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https://mlphys.scphys.kyoto-u.ac.jp/en/
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- Apply machine learning techniques on LQCD
(To increase what we can do)

- Find physics-oriented ML architecture

- Making codes for LQCD + ML

https://miphys.scphys.kyoto-u.ac.jp/en/


https://mlphys.scphys.kyoto-u.ac.jp/en/
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https://github.com/akio-tomiya/LatticeQCD.jl

Other projects are going (with me)

“Program for Promoting Researches
on the Supercomputer Fugaku”

e Simulation for basic science: approaching the new quantum era
* PIl: Shoji Hashimoto

e Search for physics beyond the standard model using large-scale lattice QCD simulation
and development of Al technology toward next-generation lattice QCD

e PIl: Takeshi Yamazaki
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Outline of my talk

Lattice QCD?

Machine learning?

1. Configuration generation in LQCD
1. Self-learning MC with gauge covariant net
: CASK: Gauge symmetric transformer
3. Flow based sampling
2. Reduction of cost in measurements
4, Bias corrected approximation
5. Control variates

Machine learning
for Lattice QCD 2




e | am writing a review paper for machine learning
applications in lattice QCD
It should be appeared in JPSJ, Journal of the
Physical Society of Japan, and arXiv(?) soon (| hope!)



What is Lattice QCD?



Introduction

Lattice QCD = QCD on discretized spacetime = calculable

»QCD (Quantum Chromo-dynamics) in 3 + 1 dimension ssmecmonss,
.. | "
S = Jd“x[ — Etr F,F"+ 1//(1@ + gA — m)t//]

F,=0dA,—d,A, —iglA,A] |

Non-comm

utable version of (quantum) electro-magnetism

e This describes inside of nuclei& mass of
hadrons, equations of states etc

 We want to evaluate expectation values with
following integral,

(0) ~ | DADFDyeSO

'\ PG Itis difficult. Let’s use lattice!

supercurrent Baryon Chemical Potential us
ase, Mixed phase




Intro: Lattice QCD& Monte-Carlo  *° ™

Numerical integral (via trapezoidal type) is impossible

1
S = Id“x[ Etr F,F,,+ 1/7(@ —1gA + Wl)l//]

1
Sy =a* T [ zRew U +9(0 -+ m)y]

They are "same” up to irreverent operators Re U, ~ —1 —g a4F2 + 0(a®)
(= higher dimensional operators) 2

= cutoff, a_l e Introduce cutoff a~! =lattice regularization a,

e Results has discritized error O(a) or O(a?)
(These can be removed by extrapolation)

* We can use Monte Carlo for LQCD, as same as Ising
model!




Intro: Lattice QCD& Monte-Carlo  *° ™

LQCD = Non-perturbative calculation of QCD

#QCD in Euclidean 4 dimension~

1 1 |
-> <@> — [QZU@V/@W SOU) =EJ§ZU6 Sgaugel U det(D+m)@(U)

iG] - - B - T A - _ - N X . - ety - -

LatticeQCD

‘U3‘ SU(3) (3x3 unitary)  'mportance sampling!
on bonds

Ys . ' U, Sagnple . randomly according to
o
g As same as Ising model

Lattice Gauge action for Imaginary time

6 1
Sauge = = (1 - ERe Tr[U, U,U] Uj]) — [d“ |tr F,,F,, + O(a®)]

vol



Lattice QCD code for generic purpose

Open source LQCD code in Julia Language Sk et

Q. julia | ang? A. Fast as fortran, easy as Python
ﬁ Lattlceucndl Open source LQCD code (Julia Official package, v1.0)

Machines: Laptop/desktop/Jupyter/Supercomputers (almost everywhere)
Advantage: Portability, no-explicit compile, fast, machine learning friendly

Functions: 4d, SU(Nc)-heatbath, (R)HMC, Self-learning HMC, SU(Nc) Stout, Z2 gauge,
Dynamical Staggered, Dynamical Wilson, Dynamical Domain-wall
Measurements (chiral condensate, topological charge, etc)

[ 1.D la bi )
. Downl lia binar
Start LQCD ownload Julia binary .
. : 2. Add the package through Julia package manager
IN 5 min
\ 3. Execute! )

https://github.com/akio-tomiya/LatticeQCD.jl

SU(3), Quenched, L—4"4 Heatbath Energy density at t = 0.25 x 10 > s

|Polyakov loop|
o o o 9o 0o

Arg(Polyakov loop)
Vo= O =N



https://github.com/akio-tomiya/LatticeQCD.jl

Introduction

Procedure of Lattice QCD, 3 steps
1.Production

- Fix lattice parameters, lattice size and cutoff a (=fix a coupling /), quark mass

- Sample gauge configurations from ez (on Supercomputers)
- large dimensional linear equations have to be solved, many times

2.Measurement

- Calculate obsevables on each configuration

- e.g. Quark condensate. w ~ tr (D + m)~!
- Some observable requires huge numerical resources
- Calculate on Supercomputers/workstation

3.Analysis, continuum limit

- Take average of observables, put statistical error bar (other errors as well)

- Extrapolate a — 0
- (This is done on a laptop)



Introduction

Procedure of Lattice QCD, 3 steps
1.Production

- Fix lattice parameters, lattice size and cutoff a (=fix a coupling /), quark mass

- Sample gauge configurations from ez (on Supercomputers)
- large dimensional linear equations have to be solved, many times

ML can be
useful

2.Measurement

- Calculate obsevables on each configuration

- e.g. Quark condensate. w ~ tr (D + m)~!
- Some observable requires huge numerical resources
- Calculate on Supercomputers/workstation

3.Al - Huge numerical cost
- Production (solver, sampling topological sectors)
- Measurements (sover)
- Machine learning can help both of them (probably)



Machine learning?
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What is machine learning?

E.g. Linear regression € Supervised learning

Data: D = {(x(l),y(l)), (x®), y@h, }

o . X

Akio Tomiya



What is machine learning?

E.g. Linear regression € Supervised learning

Data: D = {(x(l),y(l)), (x®), y@h, }

1
f{a,b,c}(x) = ax*+bx+c E = 5 Z
d

a, b, c, are determined by minimizing £
; (training = fitting by data)

Akio Tomiya



What is machine learning?

E.g. Linear regression € Supervised learning

Data: D = {(x(l),y(l)), (x®), y@h, }

V1

f{a,b,c}(x) = ax’+ bx+c

- X

2
f{ a,b,c}(x(d)) _ y(d)

1
f{a,b,c}(x) = ax*+bx+c E = 5 Z
d

a, b, c, are determined by minimizing £
. (training = fitting by data)

Akio Tomiya
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What is machine learning?

E.g. Linear regression € Supervised learning

Data: D = {(x(l),y(l)), (x®), y@h, }

V1

f{a,bac}(x) = ax’+ bx+c

Use of fitted function =

Inference
> X

X0
Now we can predict y value which not in the data

In physics language, variational method

Akio Tomiya



What is the neural networks?

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

6x6

&

Input

How can we formulate this “Black box”?
Ansatz?




What is the neural networks?

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

(0.000 ) Ap -
’ robabilit
6x6 0.000 y
0.8434
o736 | _—
= lo03456|— X
: 0.64 I B =
Image is a vector | -5 Regard >
(6x6=36 dim) | : | 1 2 3 4
A jRegard
36 dimension

4
®

‘ Images of “2”

10 dimension

yno

BT $
O

Images of “1”

Image recognition = Find a map between two vector spaces




What is the neural networks?

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

(0.000
6x6 0.000
0.8434
_| 0756 | _—
~lo34s6|= A
: 0.64
Image is a vector | ;,5; Regard
(6x6=36 dim) | :
A

36 dimension Neural net

<
‘.

’ Images of “2”

Input

Y S
Q

Images of “1”




What is the neural networks?

Affine transformation + element-wise transformation

Layers of neuralnets [ =23.... L. 70 =% W. b arefit parameters

Z(l) — W(l)ﬁ’(l—l) + Z)(l) Affine transformation

(b=0 called linear transformation)

u(l) _ (l)(Z(l)) Element-wise (local) non-linear.
i i hyperbolic tangent-ish function

A fully connected neural net = composite function (Linear&non-linear)
(%) = 6OWOOWDT + p @) 4+ p )

0 is a set of parameters: wg), bl.(l),

- Input = vectors, output = vectors
- Neural net = a nested function with a lot of parameters (W, b)
- Parameters (W, b) are determined from data (fitting/training)

Neural network = map between vectors and vectors
Physicists terminology: Variational ansatz



What is the neural networks?

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

(0.000 ) AP .
' robabilit
6x6 0.000 y
0.8434
10756 | _—
~ 03456 |— X
i o | - H =
Image is a vector | ;,5; Regarding .
(6x6=36 dim) | : 1 ‘ 2 3 4
A fo(X) = a<3>(W<3>a<2>(W<2>7+ D+ o Regard
36 dimension 7 Input Neural net “0” = (1,0,0,..)
“1” = (0,1,0,...)
0 “2” =(0,0,1,...)
Images of “2”
. Input Output =(0,0,..., 1)

R variational
.Images of “1” map
Fact: Neural network can mimic any function D‘-‘eP Learning

- - .- - and Physics
= A systematic variational function.

In this example, NN mimics image (36-dim vector) and label (10-dim vector)




What is the neural networks?

Neural network have been good job
Protein Folding (AlphaFold2, John Jumper+, Nature, 2020+), Transformer neural net

100

Score ALPHAFOLD 2
“ Higher is bett o
I g e r I S e e r € / ! '—\\ cov:g:wcc
A.gﬁ“' N
eco | . ALPHAFOLD [} “
a t
O Grerecs = sm‘? |1
40 Input sequencd (8 blocks) | | (" Y
1944 t
NS :\ o —_— 3D slruc(uln:
| frrc)
20 . |
0 « Recycling (three times ]
CASP7 CASP8 CASP9 CASP1I0O CASP11  CASP12 CASP13 CASP14
2006 2008 2010 2012 2014 2016 2018 2020

CASP

Neurallg_e2twork wave function for many body (Carleo Troyer, Science 355, 602 (2017) )

Variational energy
- (lower is better)
10—4 | | |

#1of u%its élc o 8 16 32

Neural net + “Expert knowledge” — Best performance



Applications on LQCD

Machine learning for lattice QCD

1. Configuration generation in LQCD
1. Self-learning MC with gauge covariant net
2. CASK: Gauge symmetric transformer
3. Flow based sampling
2. Reduction of cost in measurements
4. Bias corrected approximation
5. Control variates

| omitted a lot of important works due to the time limit
(see [1])

[1] https://conference.ippp.dur.ac.uk/event/1265/contributions/7074/attachments/5662/7534/plenary.pdf




Machine learning + LQCD?



Akio Tomiya

Introduction

Monte-Carlo integration is available

M. Creutz 1980

. . 1
Target integration — —Sel U1 SolU1 = S,uee U] — log det(D[U] + m)
= expectation value (0) = 7 DUe 6U) ' o

Monte-Carlo: Generate field configurations with “P[U] « ¢ >:tlUl» @ _ It gives expectation value

HMC: Hybrid (Hamiltonian) Monte-Carlo | .~ Sy = Lo 442 4 xy)
De-facto standard algorithm (Exact) | 2

Random momentum + EOM
= Random walk like algorithm




Introduction

Generative neural net can make human face images

Neural nets can generate realistic human faces (Style GAN2)

o @ [ This Person Does Not Exist X +

- C’k & thispersondoesnotexist.com r VY RO

3 Apps 8 AkioTOMIYA & Google drive [l MIT-LAT B Deep Learningan.. /4 Zenn| 70757..

Realistic Images can be generated by machine learning!
Configurations as well? (proposals ~ images?)



Introduction

Machine learning for LQCD, LQCD with machine learning

* Machine learning/ Neural networks

e data processing techniques for 2d/3d data in
the real world (pictures)

* (Variational) Approximation (~ fitting)

* Generative NN can generate images/pictures

e [attice QCD is more complicated than pictures

1

1{ T

1
: : ot e T it ! ﬁ*fﬁiﬁﬁ# o)
* 4 dimension/relativistic i S

Jr
T i{ : ‘L}‘L AT#“J’**U?;*

4 ¥

 Non-abelian gauge symmetry (difficult)

* Fermions (anti-commuting/fully quantum)
-> Non-local effective correlation in gauge field

 Exactness in MCMC is necessary!

e Q HOW can we deal Wlth'? http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/



Introduction

Akio Tomiya

Configuration generation with machine learning is developing

Year | Group ML | Dim. | Theory | Gaugesym | Exact? Fermion? Lattice2021/ref
2017| AT+ +R|-E|;|\I>|Ao 2d Scalar - No No arXiv: 1712.03893
2018| K.Zhou+ | GAN | 2d Scalar - No No arXiv: 1810.12879
2018 | J. Pawlowski + fm\‘c 2d Scalar - Yes? No arXiv: 1811.03533
2019 MIT+ | Flow 2d Scalar - Yes No arXiv: 1904.12072
2020 MIT+ Flow 2d U(1) Equivariant Yes No arXiv: 2003.06413
2020 MIT+ Flow 2d SU(N) | Equivariant Yes No arXiv: 2008.05456
2020 AT+ |SLMC| 4d SU(N) | Invariant Yes Partially arXiv: 2010.11900
2021 | M. meavidovic+ | A-NICE | 2d Scalar - No No arXiv: 2012.01442
2021 |S. Foreman | L2HMC| 2d U(1) Yes Yes No

2021| AT+ |SLHMC| 4d QCD | Covariant Yes YES!

2021 D:-bg% Flow 2d | Scalar, O(N) - Yes No

2021 MIT+ | Flow | 2d | Yukawa - Yes Yes

2021/ S Foreman, | Flowed | 2d U(1) | Equivariant| Yes | No but compatible | arXiv: 2112.01586
2021| XY Jing | Neura 2d U(1) | Equivariant | Yes No

2022 | J. Finkenrath | Flow 2d U(1) | Equivariant Yes |Yes (diagonalization)|  arxiv: 2201.02216
2022 MIT+ Flow 2d U(1) Equivariant Yes Yes (diagonalization) arXiv:2202.11712

This is not complete list. Related to lattice field theory and biased

+ ...




Applications on LQCD

Machine learning for lattice QCD

1. Configuration generation in LQCD
=1, Self-learning MC with gauge covariant net
2. CASK: Gauge symmetric transformer
3. Flow based sampling

[1] https://conference.ippp.dur.ac.uk/event/1265/contributions/7074/attachments/5662/7534/plenary.pdf




Configuration generation in LQCD "™

Convolution layer = trainable filter

Filter on image

Laplacian filter

O 110
>1< 1 1-2] 1 Edge detection
O/ 110

(Discretization of 0°)

If input is shifted, output is shifted= respets transnational symmetry

Convolution layer

B , Fukushima, Kunihiko (1980)
o Trainable filter Zhang, Wei (1988) + a lot!

Edge detection Gaussian filter
W11 | W12 | W13 e
I 1
L SmO%thln : 1_6 2 4 o
W21 [ W22 | W23 — (Gaussian filter) T
W31 | W32 | W33 | (Training and data determines what kind of filter is realized)

Extract features

Convolution respects transnational symmetry as well



Configuration generation in LQCD "™

Smearing = Smoothing of gauge fields
Coarse image Smoothened image

We want to smoothen gauge field configurations
with keeping gauge symmetry

APE-type smearin
Two types: P 9 M. Albanese+ 1987

Stout-type smearing e



Configuration generation in LQCD "™

Smearing ~ neural network with fixed parameter!

. ) ] ] AT Y. Nagai arXiv: 2103.11965
General form of smearing (~smoothing, averaging in space)

z,(n) =wU,(n) + w,&[U]  Summation with gauge sym

fate\ — A local function
U, m) = A(z,(n)) (Projecting on the gauge group)

It has similar structure with neural networks,

[ __ D)., (I-1 1) Matrix product
Zi( = Wl§' )uj( ) T bi( ) vector addition

j .
D _ (Do element-wise (local)
l/tl.( ) = 6( )(Zi( )) Non-linear transf.
Typically o ~ tanh shape

(Index i in the neural net corresponds to n & g in smearing. Information processing with NN is evolution of scalar field)

Multi-level smearing = Deep learning (with given parameters)

As same as the convolution, we can train weights.



Configuration generation in LQCD "™

Simulation parameter

e Self-learning HMC (1909.02255, 2021 AT+), $+LatticeQCD.jl
an exact algorithm

Construct effective * Exact Metropolis test and MD with effective action

action using operators

with U e Target S :m = 0.3, dynamical staggered fermion, Nf=2,
A _________________________ L L* = 4% suU@), f = 2.7. In Metropolis test
B o Effective action S in Molecular dynamics
- .
P e Same gauge action
= S n)

o m.r = 0.4 dynamical staggered fermion, Nf=2

Gauge covariant neural net
(Adaptive smearing)

iV 910311965 * Gauge covariant neural network (adaptive stout)
- ___________ e Bare U is fed, adaptively smeared U eff ig pop out

S — ___________ o U links are replaced by U in Dy,

* “Adaptively reweighted HMC”



Configuration generation in LQCD

Akio Tomiya

Application for the Full QCD in 4d

2500 1

2000 1

1500 1

Count

1000 -

500 -

0.70
Plaquette

3000 -
2500

. 2000 1

c

2

S 1500
1000 1

500 -

0

[

L T———

0.38

0.40

0.42

0.44

0.46

Chiral condensate

0.48

0.50

AT Y. Nagai arXiv: 2103.11965

|  HMC I| |
40001 | SLHMC
J
., 3000 1
c
3 i
o
© 2000 - I
]
|
1000 - ‘ A
. L3 ’ i ‘ : !
O . PR RS B BELRS I" . .
-1.0 -0.5 0.0 0.5 1.0

Polyakov loop

Expectation value Acceptance = 40%

Algorithm Observable Value
HMC Plaquette 0.7025(1)
SLHMC Plaquette 0.7023(2)
HMC |Polyakov loop| 0.82(1)
SLHMC |Polyakov loop| 0.83(1)
HMC Chiral condensate 0.4245(5)

SLHMC  Chiral condensate 0.4241(5)

What is showed?
Covariant net can mimic/absorb mass difference
SLHMC (~Adaptive reweighting) works



Applications on LQCD

Machine learning for lattice QCD

1. Configuration generation in LQCD
1. Self-learning MC with gauge covariant net
=2  CASK: Gauge symmetric transformer
3. Flow based sampling

[1] https://conference.ippp.dur.ac.uk/event/1265/contributions/7074/attachments/5662/7534/plenary.pdf




Configuration generation in LQCD "™

Attention layer used in Transformers (GPT, Bard)  axi:1706.0s762

Output @} OpenAl
Probabilities
| Softtmax ) ChatG PT

| Linear |
3

(. )
| Add & Norm |}~
Feed

For\;vard
() ‘ =
Feed Attention
Forward D D) N x
A ‘ J
Nx | _—{Add & Norm J [ Ad,\j:;:gm .
Multi-Head Multi-Head
Attention Attention
— ) = Attention layer (in transformer model) has been
Positional Positional . " '
encoding (P ¢ =i introduced in a paper titled
Input Output - -
Embé;ddmg Embfding “Attention is all you need” (1706.03762)
- o State of the art architecture of language
(shifted right)

processing.
Attention layer is essential.

Figure 1: The Transformer - model architecture.



Configuration generation in LQCD "™

Attention layer can capture non-local correlations axi:170s.0s7:2
Modifier in language can be non-local

rel T

Eg.| am Akio Tomiya living in Japan, who studies machine learning and physics

In physics terminology, this is non local correlation.

The attention layer enables us to treat non-local correlation
with a neural net!

Simplified version of Attention/Transformer

| Skip connection

I »| WX | M = W WKX)T
/" | Non-local product v
X = am B WKX (Non-local
Akio correlation)
. — VY x Add & normalization |— X’
| ReLUM)W'X | — T
Weighted
Array of S
word vectors spin
Transf.
Word~\{ector (Trainable) Self-Attention
X: matrix T

hese can be reieated



Configuration generation in LQCD "™

Transformer shows scaling lows (power law) rXiv: 200108361
7 4.2
6 —— L=(D/5.4-1013)700% | 5.6 —— L=(N/8.8-101%)"0076
3.9
4.8
o 5
2 3.6 4.0
- 4
® 3.3 3.2
= 3
3.0
2.4
L= (Cmm/2.3 . 108)—0'050
2 . - - - 2.7 Y . - - .
107 1077 107> 103 10°! 10! 108 109 10° 107 107
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute’ used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

- Transformers requires huge data
(e.g. GPT uses all electric books in the world)
Because it has few inductive bias (no equivariance)
- It can be improved systematically



Configuration generation in LQCD "™

CASK?

Cask stout
(Whisky Barrel-Aged Stout beer)
= stout beer In a cask

IRISH COFFEE STOUT |33

CASK | BARREL AGED IMPERIAL ]2;9‘7
~ AGED IN paRR

ELS FROM CLONAKILTY DISH




Configuration generation in LQCD ** ™™

CASK = Stout kernel, gauge covariant transformer for LQCD

Cask stout
(Whisky Barrel-Aged Stout beer)
= stout beer In a cask

Add and la stout ) i
Covariant attention block

T CASK = Covariant Attention

Self-Attention with Stout Kernel
_ It is named in an obvious reason&




Configuration generation in LQCD "™

Collection of ML/LQCD

Lattice ML(Framework) ML/Lattice
i Phys. Rev. D 107, 054501 AT+
- Demon method (inverse MC -
ar)giv1508.04986 AT-?— Linear regression o Qauge inv. SLMC
- Hopping parameter Trivializing with SD eq a la Luscher
2212.11387 AT+
Stout & Flow CNN/Equivariant NN Gauge covariant nzeo’c2 .
| - Global symmetric
m(ene(l)r:r:‘:glgd 2 Transformer - GPT Transformer 2306.11527 AT+

- CASK (this talk) (g8




Configuration generation in LQCD "™

Ildea: Attention must be invariant

Attention matrix in transformer ~ correlation function (with block-spin transformed spin)

-> we replace it with “correlation function for links” in a covariant way

y . T
Transformer for Kondo spins K ai,u, JU Re tr UM(Z)U,M (J )
a.~S.-S. 1 | S — — —
! L
T / U'  notinvariant

~ (with activation)

. meematom Y (cannotbe used)
_______ OO0 ]

l J
invariant [JT invariant under
under global O(3) local SU(N)
— T — . —>_|_—> é. .
In total, output is covariant Qi in ™~ Re tr V, (l)U T(] ) (with activation)

2310.13222 AT+,2306.11527 AT+ In total, output is covariant WIP AT+




Configuration generation in LQCD "™

Structure of gauge symmetric attention using stout U274

Procedure in three steps: Loop operator
0. U™ : Input configuration/Links projected on Lie algebra

1. 3 types of (trainable) stout [1] -> U Q Yk UY (they have different weights)
U® = exp[p®LIUMU™  a=QKYV
t weights

2. Construct attention matrix (Rectangular Wilson loop) using U QUK > Qs %)

Q T
A\V \./UK ~ Cl(*,*) (

with activation)

3. Construct “stout smeared” [1] link with wei A« ) and Uv,U (as matrix mult)

U out — cXp [Cl(*,*)L[ U V]] U n Covariant

(This can be extend to have multi-head trivially) \_/ Loop operator

projected on Lie algebra




Configuration generation in LQCD "™

Physically symmetric Attention layer for LQCD 1] 2021 AT+

Attention layer can capture global correlation
Equivariance reduces data demands for training

. Capturable Data C
9
Equivariance Gauge” correlation demmands Applications
Convolution | ;, P | Nor\r/ﬁji’zﬁAl}llow
(cequvariant | Yes o= | Yes = | Local @ | Low = SLHMC
layers) 2103.11965 AT+
Standard . . | . ChatGPT
Attention layer No &) No & |Global :=| Huge @& | cemn
arXiv:1706.03762 Vision Transformer
Equivariant | . | Kondo system
attention for | YeS = No & |Global - = ? (2310.13222 AT+
spin 2306.11527 AT+)
Equivariant | |
attention for Yes & Yes <& |Global = ? WIP AT+
gauge




Configuration generation in LQCD "™

Simulation parameter WIP AT

Construct effective

o Self-learning HMC (1909.02255, 2021 AT+), $+LatticeQCD.jl

action using operators an exact algorithm
with U
4 * Exact Metropolis test and MD with effective action
Ut . .
S N e Target S : m = 0.3, dynamical staggered fermion,
P Nf=2, L* = 4% SU(@), # = 2.7. In Metropolis test
[Rssmsroms oo e Effective action S in Molecular dynamics
t e Same gauge action
LA o m.x = 0.4 dynamical staggered fermion, Nf=2
4
T — e CASK with plaquette covariant kernel
T
— e Attention = 7-links rect staple (=3 plaquette)
b ol - » U links are replaced by U in Do

_________________________ ___________ o “Adaptive|y reweighted HMC”



Configuration generation in LQCD ** ™™

Loss = difference of action WIP AT+

Loss w.r.t. training

100
10} { * | oss decreases along
= . with the training steps
) L:
s _
s | o it works as same as the
5 oot stout (covariant net)
0.001 — —
| | o Gain?
0.0001 : : : :
0 200 400 600 800 1000
epoch
= MC steps
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Configuration generation in LQCD

Attention blocks improve acceptance WIP AT

Acceptance rate w.r.t. training

0.3 | | | | | | | T e

= coarantney | ® IN terms of acceptance,
g o2f CASK has gain
% 0.15 -
: * |tis still improving

0.1

0.05 STOUT —— A n .
CASK2 —— | @ Appllcatlon?
CASK3 ——
0 | | | | | | (I:ASK 4 |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
epoch
= MC steps



Applications on LQCD

Machine learning for lattice QCD

1. Configuration generation in LQCD
1. Self-learning MC with gauge covariant net
2. CASK: Gauge symmetric transformer
- 3. Flow based sampling

[1] https://conference.ippp.dur.ac.uk/event/1265/contributions/7074/attachments/5662/7534/plenary.pdf
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Configuration generation in LQCD

Change of variables makes problem easy

Evaluation of Path integral

[nge -l2lo[p] s hard

(1M dimensional integration)
a lot of cross terms

Back to high school,

- Integration by parts
~»*Change of variables

Are there any good “Change of
variables” for QFT?
(to remove correlation)

arxiv 1904.12072, 2003.06413, 2008.05456 and more.



Configuration generation in LQCD "™

Change of variables makes problem easy

[que_s[‘ﬁ]O[qb] — JDZ

QFT

0
det —¢

07

=] acolv)ian=J

e—S[¢[z]]0[¢[Z]]

Selz]l = S[@plz]] — log J[z]

= JDze_ O0[p[z]]

If this does not have position dependence,
integration is easy (trivially done on machine)

_ “Trivializing map”

arxiv 1904.12072, 2003.06413,



Configuration generation in LQCD "™

Viewpoint: Change of variables makes problem easy
Simplest example: Box Muller { 7 = e—%(x2+y2)

Change
tan @ = y/x of variables

> = 1.2 1.2 2 l
[ de dye 2" 727 — l[ d@J dz
—o T 00 2 Jo 0

Target integral: hard Easy

Change of variables sometimes problem easier (this case, it makes the measure flat)

RHS is flat measure 51 ~ (0,271')

—We can sample like right eq.

(uniform) 52 ~ (O,l)

We can reconstruct X = 7 COS 9 9 — 51

a field config x,y
for original theory

like right eq. y —=r Sin 6 r = \/_2 log 52

arxiv 1904.12072, 2003.06413, 2008.05456 and more.




Configuration generation in LQCD "™

Gradient flow as a trivializing map

Trivializing map for lattice QCD has been demanded...

O[T T T oo

x€100 ye100 z€100 r€100

T o Flow equation (change variable)
¢ =FAP) “Trivializing map”

If the solution satisfies S(F (¢)) + In det(Jacobian) = Z gﬁ% ,

<@>=%J---[H I1 11 I1 ¢¢oi ez

x€100 yel100 z&100 t€100

It becomes Gaussian integral! Easy to evaluate!! Position independent.

However, the Jacobian cannot evaluate easily, so it is not practical.
Life is hard.

M. Luscher arXiv:0907.5491
arxiv 1904.12072, 2003.06413, 2008.05456



Configuration generation in LQCD "™

Flow based algorithm = neural net represented flow algorithm

MIT + DeepMind 2019~

1= - Z i |
I [
split 7
\\_\ZG /'( \\\Zb/ /
-1 LT )
”' \‘ ( ) "l “I " //!\\
L L9 e ()
‘ \“~--—"/ couple — T
4 Y
BF N 1PN (=) ©
-1 -1 ” -1 —~1
&1 . 8i 8i+1 . 8n v v
—— - W) ()
combine N
(a) Normalizing flow between prior and output distributions - l(z) !
g[ 4 -

(b) Inverse coupling layer

FIG. 1: In (a), a normalizing flow is shown transforming samples z from a prior distribution r(z) to samples ¢ distributed
according to ps(¢). The mapping f~!(z) is constructed by composing inverse coupling layers g; ' as defined in Eq. (10) in
terms of neural networks s; and ¢; and shown diagrammatically in (b). By optimizing the neural networks within each coupling
layer, ps(¢) can be made to approximate a distribution of interest, p(¢).

Train a neural net as a “flow” ¢ = F(¢), Bijective.
If it is well represented, we can sample from a Gaussian

It can be done “Normalizing flow” (Real Non-volume preserving neural net)
Moreover, Jacobian is tractable!

arxiv 1904.120/2, 2003.06413, 2008.05456



Configuration generation in LQCD "™

Flow based ML for QFT MIT + Deepmind + ...
-5 V(o
Dpe 01 ~ [T | dpe™ 1101 Flop]]
l
Original integral: hard Easy
Flow-based sampling algorithm lv—oie_v(%) _ ﬁr (@) (DEmbarrassedly parallel sampling

No auto-correlation GRS i ~ |Ising model at T>>0, random)
No correlation for points

(“hot start”)

. ; from trivial theory

am . .
/%ﬂﬁle/ . SW (no kinetic term, no topology,
/ L e

@*“un-trivializing map”

“Cooling = change of variable”
via trained neural net

No auto-correlation ;
Approx.correlation for points

@Metropolis-Hastings with
e S~ Vo) -1 (]
Sequential

Correct correlations

. Auto-correlation
Small auto-correlation

~ Rejection rate

Reject Reject
(Use left conf.) (Use left conf.)



Configuration generation in LQCD ** ™™

Flow based algorithm = neural net represented flow algorithm

Real scalar in 2 dimension MIT + DeepMind 2019~
Tint | nt |
off int O E o G.0)
” [} 7"., O E L c
o0 2pt function . (i | 5 o & Ace
00 -o- HMC - Local -~ ML o -6~ HMC = Local —~ ML o o G.(0) 7 _
.05 | 0.300f g 1 é 50% ML models
.04 0.295F a 4 Q--i-_-g
.03 0.290 F 2t 2 L70000)
[ g5 | I e A 7,-00i(1)
.02} 0-285¢ L1446) A ] ® —=—--®
0.280¢ ! ,/Q [ 70% ML models
0.275 . ’ LOM(’J,:’% = '
0.5 @ ® __Lu.:u(z) )
N | N ) i 1 1 1 1 L
6 s 10 12 14 L o g 10 12 14
(a) HMC ensembles (c) Flow-based MCMC ensembles

U(1) gauge theory in 2 dimension. Topological charge is well sampled!

Q
4 |
9 — HMC
0 — HB
—2 - Flow
4 |
I | | | | 1
0 20000 40000 60000 80000 100000

Markov chain step

Applied already on SU(N) in 4d with dynamical fermions!

arxiv 1904.12072, 2003.06413, 2008.05456



Configuration generation in LQCD ** ™™

4d QCD

[1] MIT + Deepmind +

B% HMC (Chroma)

‘% HMC (Chroma) |
B¢ Flow (512 PF)
[l

¢ Flow (512 PF)

B% HMC (Chroma)
B¢ Flow (512 PF)

Q
=
1.251 T 1.51
9 Z ¢ +
- + =
o=}
& 1.00 % 1.0 4
. B : ¢ =05
D O : : : : : : :
00T 0A00. D05 00 055 0Al0 0a% . 0150 0.295 0.300 0.305 0310 0315 0320 0.325 0.330 0.335 1.0 05 0.0 05 10
(a) Plaquette (c¢) Pion correlation function at xg = 1

(d) Topological charge at t/a* = 4

* Results for full QCD, four dimensional SU(3), Wilson fermions

e |attice volumedNd, p=1,andxk=0.1, Nf=2
 Larger volume? Scaling?

[1] https://arxiv.org/abs/2208.03832, https://arxiv.org/abs/2211.07541



Normalizing flow in Julia

We made a public code in Julia Language AT+ 2022

GomalizingFlow.jl: A Julia package for Flow-based
sampling algorithm for lattice field theory

Akio Tomiya

Mainly implement by Satoshi Terasaki

https://arxiv.org/abs/2208.08903

Abstract

GomalizingFlow.jl: is a package to generate configurations for quantum field

theory on the lattice using the flow based sampling algorithm in Julia pro- ZE32HE 5 L (GomahuAzarashi)
gramming language. This software serves two main purposes: to accelerate @MathSorcerer 748 2nchsd

research of lattice QCD with machine learning with easy prototyping, and to
provide an independent implementation to an existing public Jupyter note- - N
book in Python/PyTorch. GomalizingFlow.jl implements, the flow based — i S 37’) § 6 L = GOMAfu
sampling algorithm, namely, ReaNVP and Metropolis-Hastings test for two |

dimension and three dimensional scalar field, which can be switched by a Azarashi (Spotted seal)
parameter file. HMC for that theory also implemented for comparison. This

package has Docker image, which reduces effort for environment construction.

This code works both on CPU and NVIDIA GPU.

Keywords: Lattice QCD, Particle physics, Machine learning, Normalizing
flow, Julia

=" arXiv:2208.08903v1 [hep-lat] 18 Aug 2022

1l economic convolution for flow

https://github.com/AtelierArith/GomalizingFlow.] https://ml4physicalsciences.github.io/2022/files/NeurlPS_ML4PS_2022_31.pdf 60


http://www.apple.com

Applications on LQCD

Machine learning for lattice QCD

2. Reduction of cost in measurements
== 4. Bias corrected approximation
5. Control variates

| omitted a lot of important works due to the time limit

[1] https://conference.ippp.dur.ac.uk/event/1265/contributions/7074/attachments/5662/7534/plenary.pdf




Reduction of cost in measurements “*™

Costly observables

Measurements are needed! Some observables are numerically
expensive.

Measurement: determination of quark propagator

For a given gauge configuration [A ], 1/(D[A] + m) can be
calculated (%)

Machine learning can help?

Concern:
- Machine learning are approximation, can you remove bias?

(*) Precisely speaking, we need to fix the gauge.



Reduction of cost in measurements “*™

Cost reduction via machine learning a la AMA

G S. Bali+ 0910.3970, Blum, Izubuchi, Shintani 2012
B. Yoon+ 1807.05971, 1909.10990
H. Wettig+ [1], B. Choi+ WIP [2]

All mode averaging (AMA) technique can reduce statistical error using approximation.
Approximation can be biased but it can be corrected.

(0) = (07) +{(0 - 0777)

evaluate, x % evaluate

conf Nbc

2 O(APPOX)[U] - Z (O[U..] — OAPP[ [ ])
N, conf ._1 bc =1

Cheap Expenswe
A lot of statistics Small amount

AMA has béen developed without machine learning,

but it can be used with machine learning
[1] https://conference.ippp.dur.ac.uk/event/1265/contributions/7450/attachments/5874/7758/1at24.pdf

[2] https://conference.ippp.dur.ac.uk/event/1265/contributions/7582/attachments/5706/7462/beniji.pdf



Reduction of cost in measurements “*™

Reducing cost without bias from ML - Yoon+ 1807.05071, 1900.10900

Plaqg to tr[D~?]

3.0 Ntr )
_ - _yP

o =
L%) 900 2

o’ 20F
S 600 8

’zc':‘ L5}
: : —

300 original BS 1.0 F

Light GBM-P2
O == 1 a1 1 ) : rE==E=

1.0250 1.0255 1.0260 1.0265 1.0270 10 20 30 40 50 60

TrM > boosting stages (iteration)
Nconf Nbc

(0) = —— 3 0CPI[U] +— Y (O[U,] - 04m9[U, )
N, conf ._4 bc =1

So far so good (I skipped details),
and details can be found in [2]

[1] https://conference.ippp.dur.ac.uk/event/1265/contributions/7450/attachments/5874/7758/1at24.pdf

[2] https://conference.ippp.dur.ac.uk/event/1265/contributions/7582/attachments/5706/7462/beniji.pdf



Applications on LQCD

Machine learning for lattice QCD

2. Reduction of cost in measurements
4. Bias corrected approximation
== 5 (Control variates

| omitted a lot of important works due to the time limit



Reduction of cost in measurements “*™

ContrOI variates See reference in [1]

Consider an observable on the lattice (O)

1 Nconf
(0) = lim ) 0[U)
Neont= 0 LN conf =1

For finite statistics, we have statistical error, which is propositional to the variance (02)

If we have, an estimator/observable f such that, ...

fr=0 (0f)>0

((O—=1))=(0) and
(0 =1)?) =(0%) +(f*) — 2(0f)

Large
The operator O — f has the same expectation value with O but it has small variance!

fis called control variates
[1] https://conference.ippp.dur.ac.uk/event/1265/contributions/7074/attachments/5662/7534/plenary.pdf

Then,

[2] https://conference.ippp.dur.ac.uk/event/1265/contributions/7596/attachments/5785/7609/1at2024_oh.pdf



Reduction of cost in measurements “*™

Control variates

See reference in [1]

((0=1))=(0) ana ((O~f)*) =(0%) +(f*) — 2(Of)

* [t sound too good to be true?

e How can we find control variates f ?

* We can find it using Schwinger Dyson equation

* or machine learning (next page)

[1] https://conference.ippp.dur.ac.uk/event/1265/contributions/7074/attachments/5662/7534/plenary.pdf

[2] https://conference.ippp.dur.ac.uk/event/1265/contributions/7596/attachments/5785/7609/1at2024_oh.pdf



Reduction of cost in measurements “*™

ContrOI Va riates See reference in [2]

Example: a scalar field theory in 1 + 1 dimensions. 40 x 10, m* = 0.01, 1 = 0.1

0.20F « CV at all points |
0.10} 0.10j
= 0.05 0.05}
@) I . I
0.02F
0.01;
[ 0.01F
0 5 10 15 20 25 0 5 10 15 20 25

Lw) = ((0 - f)?) = (O - f)’
- — (Y

neural network parameters

[1] https://conference.ippp.dur.ac.uk/event/1265/contributions/7074/attachments/5662/7534/plenary.pdf

[2] https://conference.ippp.dur.ac.uk/event/1265/contributions/7596/attachments/5785/7609/1at2024_oh.pdf



Su m m a ry Akio Tomiya

Machine learning + lattice field theory
e Production and measurement need numerical cost

e Machine learning is useful for natural science/physics/Lattice QCD
e to reduce cost in different ways

e Supervised learning requires data ahead of training

e Self-learning does not require it (SLHMC&Flow).

Deep Learning
and Physics

* Now, machine learning techniques are bias free

e (Gauge case, architectures are gauge covariant!

Q) Springer

e \We can remove bias from ML

e Some results show better than existing algorithms (not all)

e Codes for LFT+ML are in Python but they are slow. We should go further.

julia

* Minimize code developing time + execution time.

e Julia might be good choice?

' e KAKENHI: 20K14479, 22H05112, 22H05111, 22K03539 Thanks!
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Machine learning for theoretical physics

What am 1?
| am a particle physicist, working on lattice QCD.
| want to apply machine learning on lattice QCD.

My papers https://scholar.google.co.jp/citations?user=LKVqy wAAAAJ

Detection of phase transition via convolutional neural networks

A Tanaka, A Tomiya Detecting phase transition
Journal of the Physical Society of Japan 86 (6), 063001

Digital quantum simulation of the schwinger model with topological term via adiabatic

state preparation _
B Chakraborty, M Honda, T Izubuchi, Y Kikuchi, A Tomiya Quantum computing
arXiv preprint arXiv:2001.00485 for quantum field theory

Biography
2006-2010 : University of Hyogo (Superconductor)
2015 : PhD in Osaka university (Particle phys)
2015 - 2018 : Postdoc in Wuhan (China)
2018 - 2021 : SPDR in Riken/BNL (US)
2021 - . Assistant prof. in IPUT Osaka (ML/AI)

Kakenhi and others
Leader of proj AO1 Transformative Research Areas, Fugaku

Deep Learning Ty MLPhY: . . . . | R e
: s - - S Foundation of "Machine Learning Physics e
andPhysics [T ) rant A for Tranforma Ressetch Aoz () 07 ety amrcuey
' +quantum computer
Others:
9 Springer .. ] ]
- | S — Supervision of Shin-Kamen Rider
Organizing “Deep Learning and physics The 29th Outstanding Paper Award of the Physical Society of Japan

14th Particle Physics Medal: Young Scientist Award



Intro: Lattice QCD& Monte-Carlo  *° ™

LQCD = Non- perturbatlve calculation of QCD

~QCD in 3 + 1 dimension =

1
S = Jd“x[ — Etr F,F"+ lp(i@ + gA — m)l//]

J'@A@l//@yje F aw = 0 Ay — dyA — ig[Aﬂ,Ay]

QCD in Euclldean 4 dlmensmn (|mag|nary tlme)

1
S = Jd“x[ EtrF F +l/7(@ —1gA +m)l//]

1772017,

= J@A@W@we‘s

e Same Hamiltonian with real-time formalism
e Static property is the same (mass etc)

e How to calculate?



An example

Example: Plaquette — TrM —3 estimation (P2, ID-0)

) %]
B s g

--

[\
o

R,y (labeled set

[a—
o O

0 10 20 30 40 50 60 70 80 90 100
Rrgr (training set) |%]

(a) Y (central value) check

# Y score: white, orange, red

1 %0

12

Trace estimation by ML

N}

-

Yo
W W =
o O O ot

ik

N}
(2

(labeled set) |

[\)
e

il 1.9

15

ING2E  1.71 1.94 2.79

1.82 1.86 206 217 235 3.1

Ryip
o S

2.12 2.33 23

0 10 20 30 40

2.53

20

3.3

60

3.32

70

80
Rrg (training set) %]

90 100

(b) Magnitude of op2/00rig.

Eval. 1: central value check
= consistently white region

n Ris > 30%, Rrr < 50%

Eval. 2: op2/00rig. check
= Roughly op2 S 1.100rig.
in Rig > 30%, Rrr < 50%

29 July 2024 12 /17
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M Otivation Akio Tomiya

Monte-Carlo integration is available, but still expensive!

M. Creutz 1980

. . 1
Target integration — —Sel U1 SolU1 = S,uee U] — log det(D[U] + m)
= expectation value (0) = 7 DUe 6U) ' o

Monte-Carlo: Generate field configurations with “P[U] « ¢ >:tlUl» @ _ It gives expectation value

Propose and check

Y PLU
Mar!(ov- - Q oo
Chain

Production with @ IS numerically expensive
and how can we accelerate it? We use machine learning!



Introduction

Use of symmetry is crucial

Symmetries are essential for theoretical physics.

This is actually true as well in machine learning.
Equivariance/Covariance of symmetries helps generalization,
and avoiding wrong extrapolation

(Symmetry restricts the function form)

Example in ML.:

If data is translationally symmetric like photo images,

the frame work should respect this and one should implement
with this translational symmetry in a neural network

= Convolutional neural net!

In physics + Machine learning,
= Physics embedded neural networks

We use symmetry in the system
as much as we can



Introduction
What is our final goal for QCD + Machine learning?

What we want to solve using machine learning?

- Reduction of numerical cost to beyond our current numerical limitations
- Production and measurements
- Use of machine learning may be useful

Restrictions (problems) to use ML.:
- Exactness & quantitative. Machine learning is an approximator
- Gauge symmetry, global symmetry is essential. While ML is not for physics
- Code. How can we make neural nets w/ HPC? (not showing in this talk)




Akio Tomiya

Introduction
What is our final goal for our research field?

A
Quark-Gluon Plasma

In short, we simulate of elementary particles in nuclei

Using super computers + Lattice QCD, we can understand...
- melting of protons/neutrons etc. at high temperatures
- attractive/repulsive forces between atomic nuclei

- candidate properties of dark matter
etc.



Intro: Lattice QCD& Monte-Carlo  *° ™

Numerical integral (via trapezoidal type) is impossible

1
S = Id4x[ Etr F,F,,+ 1/7(@ —1gA + Wl)l//]

1
Laftice reqularization SN IIRVATIES a’ Z [— —2Re tr UW + l/'/(D + m)l//]
8

a is lattice spacing (cutoff)
They are "same” up to irreverent operators Re 7~ -1 22a*F2 + 0(ab)
Uv 2 Uv

" 1
(0) == | DUDYDye>0O(U) = — J@Ue-sgaugewl det(D + m)O(U)

V4

N|— N|-—

II‘_

QZUe‘ AUIGU)

H HdU (n)

ne{Z/L}* u=1

>1000 dim, no hope with
trapezoidal type numerical Integration -> use (Markov-chain) Monte Carlo



Flow based sampling algorithm

Trivialization is attractive

~

, Joint dist. 2V N
QFT probability: Plg] = =) = P(¢,, py, -+, hpa) -
Propagating modes 4

~ correlations _ _
Can we find a change of variable?

©

Trivial distribution tri
P = 1r(z)r(zy) 1
Trivial theory [2] = r(2)r(z)--r(z4) B
No propagation, factorized r(z;) probability for 1 variable
(Not the Gaussian FP) Easy to sample

- Correlations in P[¢] makes theory non-trivial and it makes MCMC harder.
- PM[7] = r(z21)r(2,)---r(z74) has no correlation, sampling is trivial.
- Actually, there is a map between them. Trivializing map!

- We can trivialize the target theory

Famous example: Nicolai map in SUSY. Change of variable
makes theory bilinear (~trivial). How about for non-SUSY?

arxiv 1904.12072, 2003.06413, 2008.05456 and more.

Nicolai, H., Phys. Lett. 89B, 341 (1980); Nucl. Phys. B176, 419 (1980).



Akio Tomiya

Related works

Flow based algorithm = neural net represented flow algorithm

Real scalar in 2 dimension MIT + DeepMind 2019~

.7 TN L7 RS
. N
. N . N
’ h 4 \
' h \
' \ |' g /\ A
' 1
Z 1
' [ = —
b, 4 \ 3 (e Si
\ 1 s ’ \ N
. 3 \_
N e
~ P
~ -

couple

. . 4 - v; . Y
- N TN\
r(z) Py () (=) (@)
cen 0t ity .. 2 04 4
- ‘ - \/ @\. ( @
combine

(a) Normalizing flow between prior and output distributions

-4 @

(b) Inverse coupling layer

FIG. 1: In (a), a normalizing flow is shown transforming samples z from a prior distribution r(z) to samples ¢ distributed
according to ps(¢). The mapping f~'(z) is constructed by composing inverse coupling layers g; ' as defined in Eq. (10) in
terms of neural networks s; and ¢; and shown diagrammatically in (b). By optimizing the neural networks within each coupling
layer, p¢(¢) can be made to approximate a distribution of interest, p(¢).

Their sampling strategy

sample gaussian — inverse trivializing map — QFT configurations

Calculate Jacobian
After sampling, Metropolice-Hasting test (Detailed balance)— exact!

arxiv 1904.12072‘ 2003.06413‘ 2008.05456



