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Application of Quantum Computation  
to

Quantum Field Theory (QFT)

This talk is on

Motivation:

Quantum computation is more natural in operator formalism

Liberation from infamous sign problem in Monte Carlo

・topological term

much worse・real time 

・chemical potential

complex action

indefinite sign of fermion determinant

“ 𝑒𝑖𝑆(𝜙) ”

Typical situations w/ sign problem:



etc…

My long term goal



Today’s focus:

・degeneracy of ground states

・energy gap between ground & 1st excited states

・distribution of excited states at low levels

phase structure, mass spectrum of particles 

Quantum algorithm for energy spectrum in QFT



Today’s focus:

・degeneracy of ground states

・energy gap between ground & 1st excited states

・distribution of excited states at low levels

phase structure, mass spectrum of particles 

Quantum algorithm for energy spectrum in QFT

Desired algorithm:

(doesn’t need ground state energy itself)

efficient computation of spectrum at low levels

For this purpose, it seems inefficient to explicitly construct 

energy eigenstates one by one and measure their energies



Algorithm: coherent imaging spectroscopy

Time dependent Hamiltonian:

𝐻 𝑡; 𝜈 = 𝐻target + 𝐵sin 𝜈𝑡 ⋅ 𝑂

We’d like to know spectrum of excited energies:

𝐻target 𝑛 = 𝐸𝑛|𝑛⟩

[Senko-Smith-Richerme-Lee-Campbell-Monroe ’14]

[in preparation, MH-Ghim]



Algorithm: coherent imaging spectroscopy

Time dependent Hamiltonian:

𝐻 𝑡; 𝜈 = 𝐻target + 𝐵sin 𝜈𝑡 ⋅ 𝑂

𝑃(𝜈) ≔ |⟨0|𝒯𝑒−𝑖∫ 𝑑𝑡 𝐻 (𝑡;𝜈) 0 |2

We’d like to know spectrum of excited energies:

𝐻target 𝑛 = 𝐸𝑛|𝑛⟩

small if 𝜈 ∼ 𝐸𝑛

Survival probability of ground state after some time:

[Senko-Smith-Richerme-Lee-Campbell-Monroe ’14]

[in preparation, MH-Ghim]

Scanning various values of 𝜈 → spectrum!



Implementation in Lattice Schwinger model

Gapped for any 𝜃

(details & more plots later)

Parity SSB at 𝜃 = 𝜋 (for ∞-vol.)

preliminary

・vacuum prepared by adiabatic state preparation

・implemented on simulator

・continuum/thermodynamic limits not taken



2. Schwinger model as qubits

Plan

4. Summary 

1. Introduction

3. Algorithm for energy spectrum



QFT as Quantum Bit (=Qubit) ?

Qubit = Quantum system w/ 2-dim. Hilbert space
(ex. up/down spin system)

Quantum computer = a combination of qubits

To put QFT on quantum computer,

1. “Regularize” Hilbert space (make it finite-dim.!)

2.  Rewrite the regularized theory in terms of qubits



QFT as Quantum Bit (=Qubit) ?

Qubit = Quantum system w/ 2-dim. Hilbert space
(ex. up/down spin system)

Quantum computer = a combination of qubits

To put QFT on quantum computer,

1. “Regularize” Hilbert space (make it finite-dim.!)

2.  Rewrite the regularized theory in terms of qubits

Schwinger model  =
the simplest nontrivial example 
w/ gauge interaction in this context

1+1d gauge field has only 1-dim. physical Hilbert sp.

Lattice fermion has finite-dim. Hilbert sp. 



Schwinger model w/ topological term

Using “chiral anomaly”, the same physics can be studied by

Continuum:

[Fujikawa’79]

[used in Nagano & Okuda’s talks]

used here



Schwinger model w/ topological term

Using “chiral anomaly”, the same physics can be studied by

Continuum:

Taking temporal gauge 𝐴0 = 0,

Physical states are constrained by Gauss law:

[Fujikawa’79]

( Π = ሶ𝐴1)

[used in Nagano & Okuda’s talks]

used here



Lattice theory w/ staggered fermion
Hamiltonian:

Commutation relation:

Gauss law:



Eliminate gauge d.o.f.
1. Take open b.c. & solve Gauss law:

2. Redefine fermion to absorb 𝜙𝑛:

Then,

This acts on finite dimensional Hilbert space



Going to spin system

This is satisfied by the operator:

[Jordan-Wigner’28]

“Jordan-Wigner transformation”

(𝑋𝑛, 𝑌𝑛, 𝑍𝑛: 𝜎1,2,3 at site 𝑛)



Going to spin system

This is satisfied by the operator:

[Jordan-Wigner’28]Now the system is purely a spin system:

Qubit description of the Schwinger model !!

“Jordan-Wigner transformation”

(𝑋𝑛, 𝑌𝑛, 𝑍𝑛: 𝜎1,2,3 at site 𝑛)
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3. Algorithm for energy spectrum



Atmosphere (?) of using quantum computer…

Screenshot of IBM Quantum Experience:

Suppose we’d like to measure the state:  𝐻 0 =
1

2
(|0⟩ + |1⟩)

Output of 1024 times measurements (“shots”) :

Idea: express physical quantities in terms of “probabilities”
& measure the “probabilities”



Algorithm: coherent imaging spectroscopy

Time dependent Hamiltonian:

𝐻 𝑡; 𝜈 = 𝐻target + 𝐵sin 𝜈𝑡 ⋅ 𝑂

𝑃(𝜈) ≔ |⟨0|𝒯𝑒−𝑖∫ 𝑑𝑡 𝐻 (𝑡;𝜈) 0 |2

We’d like to know spectrum of excited energies:

𝐻target 𝑛 = 𝐸𝑛|𝑛⟩

small if 𝜈 ∼ 𝐸𝑛

Survival probability of ground state after some time:

[Senko-Smith-Richerme-Lee-Campbell-Monroe ’14]

[in preparation, MH-Ghim]

Scanning various values of 𝜈 → spectrum!



Features of the algorithm
𝐻 𝑡; 𝜈 = 𝐻target + ∫ 𝑑𝑥 𝐵(𝑥)sin 𝜈𝑡 ⋅ 𝑂(𝑥)

・can directly consider high energy regime

Advantage:

・can filter quantum number by choosing ops.

(likely more costly for higher energy)

ex.) if we want to know only mass spectrum for trans. inv. theories

→ take 𝐵(𝑥) to be constant



Features of the algorithm
𝐻 𝑡; 𝜈 = 𝐻target + ∫ 𝑑𝑥 𝐵(𝑥)sin 𝜈𝑡 ⋅ 𝑂(𝑥)

・can directly consider high energy regime

Advantage:

Disadvantage:

・not good for precise estimation 

・can filter quantum number by choosing ops.

・∃ambiguity on whether transition occurred

(likely more costly for higher energy)

ex.) if we want to know only mass spectrum for trans. inv. theories

→ take 𝐵(𝑥) to be constant



Coherent imaging spectroscopy in Schwinger model

𝑚𝑒𝑖𝜃

parity
critical

unique gapped

Expected phase diagram:

−0.33?

Let’s consider time evolution by (perturbed by “ ത𝜓𝛾5𝜓”)



Result of constant perturbation

𝑚 = 0.1 (gapped for any 𝜃) 𝑚 = 0.6 (SSB for 𝜃 = 𝜋, 𝑁 → ∞)

preliminary

・vacuum prepared by adiabatic state preparation

・implemented on simulator

・continuum/thermodynamic limits not taken

𝑔 = 1, 𝑁 = 11, 𝑤 = 1, 𝐵𝑝 = 0.025𝑔, 𝑇 = 30, 800 Trotter steps, 20000 shots



Space modulated perturbation for 𝑚 = 0.1

𝑘 = 0

preliminary

(𝑔 = 1, 𝑁 = 11, 𝑤 = 1, 𝐵𝑝 = 0.025𝑔, 𝑇 = 30, 800 Trotter steps, 20000 shots)

To get moving particles, turn on space modulation:

𝑘 =1 𝑘 =2 𝑘 =3

capturing the momentum modes 



Summary



Summary
Quantum algorithm for energy spectrum in QFT

・Algorithm = Coherent imaging spectroscopy:

𝐻 = 𝐻target + 𝐵sin 𝜈𝑡 ⋅ 𝑂 𝑡; 𝜈

𝑃(𝜈) ≔ |⟨0|𝒯𝑒−𝑖∫ 𝑑𝑡 𝐻 (𝑡;𝜈) 0 |2

Gapped for any 𝜃 Parity SSB at 𝜃 = 𝜋 (for ∞-vol.)

・Implemented in Schwinger model: 

Thanks!



Appendix 



“Regularization” of Hilbert space

Hilbert space of QFT is typically ∞ dimensional

Make it finite dimensional!

・Fermion is easiest (up to doubling problem)

Putting on spatial lattice, Hilbert sp. is finite dimensional

・scalar
Hilbert sp. at each site is ∞ dimensional

・gauge field (w/ kinetic term)

no physical d.o.f. in 0+1D/1+1D (w/ open bdy. condition)

∞ dimensional Hilbert sp. in higher dimensions

(need truncation or additional regularization)



Accessible region by analytic computation

・Massive limit:

・Bosonization:
[Coleman ’76]

The fermion can be integrated out

ℒ =
1

8𝜋
𝜕𝜇𝜙

2
−

𝑔2

8𝜋2
𝜙2 +

𝑒𝛾𝑔

2𝜋3/2
𝑚 cos(𝜙 + 𝜃)

the theory becomes effectively pure Maxwell theory w/ 𝜃

&

exactly solvable for 𝑚 = 0

small 𝑚 regime is approximated by perturbation

&



Map of accessibility/difficulty

𝑚

𝜃

Pure
Maxwell

Monte Carlo

solvable

Mass
perturb.

We can make

prediction here



Choice of boundary conditions

Gauss law:

Open b.c. Periodic b.c.

・𝐿𝑛 = (fermion op.) ・one of 𝐿𝑛’s remains

dim ℋphys < ∞ dim ℋphys = ∞

additional truncation needed

・𝜃-periodicity is lost ・∃𝜃-periodicity 

・momentum not conserved ・momentum conserved



Even 𝑁 or odd 𝑁?

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2

odd site

even site

x x x x x x
・・・𝜒1 𝜒2 𝜒𝑁−2 𝜒𝑁−1𝜒3𝜒0

・Usually even 𝑁 is taken (p.b.c. allows only even 𝑁)

Staggered fermion:

・Open b.c. allows both but parity is different: 𝜒𝑛 → 𝑖 −1 𝑛𝜒𝑁−𝑛−1

even 𝑁 changes

𝑛 mod 2

odd 𝑁 invariant

ത𝜓𝛾5𝜓 ∼

𝑛

−1 𝑛 (𝜒𝑛
†𝜒𝑛+1 − h. c. )ത𝜓𝜓 ∼

𝑛

−1 𝑛 𝜒𝑛
†𝜒𝑛

invariant

invariantflipped

flipped

Odd 𝑁 seems more like the continuum theory?



Constructing ground state

∃various quantum algorithms to construct vacuum:

・adiabatic state preparation 

・algorithms based on variational method

・imaginary time evolution etc…

Here, let’s apply

adiabatic state preparation 



Adiabatic state preparation

If 𝐻𝐴(𝑡) has a unique ground state w/ a finite gap for ∀𝑡,
then the ground state of 𝐻target is obtained by

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

・ 𝐻𝐴 0 = 𝐻0, 𝐻𝐴 𝑇 = 𝐻target

Step 3: Use the adiabatic theorem

vac = lim
𝑇→∞

𝒯 exp −𝑖න
0

𝑇

𝑑𝑡 𝐻𝐴 𝑡 |vac0⟩

Step 2: Introduce adiabatic Hamiltonian 𝐻𝐴 𝑡 s.t.

・
𝑑𝐻𝐴

𝑑𝑡
≪ 1 for 𝑇 ≫ 1



Comment on adiabatic state preparation

Advantage:

・costly — likely requires many gates 

・guaranteed to be correct for 𝑇 ≫ 1 & 𝛿𝑡 ≪ 1
if 𝐻𝐴(𝑡) has a unique gapped vacuum

Disadvantage:

・can directly get excited states under some conditions

・doesn’t work for degenerate vacua

more appropriate for FTQC than NISQ 

("systematic error") ∼
1

𝑇 gap 2



Coherent imaging spectroscopy in Ising model

Known phase diagram:

𝐻Ising = −𝐽 

𝑛=1

𝑁−1

𝑍𝑛𝑍𝑛+1 − ℎ

𝑛=1

𝑁

𝑋𝑛 −𝑚

𝑛=1

𝑁

𝑍𝑛

[working in progress, MH-Ghim]

𝐻Ising + 𝐵sin 𝜈𝑡 

𝑛=1

𝑁

𝑌𝑛

ℎ/𝐽

m/𝐽

1

critical
𝒁𝟐

Let’s consider time evolution by

unique gapped



Coherent imaging spectroscopy in Ising model (cont’d)

𝑁 = 8,𝑚/𝐽 = 0.1 （|0⟩ by adiabatic state preparation)

[working in progress, MH-Ghim]


