➢ Consider the process γ*(k)+N(p1) → π(q)+N(p2)

➢ Threshold pion production means that in the γ*N center of mass frame, pion is at threshold qμ=(Mπ,0,0,0)
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Extended projects – threshold pion EW production

➢ Consider the process W*(k)+N(p1) → π(q)+N(p2)

V. Bernard, N. Kaiser, U.-G. Meissner, PLB 331 (1994) 137



Conclusion

An interesting journey to explore nucleon properties!

Nucleon E&M polarizability Nucleon structure

Nπ rescattering Hadron spectroscopy

Pion EW production Lepton-nucleon inelastic scattering

33

New frontiers, new methodology and new findings!


