Longitudinal and transverse PDFs of hadrons: from COMPASS to AMBER

Bakur Parsamyan

AANL (Yerevan), CERN, INFN (Torino) and Yamagata University

XVIth Quark Confinement and the Hadron Spectrum Conference (QCHSC 2024)

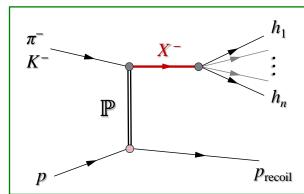
August 18–24, 2024, Cairns, Queensland, Australia 19 August 2024

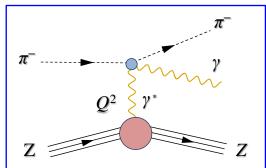
COMPASS timeline

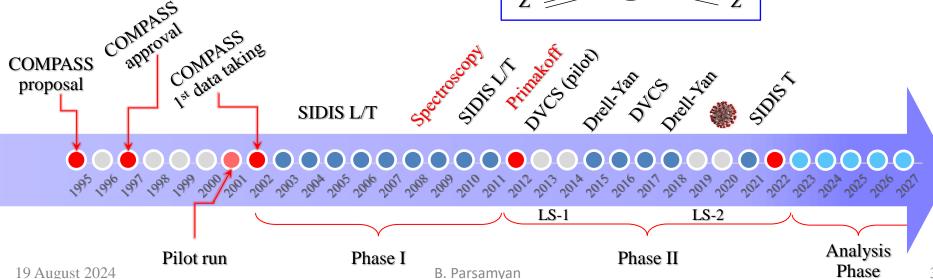
- CERN SPS north area M2 beamline
- Fixed target experiment
- Approved in 1997
- Taking data since 2002 (20 years)
- The Analysis Phase started in 2023

33 institutions from 15 countries: ~ 200 members

COMPASS Physics Program


Hadron spectroscopy


- Diffractive $\pi(K)$ dissociation reaction with proton target
- PWA technique employed
- High-precision measurement of light-meson excitation spectrum
- Search for exotic states

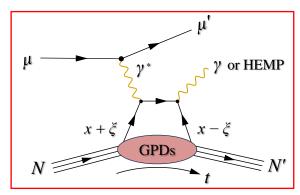

Chiral dynamics

- Test chiral perturbation theory in $\pi(K)$ γ reactions
- π^{\pm} and K^{\pm} polarizabilities
- Chiral anomaly $F_{3\pi}$

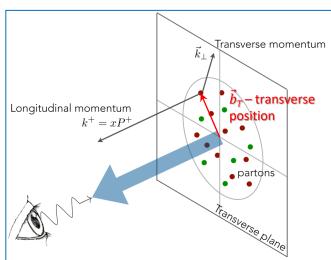
See Stefan Wallner's talk (Wednesday)

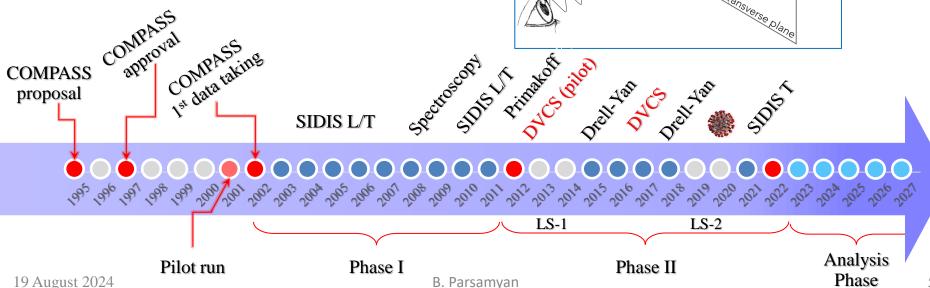
COMPASS Physics Program This talk **Nucleon structure** Q^2 Hard scattering of μ^{\pm} and π^{-} off Q^2 (un)polarized P/D targets **SIDIS** Drell-Yan **Inclusive and Semi-Inclusive DIS** Drell-Yan and J/ψ production Study of nucleon spin structure **Longitudinal and Transverse** Transverse momentum Collinear and TMD pictures Parton distribution functions and Longitudinal momentum fragmentation functions Last COMPASS measurement: partons 2022 run – transverse SIDIS COMPASS 1st data taking Spectroseday II Prinakoft Gilah Ast O'S Grell Ast **COMPASS** proposal SIDIS L/T LS-1 LS-2 Analysis Pilot run Phase I Phase II

B. Parsamyan

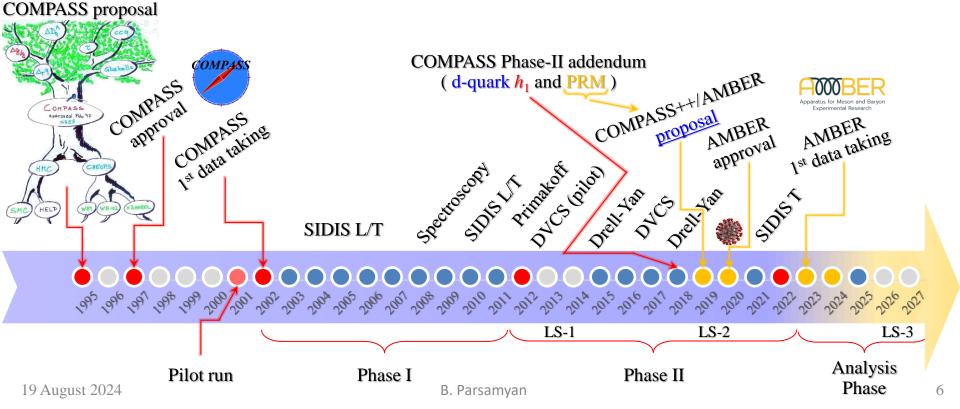

19 August 2024

Phase


COMPASS Physics Program


GPDs

- Transverse position \vec{b}_T of partons
 - 8 GPDs correlation between \vec{b}_T and x
 - Complementary to TMD PDFs
 - Contain information about parton orbital angular momentum
- Accessed via exclusive processes:
 - Deeply virtual Compton scattering (DVCS): $\mu + N \rightarrow \mu + \gamma + N$
 - Hard exclusive meson production (HEMP): $\mu + N \rightarrow \mu + M + N$ with $M = \pi^0$, $\rho(770)$, $\omega(782)$,...


COMPASS-AMBER timeline

- CERN SPS north area M2 beamline
- Fixed target experiment
- Approved in 1997
- Taking data since 2002 (20 years)
- The Analysis Phase started in 2023

33 institutions from 15 countries: ~ 200 members

AMBER timeline

- CERN SPS north area M2 beamline
- Successor of COMPASS
- Approved in 2019
- Taking data since 2023
- Phase-I is planned to continue after LS3

36 institutions from 14 countries: ~ 150 members

New collaborators are Welcome!

Phase II proposal draft

- Kaon-induced Drell-Yan and J/ψ production
- **Kaon-induced Spectroscopy**
 - Kaon polarizability (Primakoff)

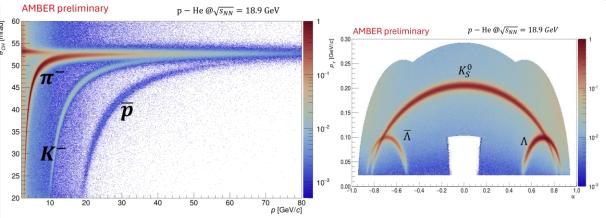
LS-5

- Meson radii measurements
- Prompt photon production
- New ideas are welcome!

COMPASS++/AMBER proposal Proton Radius PRM see S. Wallner's talk ≺ • CERN-SPSC-2019-022 AMBER AMBER 1st data taking approval Drell-Yan Measurements LS-4 LS-3 CERN Accelerator Complex schedule to 2041

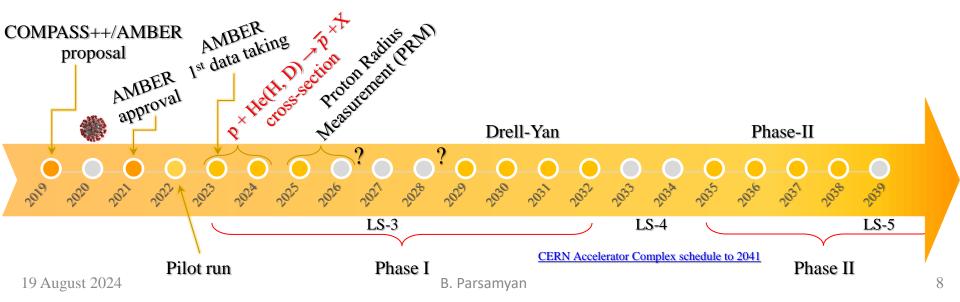
Pilot run Phase I Phase II 19 August 2024 B. Parsamyan

AMBER measurements 2023-2024: \bar{p} production cross-section

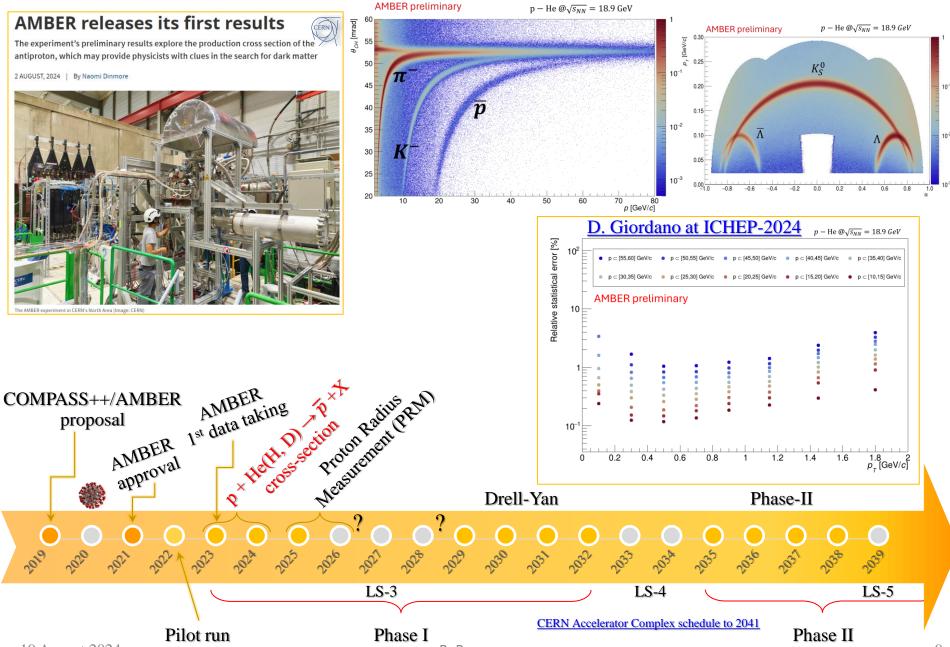


\overline{p} production measurement

- \overline{p} detected in the cosmic rays
 - produced in CR collisions
 - dark matter signature


Understanding the \overline{p} flux:

- Accurate determination of the CR-component
- Accuracy of the \overline{p} -production models is at ~20% level

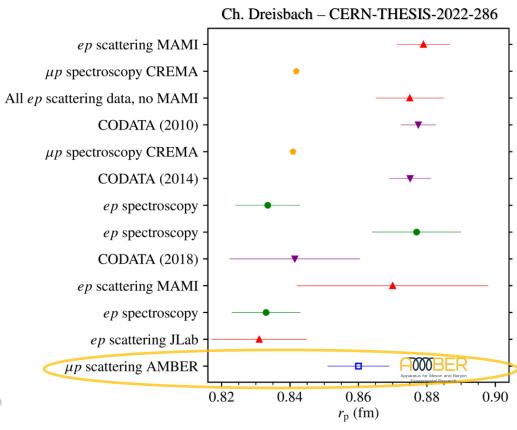

Motivation for AMBER 2023-2024 runs

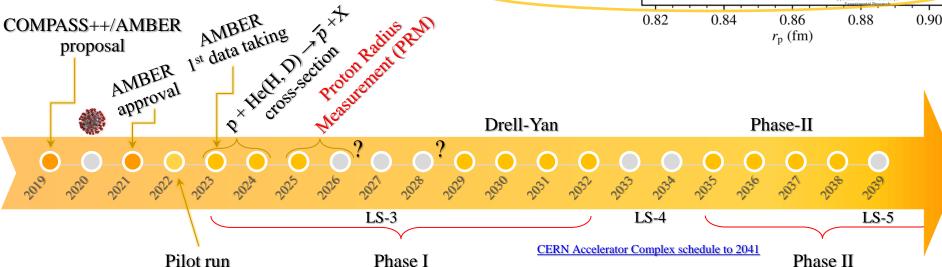
New measurements needed to determine the \overline{p} -production from cosmic-ray collisions accurately

AMBER measurements 2023-2024: \bar{p} production cross-section

19 August 2024

AMBER measurements 2023-2024: proton charge radius




- Discrepancies between the chargeradius of the proton extracted from:
 - Electron-proton scattering
 - Hydrogen spectroscopy
 - Muonic-hydrogen spectroscopy

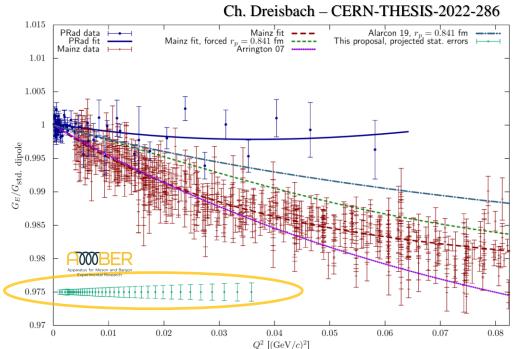
AMBER PRM

19 August 2024

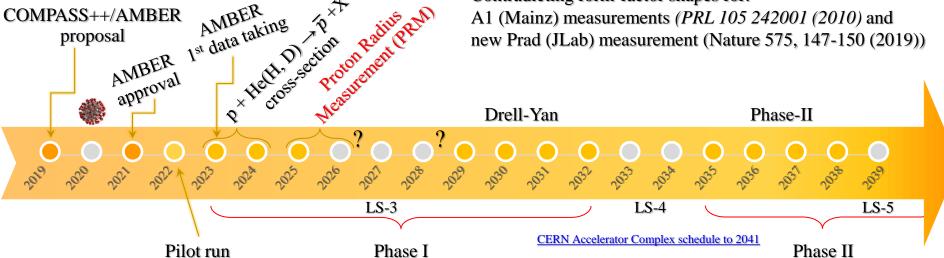
- Elastic muon-proton scattering
 - 100 GeV/c muon beam
 - Active-target Hydrogen TPC for proton detection

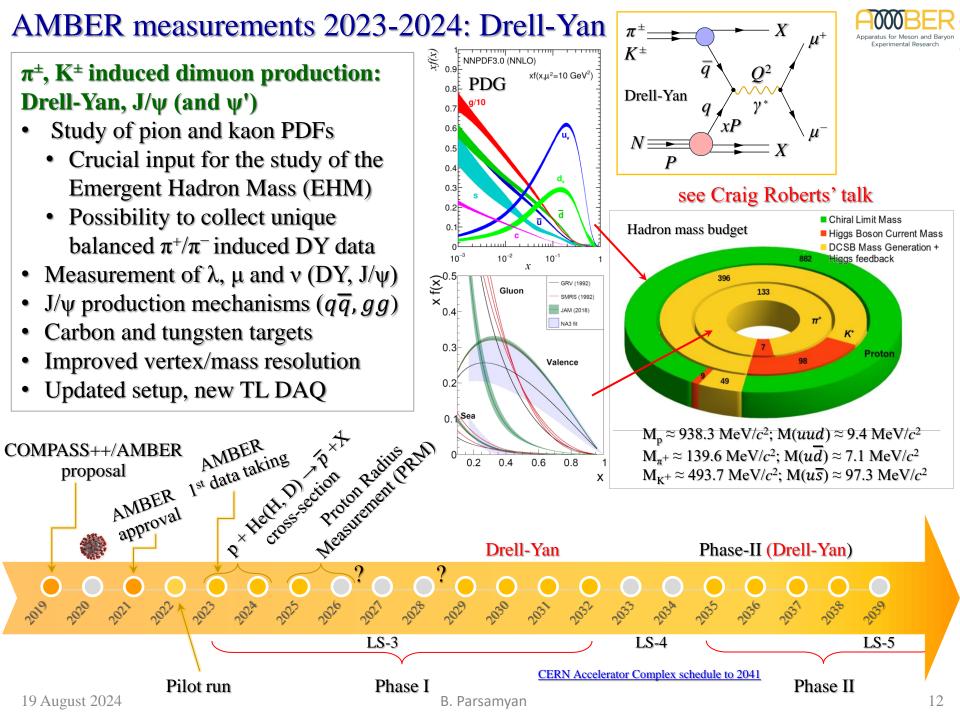
AMBER measurements 2023-2024: proton charge radius

The proton-radius puzzle


- Discrepancies between the chargeradius of the proton extracted from:
 - **Electron-proton scattering**
 - Hydrogen spectroscopy
 - Muonic-hydrogen spectroscopy

AMBER PRM


19 August 2024


- Elastic muon-proton scattering
 - 100 GeV/c muon beam
 - Active-target Hydrogen TPC for proton detection

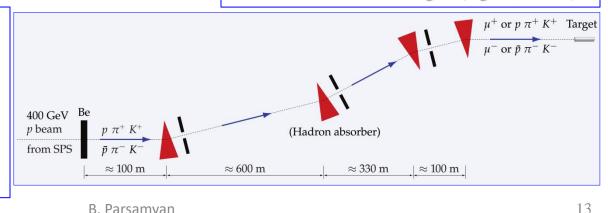
Phase II – meson radii measurements

Contradicting form-factor shapes for:

COMPASS experimental setup

COmmon Muon Proton Apparatus for Structure and Spectroscopy

COMPASS CERN SPS North Area (building 888) ECAL2 HERMES (GeV2) CLAS 6 GeV Two-stage spectrometer LAS+SAS HCAL₂ CLAS 12 GeV Large Angle Spectrometer (SM1 magnet) Small Angle Spectrometer (SM2 magnet) SM₂ ECAL1 Muon-filter HCAL1 RICH Large-acceptance forward spectrometer SM1 Precise tracking (350 planes) Polarized SciFi, Silicon, MicroMegas, GEM, MWPC,


Muon-filter

- Primary beam 400 GeV p from SPS
 - impinging on Be production target (T6)
- 190 GeV secondary hadron beams
 - h⁻ beam: 97% π^- , 2% K^- , 1% p
 - h⁺ beam: 75% π^+ , 24% p, 1% K⁺
- 160 GeV tertiary muon beams

Target

Veto

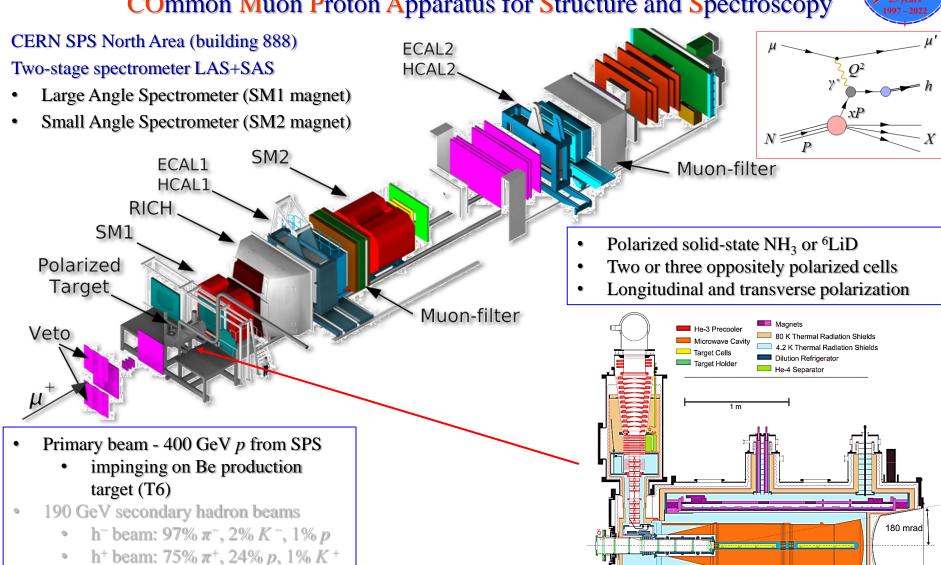
• μ^{\pm} longitudinally polarized

Various targets:

Liquid H₂

DC, Straw, Muon walls

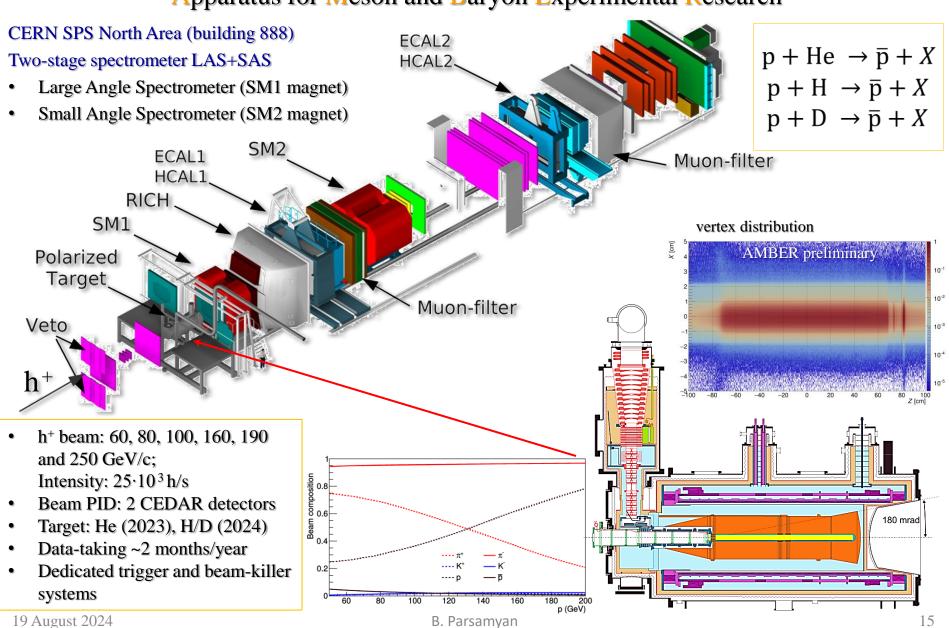
PID - CEDARs, RICH, calorimeters, MWs


Solid-state nuclear targets (e.g. Ni, W, Pb)

Polarized solid-state NH₃ or ⁶LiD

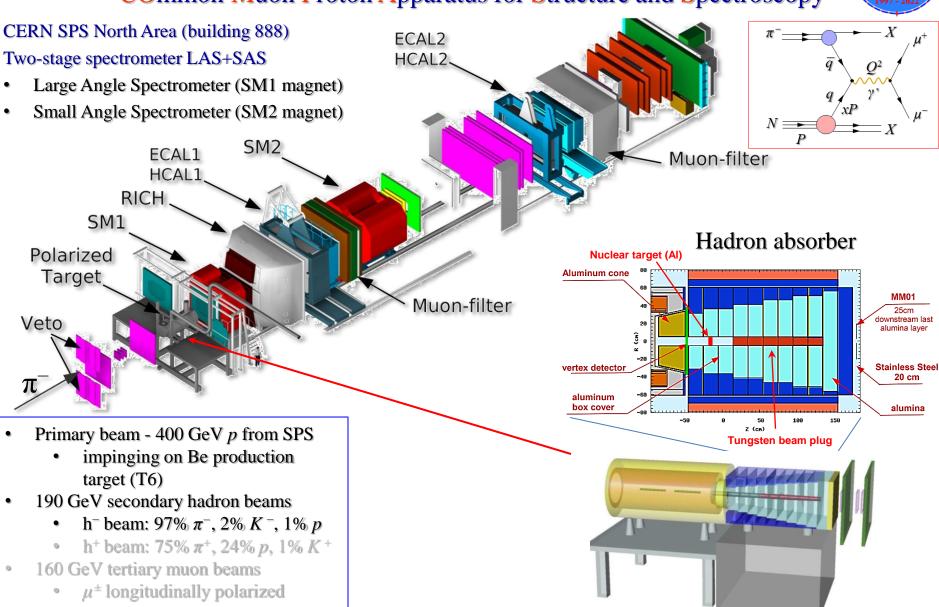
COMPASS experimental setup: Phase II (SIDIS program)

COmmon Muon Proton Apparatus for Structure and Spectroscopy


160 GeV tertiary muon beams

 μ^+ longitudinally polarized

AMBER Phase I: \overline{p} cross-section, 2023 setup


Apparatus for Meson and Baryon Experimental Research

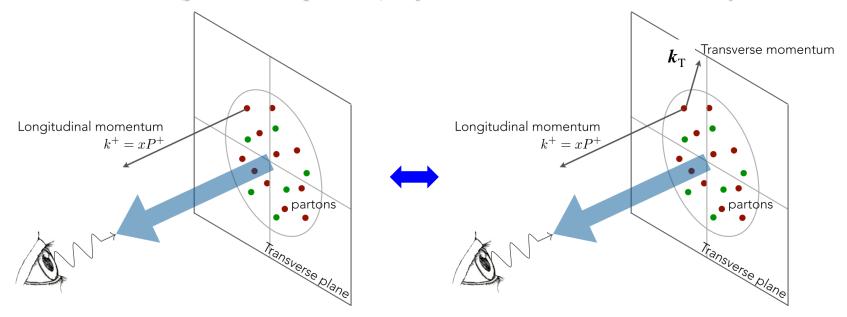
COMPASS experimental setup: Phase II (DY program)

COmmon Muon Proton Apparatus for Structure and Spectroscopy

AMBER Phase I-II: DY program setup

Apparatus for Meson and Baryon Experimental Research

- Isoscalar target (C 3x25 cm) and W
- Vertex detector: improve Z and M_{uu} resolution
- New trigger-less DAQ,
- Revised setup, new detectors

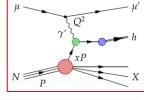

Nucleon spin structure: collinear approach ↔TMDs gompass

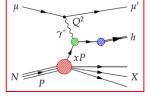
	quark						
		U	L	T			
	U	$f_1^q(x)$ number density					
nucleon	L		$g_1^q(x)$				
	T			$h_1^q(x)$ transversity			

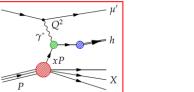
		U	L	T
	U	$f_1^q(x, \boldsymbol{k}_T^2)$ number density		$h_1^{\perp q}(x, \boldsymbol{k}_T^2)$ Boer-Mulders
nucleon	L		$g_1^q(x, \boldsymbol{k}_T^2)$	$h_{1L}^{\perp q}(x, \boldsymbol{k}_T^2)$ worm-gear L
	Т	$f_{1T}^{\perp q}(x, \mathbf{k}_T^2)$ Sivers	$g_{1T}^q(x, oldsymbol{k}_T^2)$ worm-gear T	$h_1^q(x, \boldsymbol{k}_T^2)$ transversity $h_{1T}^{\perp q}(x, \boldsymbol{k}_T^2)$ pretzelosity

quark

PDFs – universal (process independent) objects; T-odd PDFs – conditionally universal

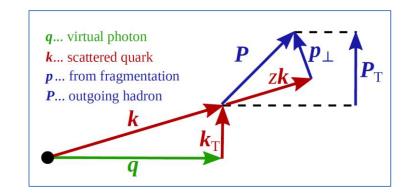


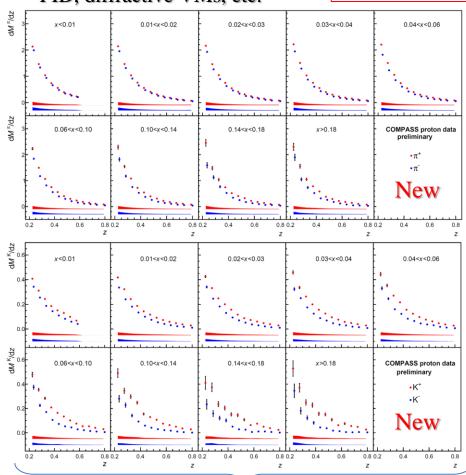

Hadron multiplicities; h^{\pm} , π^{\pm} and K^{\pm} (2016 data)

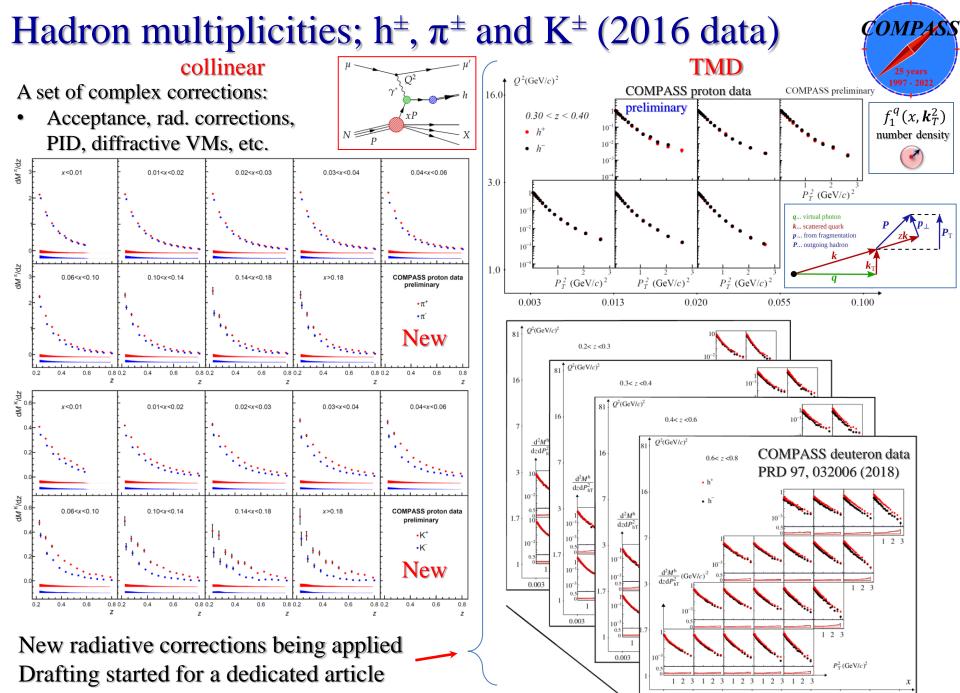

collinear

A set of complex corrections:

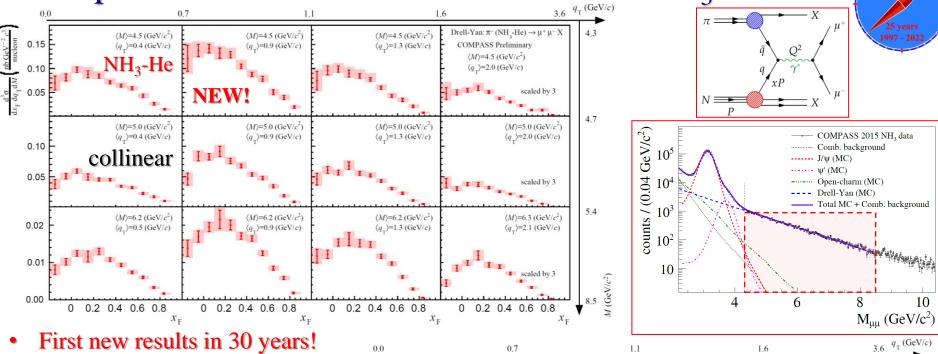
Acceptance, rad. corrections, PID, diffractive VMs, etc.

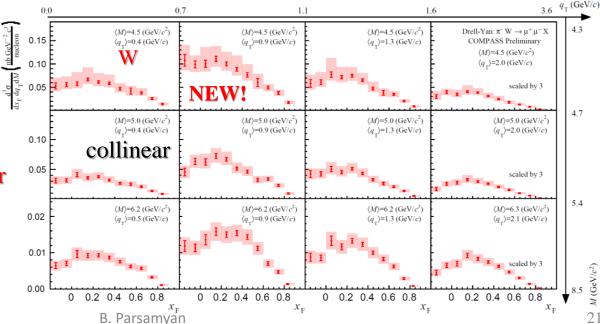




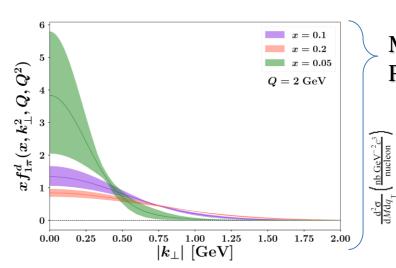


 $f_1^q(x, \boldsymbol{k}_T^2)$ number density

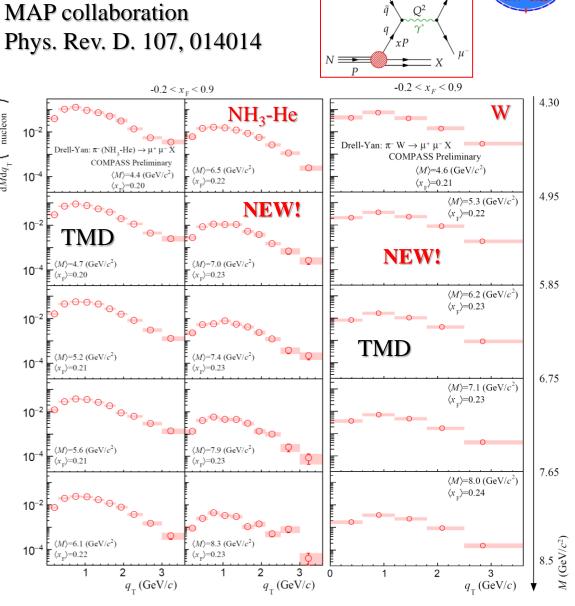

New radiative corrections The article is in a final drafting stage


B. Parsamyan

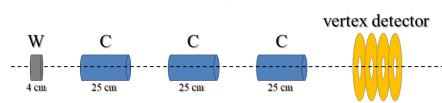
19 August 2024

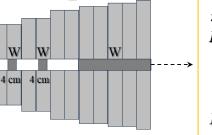


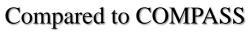
- Data from light/heavy targets
 - NH₃-He, Al, W
 - Nuclear dependence
- 1D/2D/3D representations $x_F:q_T:M$
- Unique data to access collinear and TMD distributions
 e.g. pion TMD PDF



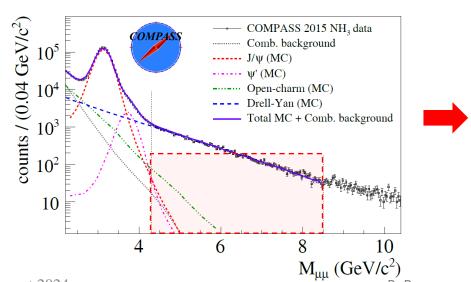
3D unpolarized Drell-Yan cross section on NH₃ and W

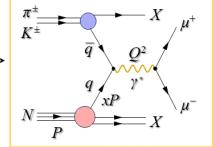

recent global fit and projections for COMPASS

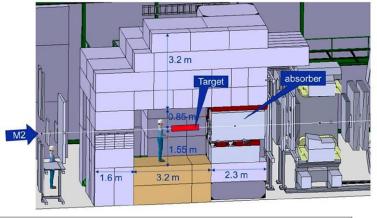

- First new results in 30 years!
- Data from light/heavy targets
 - NH₃-He, Al, W
 - Nuclear dependence
- 1D/2D/3D representations $x_F:q_T:M$
- Unique data to access collinear and TMD distributions
 e.g. pion TMD PDF
- To be included in future global fits (MAP, JAM, etc.)

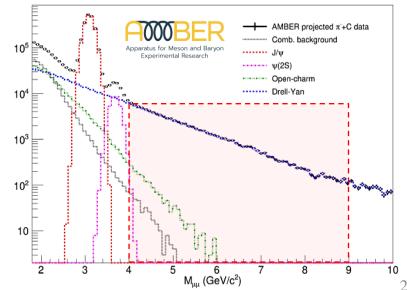


AMBER – π^{\pm} , K^{\pm} induced dimuon production on C/W



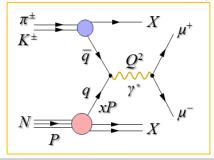


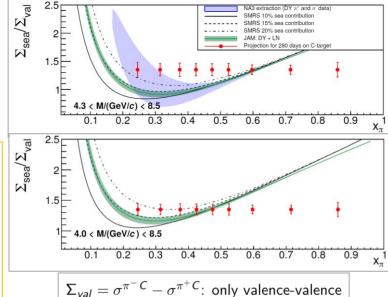


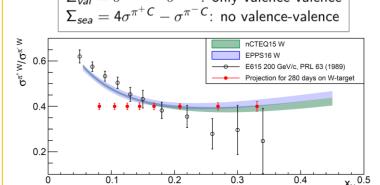


- Light isocalar target (carbon) instead of NH₃-He mix
- Improved mass resolution ($\sim 100 \text{ MeV}/c^2$)
 - Lower background → enlarge DY mass range
 - J/ψ and $\psi(2S)$ studies
- Wider beam choice: π^{\pm} , K^{\pm} , p/\overline{p} , CEDARs (PID)
- Unique complementary measurements: π^{\pm} , K^{\pm}
- Higher beam intensity (RP upgrades)
- Revised spectrometer, Triggerless DAQ

19 August 2024

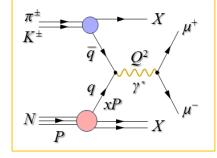

AMBER – π^{\pm} , K^{\pm} induced dimuon production on C/W

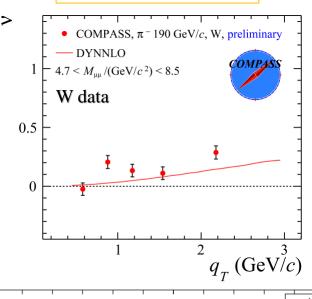


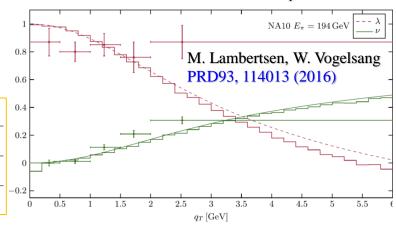

- Unique complementary measurements: π^{\pm} , K^{\pm}
 - Cross-sections, pion and kaon PDFs
 - Data for both collinear and TMD PDF studies
 - Drell-Yan, J/ψ and potentially ψ' channels
 - Study of nuclear effects with C and W

	75 cm C	190	$\pi^+\atop\pi^-$	1200000 1800000
AMBER			p	1500000
			π^{+}	500000
J/ψ events	12 cm W	190	π^-	700000
			p	700000

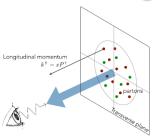
Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/c ²)	DY events
E615	20 cm W	252	$\overset{\boldsymbol{\pi}^+}{\boldsymbol{\pi}^-}$	17.6×10^7 18.6×10^7	4.05 – 8.55	5000 30000
NA3	30 cm H ₂	200	$\pi^+\atop \pi^-$	2.0×10^{7} 3.0×10^{7}	4.1 – 8.5	40 121
	6 cm Pt	200	$\pi^+\atop\pi^-$	2.0×10^7 3.0×10^7	4.2 – 8.5	1767 4961
*****	120 cm D ₂	286 140	π^-	65 × 10 ⁷	4.2 - 8.5 4.35 - 8.5	7800 3200
NA10	12 cm W	286 194 140	π^-	65×10^7	4.2 - 8.5 4.07 - 8.5 4.35 - 8.5	49600 155000 29300
COMPASS 2015 COMPASS 2018	110 cm NH ₃	190	π^-	7.0×10^7	4.3 – 8.5	35000 52000
	75 cm C	190	π^+	1.7×10^7	4.3 - 8.5 $4.0 - 8.5$	21700 31000
AMBER		190	π^-	6.8×10^7	4.3 - 8.5 4.0 - 8.5	67000 91100
	12 cm W	190	π^+	0.4×10^7	4.3 - 8.5 4.0 - 8.5	8300 11700
		190	π^-	1.6×10^7	4.3 - 8.5 4.0 - 8.5	24100 32100
10 Angres	2024				D Darcana	

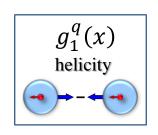

19 August 2024 B. Parsamyan

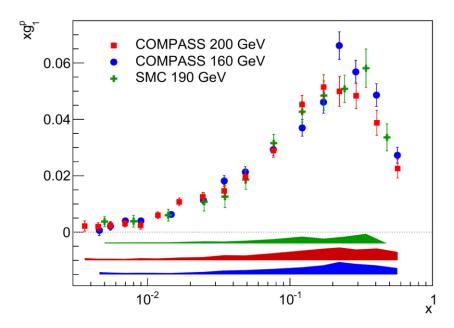

AMBER – π^{\pm} , K^{\pm} induced dimuon production on C/W


- Unique complementary measurements: π^{\pm} , K^{\pm}
 - Cross-sections, pion and kaon PDFs
 - Data for both collinear and TMD PDF studies
 - Drell-Yan, J/ψ and potentially ψ' channels
 - Study of nuclear effects with C and W
 - Azimuthal asymmetries (ν , μ , Lam-Tung relation)
 - J/ψ polarization measurements (λ polar angle asymmetry)
 - Study of the J/ ψ production mechanisms
 - Unique kaon-induced Drell-Yan and J/\psi data
- Possibilities for polarized measurements in PHASE-II?

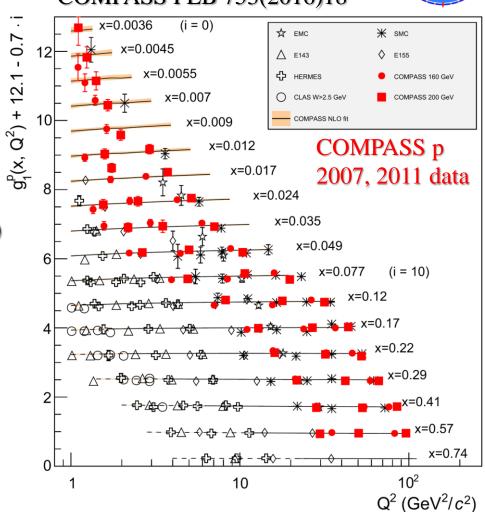
			π^+	1200000
	75 cm C	190	π^-	1800000
AMBER			p	1500000
			π^{+}	500000
J/ψ events	12 cm W	190	π^-	700000
			p	700000


	75 cm C	190	π^+	1.7×10^7	4.3 - 8.5 4.0 - 8.5	21700 31000
AMBER		190	π^-	6.8×10^7	4.3 - 8.5 $4.0 - 8.5$	67000 91100
	12 cm W	190	π^+	0.4×10^7	4.3 - 8.5 4.0 - 8.5	8300 11700
		190	π^-	1.6×10^7	4.3 - 8.5 4.0 - 8.5	24100 32100
19 August 2024 B. Pa				B. Parsan	nyan	

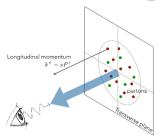


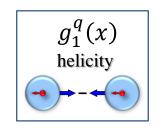


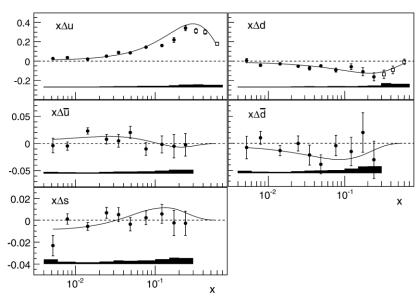
Nucleon spin structure: helicity $g_{1,p}^{q}(x)$

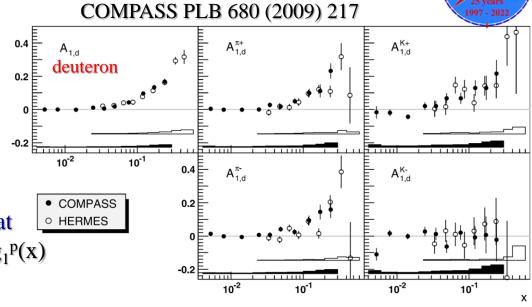


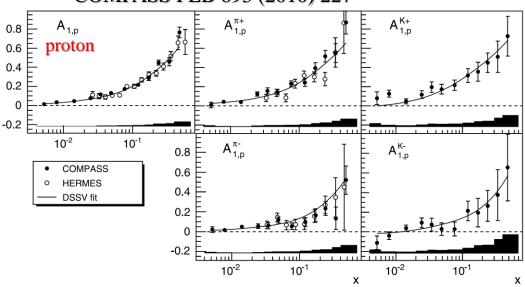
- COMPASS contribution: lowest *x* and highest *Q*² regions
- Both deuteron and proton target data
- For the first time non-zero spin effects at smallest x and Q^2 positive signal for $g_1^p(x)$




COMPASS PLB 753(2016)18

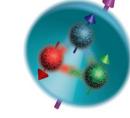

26


Nucleon spin structure: helicity $g_{1,d(p)}^q(x)$



- COMPASS contribution: lowest *x* and highest *Q*² regions
- Both deuteron and proton target data
- For the first time non-zero spin effects at smallest x and Q^2 positive signal for $g_1^p(x)$
- Both inclusive and semi-inclusive measurements – access to flavor

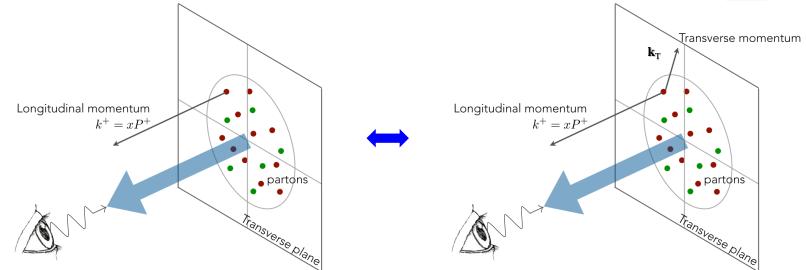
COMPASS PLB 693 (2010) 227


Nucleon spin structure: TMD

1964 Quark model

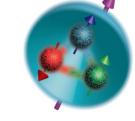
• 1969 Parton model

1973 asymptotic freedom and QCD

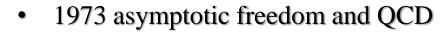


- 1976 large transverse single spin asymmetry in forward π^{\pm} production
- 1978 intrinsic transverse motion of quarks and azimuthal asymmetries

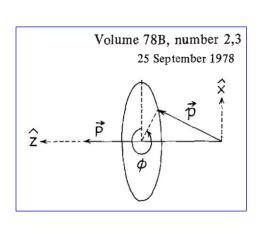
19 August 2024

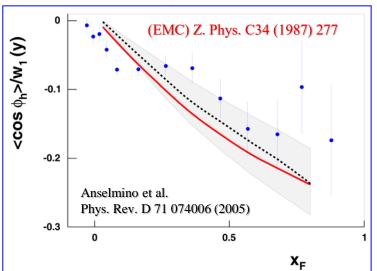

Nucleon spin structure: TMD

1964 Quark model



1969 Parton model





- 1976 large transverse single spin asymmetry in forward π^{\pm} production
- 1978 intrinsic transverse motion of quarks and azimuthal asymmetries

(SLAC) Phys. Rev. Lett. 31, 786 (1973) (EMC) Phys. Lett. B 130 (1983) 118, (EMC) Z. Phys. C34 (1987) 277 (EMC) Z. Phys. C52, 361 (1991). (E665) Phys. Rev. D48 (1993) 5057 (ZEUS) Eur. Phys. J. C11, 251 (1999) (ZEUS) Phys. Lett. B 481, 199 (2000) (H1) Phys. Lett. B654, 148 (2007)

Cahn effect in SIDIS

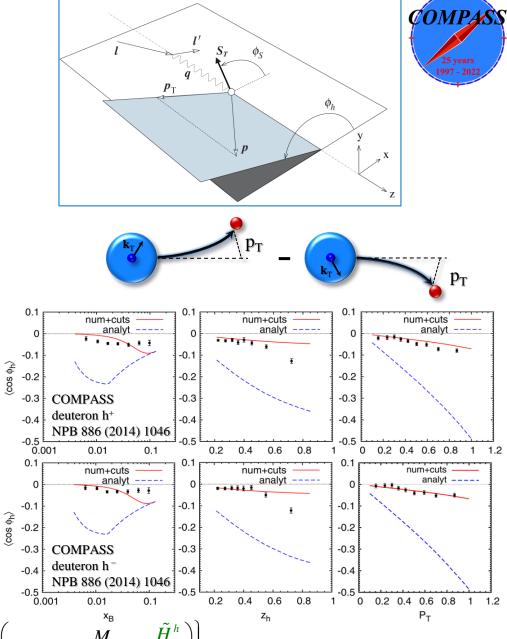
$$\frac{d\sigma}{dxdydzdn^2d\phi}$$

$$\frac{dS}{dxdydzdp_T^2d\phi_h d\phi_S} =$$

$$\left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$$

$$\times (1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h+\ldots)$$

Cahn effect


$$f_1^q(x, \mathbf{k}_T^2)$$
 number density

As of 1978 – simplistic kinematic effect:

non-zero k_T induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

Measurements by different experiments

30

$$F_{UU}^{\cos\phi_{h}} = \frac{2M}{Q} C \left\{ -\frac{\hat{\pmb{h}} \cdot \pmb{p_{T}}}{M_{h}} \left(xhH_{1q}^{\perp h} + \frac{M_{h}}{M} f_{1}^{q} \frac{\tilde{D}_{q}^{\perp h}}{z} \right) - \frac{\hat{\pmb{h}} \cdot \pmb{k_{T}}}{M} \left(xf^{\perp q} D_{1q}^{h} + \frac{M_{h}}{M} h_{1}^{\perp q} \frac{\tilde{H}_{q}^{h}}{z} \right) \right\}$$

19 August 2024 B. Parsamvan

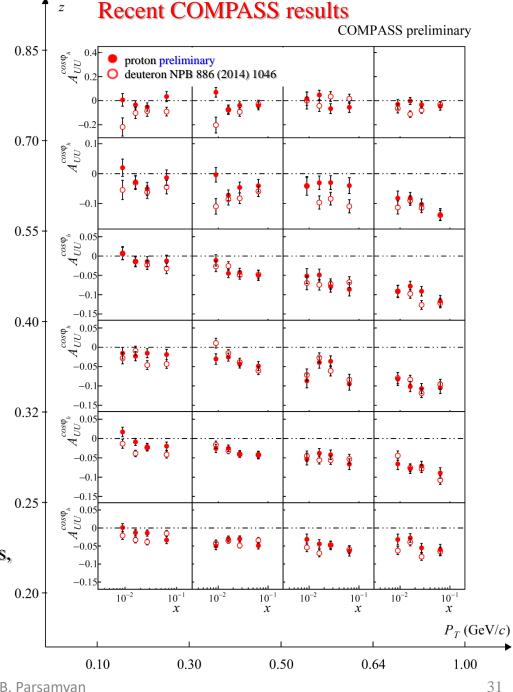
Cahn effect in SIDIS

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} =$$

$$\left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$$

$$\times (1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h+\ldots)$$

Cahn effect


$$f_1^q(x, \mathbf{k}_T^2)$$
 number density

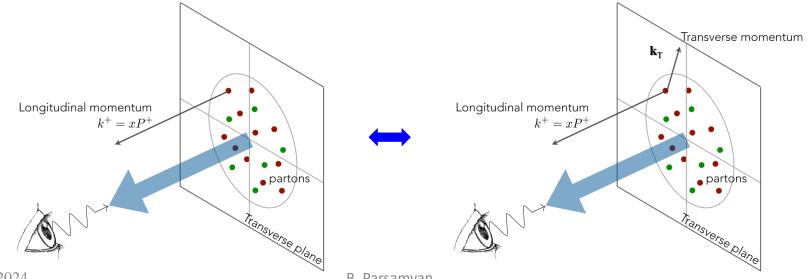
As of 1978 – simplistic kinematic effect:

non-zero k_T induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no comprehensive interpretation
- A set of complex corrections:
 - Acceptance, diffractively produced VMs, radiative corrections (RC), etc.
- Strong Q² dependence unexplained

Nucleon spin structure (twist-2): collinear approach ↔TMDs



			quark		
		U	L	T	
	U	$f_1^q(x)$ number density			U
nucleon	L		$g_1^q(x)$		L
	Т			$h_1^q(x)$ transversity	Т

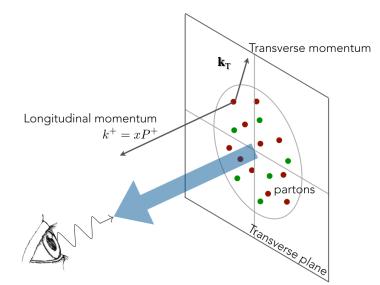
			quark	
		U	L	T
	U	$f_1^{q}(x,oldsymbol{k}_T^2)$ number density		$h_1^{\perp q}(x, {m k}_T^2)$ Boer-Mulders T-odd
110010	L		$g_1^q(x, \boldsymbol{k}_T^2)$	$h_{1L}^{\perp q}(x, \boldsymbol{k}_T^2)$ worm-gear L
	Т	$f_{1T}^{\perp q}(x, \boldsymbol{k}_T^2)$ Sivers T-odd	$g_{1T}^q(x,oldsymbol{k}_T^2)$ Kotzinian-Mulders worm-gear T	$h_1^q(x, oldsymbol{k}_T^2) \ ag{transversity} \ h_{1T}^{\perp q}(x, oldsymbol{k}_T^2) \ ext{pretzelosity}$

anark

PDFs – universal (process independent) objects; T-odd PDFs – conditionally universal

19 August 2024

Nucleon spin structure (twist-2): TMDs


quark

	U	L	T
U	number density		Boer-Mulders
L		helicity	worm-gear L
Т	Sivers	Kotzinian-Mulders worm-gear T	transversity pretzelosity

- spin of the nucleon; \uparrow - spin of the quark \nearrow - k_T

quar

		quari	
	U	L	T
U	$f_1^{q}(x,m{k}_T^2)$ number density		$h_1^{\perp q}(x, oldsymbol{k}_T^2)$ Boer-Mulders T-odd
L		$g_1^q(x, \boldsymbol{k}_T^2)$ Helicity	$h_{1L}^{\perp q}(x,oldsymbol{k}_T^2)$ worm-gear L
T	$f_{1T}^{\perp q}(x, \boldsymbol{k}_T^2)$ Sivers T-odd	$g_{1T}^{q}(x,oldsymbol{k}_{T}^{2})$ Kotzinian-Mulders	$h_1^q(x,oldsymbol{k}_T^2)$ $h_1^{\perp q}(x,oldsymbol{k}_T^2)$ $h_{1T}^{\perp q}(x,oldsymbol{k}_T^2)$ pretzelosity
	L	U $f_1^q(x, \mathbf{k}_T^2)$ number density L $f_{1T}^{\perp q}(x, \mathbf{k}_T^2)$ Sivers	U $f_1^q(x, \mathbf{k}_T^2)$ number density $g_1^q(x, \mathbf{k}_T^2)$ Helicity $f_{1T}^{\perp q}(x, \mathbf{k}_T^2)$ Sivers $g_{1T}^q(x, \mathbf{k}_T^2)$ Kotzinian-Mulders

SIDIS x-section and TMDs at twist-2

$$\frac{d\delta}{dxdydzdp_T^2d\phi_h d\phi_S} =$$

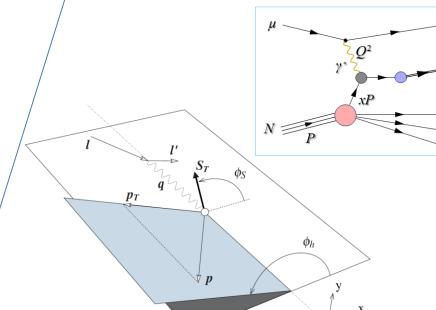
$$\left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right)$$

 $+ \lambda \sqrt{2\varepsilon(1-\varepsilon)} A_{LU}^{\sin\phi_h} \sin\phi_h$

 $1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h}\cos2\phi_h$

 $A_{IIT}^{\sin(\phi_h-\phi_S)}\sin(\phi_h-\phi_S)$

 $+ S_{T}\lambda + \sqrt{2\varepsilon(1-\varepsilon)}A_{LT}^{\cos\phi_{S}}\cos\phi_{S}$


$$+ S_{L} \left[\sqrt{2\varepsilon (1+\varepsilon)} A_{UL}^{\sin\phi_{h}} \sin \phi_{h} + \varepsilon A_{UL}^{\sin2\phi_{h}} \sin 2\phi_{h} \right]$$

$$+ S_{L} \lambda \left[\sqrt{1-\varepsilon^{2}} A_{LL} + \sqrt{2\varepsilon (1-\varepsilon)} A_{LL}^{\cos\phi_{h}} \cos \phi_{h} \right]$$

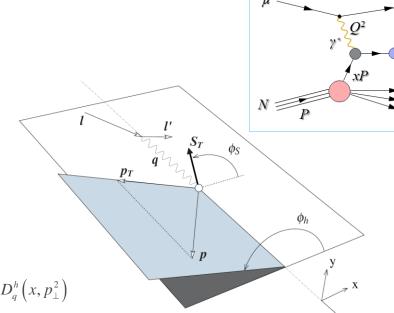
 $+\sqrt{2\varepsilon(1-\varepsilon)}A_{LT}^{\cos(2\phi_h-\phi_S)}\cos(2\phi_h-\phi_S)$

$ \begin{array}{c ccccc} \mathbf{U} & \mathbf{L} & \mathbf{T} \\ $	- quark						
number density $g_1^q(x, \boldsymbol{k}_T^2) = h_{1L}^{\perp q}(x, \boldsymbol{k}_T^2) $ $f_{1T}^{\perp q}(x, \boldsymbol{k}_T^2) = g_{1T}^q(x, \boldsymbol{k}_T^2) $ Kotzinian-Mulders $h_{1L}^{\perp q}(x, \boldsymbol{k}_T^2) $ transversity $h_{1T}^{\perp q}(x, \boldsymbol{k}_T^2)$ transversity $h_{1T}^{\perp q}(x, \boldsymbol{k}_T^2)$		U	L	T			
T $f_{1T}^{\perp q}(x, \mathbf{k}_T^2)$ $g_{1T}^q(x, \mathbf{k}_T^2)$ $g_{1T}^q(x, \mathbf{k}_T^2)$ transversity $h_{1T}^{\perp q}(x, \mathbf{k}_T^2)$ Sivers $h_{1T}^{\perp q}(x, \mathbf{k}_T^2)$	U			Boer-Mulders			
$\begin{array}{ c c c c } \hline \mathbf{T} & f_{1T}^{\perp q}(x, \mathbf{k}_T^2) & g_{1T}^q(x, \mathbf{k}_T^2) & \text{transversity} \\ \text{Sivers} & \text{Kotzinian-Mulders} & h_{1T}^{\perp q}(x, \mathbf{k}_T^2) \end{array}$	L			- LD			
T-odd worm-gear 1 pretzelosity	Т			transversity $h_{1T}^{\perp q}(x, \boldsymbol{k}_T^2)$			

quark

19 August 2024

SIDIS x-section and TMDs at twist-2

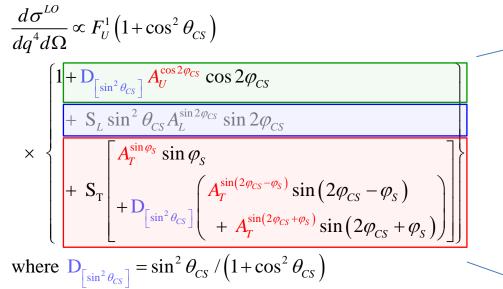

$$\frac{d\sigma^{LO}}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right)$$

$$\left\{ \begin{aligned} &1 + \varepsilon A_{UU}^{\cos 2\phi_h} \cos 2\phi_h \\ &+ S_L \varepsilon A_{UL}^{\sin 2\phi_h} \sin 2\phi_h + S_L \lambda \sqrt{1 - \varepsilon^2} A_{LL} \end{aligned} \right. \\ &\times \left\{ \begin{aligned} &+ S_T \left[A_{UT}^{\sin(\phi_h - \phi_S)} \sin(\phi_h - \phi_S) \\ &+ \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) \\ &+ \varepsilon A_{UT}^{\sin(3\phi_h - \phi_S)} \sin(3\phi_h - \phi_S) \end{aligned} \right. \\ &+ \left. S_T \lambda \left[\sqrt{(1 - \varepsilon^2)} A_{LT}^{\cos(\phi_h - \phi_S)} \cos(\phi_h - \phi_S) \right] \end{aligned} \right.$$

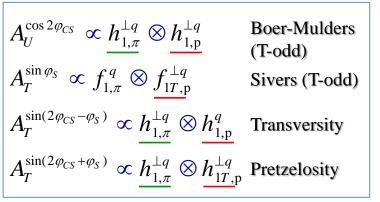
quari

		U	L	T
	U	$f_1^q(x, oldsymbol{k}_T^2)$ number density		$h_1^{\perp q}(x, \boldsymbol{k}_T^2)$ Boer-Mulders T-odd
nucleon	L		$g_1^q(x, \boldsymbol{k}_T^2)$ Helicity	$h_{1L}^{\perp q}(x, \boldsymbol{k}_T^2)$ worm-gear L
	Т	$f_{1T}^{\perp q}(x, \boldsymbol{k}_T^2)$ Sivers T-odd	$g_{1T}^{q}(x,oldsymbol{k}_{T}^{2})$ Kotzinian-Mulders worm-gear T	$h_1^q(x, \boldsymbol{k}_T^2)$ transversity $h_{1T}^{\perp q}(x, \boldsymbol{k}_T^2)$ pretzelosity

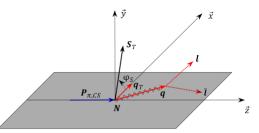
$egin{aligned} A_{UU}^{\cos2\phi_h} & \propto \underline{h}_1^{\perp q} \otimes \underline{H}_{1q}^{\perp h} \ A_{UT}^{\sin(\phi_h - \phi_s)} & \propto \underline{f}_{1T}^{\perp q} \otimes D_{1q}^h \end{aligned}$	Boer-Mulders (T-odd) Sivers (T-odd)
$A_{UT}^{\sin(\phi_h+\phi_s)} \propto h_1^q \otimes H_{1q}^{\perp h}$	Transversity
$A_{UT}^{\sin(3\phi_h-\phi_s)} \propto \underline{h_{1T}^{\perp q}} \otimes \underline{H_{1q}^{\perp h}}$	Pretzelosity

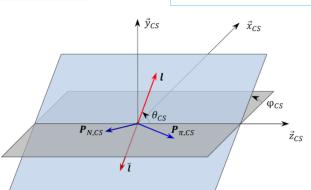


 $\otimes \equiv \mathbb{C}\left[wf D\right] = x \sum_{q} e_{q}^{2} \int d^{2}\boldsymbol{k}_{T} d^{2}\boldsymbol{p}_{\perp} \delta^{(2)}\left(z\boldsymbol{k}_{T} + \boldsymbol{p}_{\perp} - \boldsymbol{P}_{h}\right) w\left(\boldsymbol{k}_{T}, \boldsymbol{p}_{\perp}\right) f^{q}\left(x, k_{T}^{2}\right) D_{q}^{h}\left(x, p_{\perp}^{2}\right)$


19 August 2024

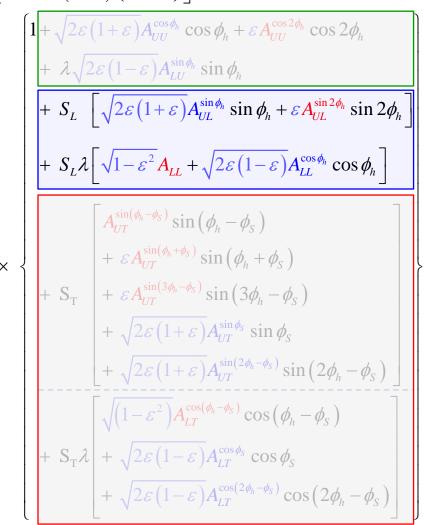
Single-polarized Drell-Yan x-section and twist-2 TMDs

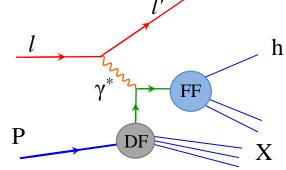



	quark				
		U	L	T	
	U	$f_1^q(x, oldsymbol{k}_T^2)$ number density		$h_1^{\perp q}(x, \boldsymbol{k}_T^2)$ Boer-Mulders T-odd	
nucleon	L		$g_1^q(x, \boldsymbol{k}_T^2)$	$h_{1L}^{\perp q}(x, \boldsymbol{k}_T^2)$ worm-gear L	
	Т	$f_{1T}^{\perp q}(x, \boldsymbol{k}_T^2)$ Sivers T-odd	$g_{1T}^{q}(x,m{k}_T^2)$ Kotzinian-Mulders worm-gear T	$h_1^q(x, oldsymbol{k}_T^2)$ transversity $h_{1T}^{\perp q}(x, oldsymbol{k}_T^2)$ pretzelosity	

SIDIS ↔ Drell-Yan sign-change of the T-odd TMD PDFs

Fundamental quest: COMPASS, STAR, SpinQuest, LHCspin, etc.




SIDIS x-section and TMDs at twist-2

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} =$$

All measured by COMPASS

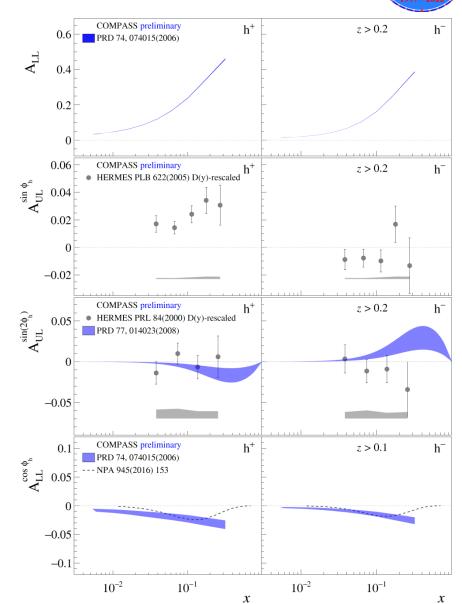
$$\left[\frac{\alpha}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right)\right] \left(F_{UU,T} + \varepsilon F_{UU,L}\right)$$

Quark Nucleon	U	L	Т
U	number density		Boer-Mulders
L		helicity	worm-gear L
T	Šīvers	Kotzinian- Mulders worm-gear T	transversity pretzelosity

SIDIS: target longitudinal spin dependent asymmetries

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{ 1 + \dots \right.$$

$$+ S_{L} \left[\sqrt{2\varepsilon (1+\varepsilon)} A_{UL}^{\sin \phi_{h}} \sin \phi_{h} + \varepsilon A_{UL}^{\sin 2\phi_{h}} \sin 2\phi_{h} \right]$$


$$+ S_{L} \lambda \left[\sqrt{1-\varepsilon^{2}} A_{LL} + \sqrt{2\varepsilon (1-\varepsilon)} A_{LL}^{\cos \phi_{h}} \cos \phi_{h} \right]$$

$$F_{LL}^1 = \mathcal{C}\left\{g_{1L}^q D_{1q}^h\right\}$$

$$F_{UL}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left\{ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p_T}}{M_h} \left(x h_L^q H_{1q}^{\perp h} + \frac{M_h}{M} g_{1L}^q \frac{\tilde{G}_q^{\perp h}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k_T}}{M} \left(x f_L^{\perp q} D_{1q}^h - \frac{M_h}{M} h_{1L}^{\perp q} \frac{\tilde{H}_q^h}{z} \right) \right\}$$

$$F_{UL}^{\sin 2\phi_h} = \mathbb{C}\left\{-\frac{2(\hat{\boldsymbol{h}} \cdot \boldsymbol{p_T})(\hat{\boldsymbol{h}} \cdot \boldsymbol{k_T}) - \boldsymbol{p_T} \cdot \boldsymbol{k_T}}{MM_h} h_{1L}^{\perp q} H_{1q}^{\perp h}\right\}$$

$$F_{LL}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{C} \left\{ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p_T}}{M_h} \left(x e_L^q H_{1q}^{\perp h} + \frac{M_h}{M} g_{1L}^q \frac{\tilde{D}_q^{\perp h}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k_T}}{M} \left(x g_L^{\perp q} D_{1q}^h - \frac{M_h}{M} h_{1L}^{\perp q} \frac{\tilde{E}_q^h}{z} \right) \right\}$$

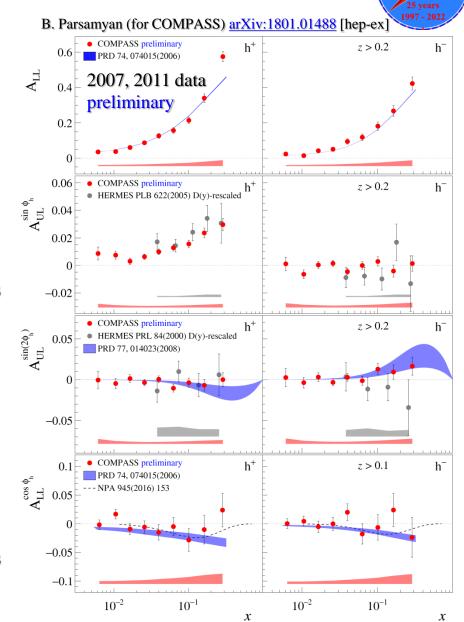
SIDIS: target longitudinal spin dependent asymmetries

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{ 1 + \dots \right\}$$

$$+ S_{L} \left[\sqrt{2\varepsilon (1+\varepsilon)} A_{UL}^{\sin \phi_{h}} \sin \phi_{h} + \varepsilon A_{UL}^{\sin 2\phi_{h}} \sin 2\phi_{h} \right]$$

$$+ S_{L} \lambda \left[\sqrt{1-\varepsilon^{2}} A_{LL} + \sqrt{2\varepsilon (1-\varepsilon)} A_{LL}^{\cos \phi_{h}} \cos \phi_{h} \right]$$

COMPASS collected large amount of L-SIDIS data Unprecedented precision for some amplitudes! $A_{UL}^{\sin\phi_h}$


- Q-suppression, Various different "twist" ingredients
- Sizable TSA-mixing
- Significant h⁺ asymmetry, clear z-dependence
- h⁻ compatible with zero

$A_{UL}^{\sin2\phi_h}$

- Only "twist-2" ingredients
- Additional p_T-suppression
- Compatible with zero, in agreement with models
- Collins-like behavior?

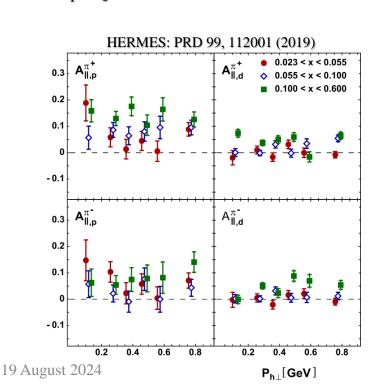
$A_{LL}^{\cos\phi_h}$

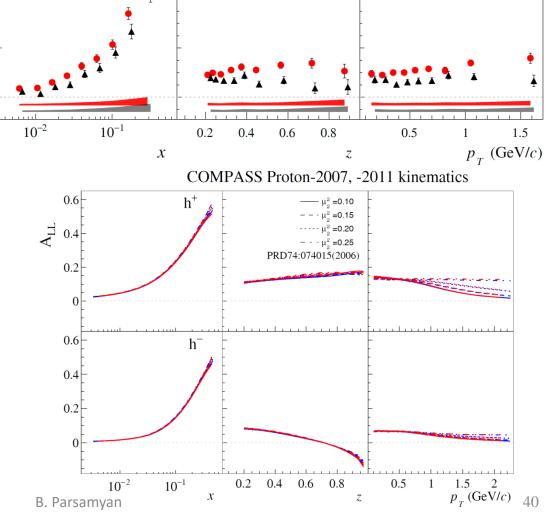
- Q-suppression, Various different "twist" ingredients
- Compatible with zero, in agreement with models

SIDIS: target longitudinal spin dependent asymmetries

0.4

0.2


Proton 2007, 2011 data


B. Parsamyan (for COMPASS) arXiv:1801.01488 [hep-ex]

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \ldots + S_L\lambda\sqrt{1 - \varepsilon^2} \frac{\mathbf{A}_{LL}}{\mathbf{A}_{LL}} + \ldots\right\}$$

$$F_{LL}^1 = \mathcal{C}\left\{g_{1L}^q D_{1q}^h\right\}$$

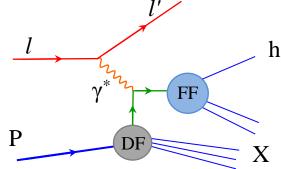
- Measurement of (semi-)inclusive A₁(A_{LL}) is one of the key physics topics of HERMES/COMPASS
- Large amount of P/D data
- No P_T-dependence observed

COMPASS preliminary

SIDIS x-section and TMDs at twist-2: TSAs

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} =$$

All measured by COMPASS


$$\left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$$

$$\begin{aligned} & \left[1 + \sqrt{2\varepsilon \left(1 + \varepsilon \right)} A_{UU}^{\cos\phi_h} \cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h} \cos2\phi_h \right. \\ & + \left. \lambda \sqrt{2\varepsilon \left(1 - \varepsilon \right)} A_{LU}^{\sin\phi_h} \sin\phi_h \right. \\ & \left. + \left. S_L \left[\sqrt{2\varepsilon \left(1 + \varepsilon \right)} A_{UL}^{\sin\phi_h} \sin\phi_h + \varepsilon A_{UL}^{\sin2\phi_h} \sin2\phi_h \right] \right. \\ & \left. + \left. S_L \lambda \left[\sqrt{1 - \varepsilon^2} A_{LL} + \sqrt{2\varepsilon \left(1 - \varepsilon \right)} A_{LL}^{\cos\phi_h} \cos\phi_h \right] \right. \end{aligned}$$

$$\begin{vmatrix} A_{UT}^{\sin(\phi_h - \phi_S)} \sin(\phi_h - \phi_S) \\ + \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) \\ + S_T \end{vmatrix} + \varepsilon A_{UT}^{\sin(3\phi_h - \phi_S)} \sin(3\phi_h - \phi_S) \\ + \sqrt{2\varepsilon(1+\varepsilon)} A_{UT}^{\sin\phi_S} \sin\phi_S \\ + \sqrt{2\varepsilon(1+\varepsilon)} A_{UT}^{\sin(2\phi_h - \phi_S)} \sin(2\phi_h - \phi_S) \end{vmatrix}$$

$$+ S_T \lambda \begin{vmatrix} \sqrt{(1-\varepsilon^2)} A_{LT}^{\cos(\phi_h - \phi_S)} \cos(\phi_h - \phi_S) \\ + \sqrt{2\varepsilon(1-\varepsilon)} A_{LT}^{\cos\phi_S} \cos\phi_S \end{vmatrix}$$

 $+\sqrt{2\varepsilon(1-\varepsilon)}A_{LT}^{\cos(2\phi_h-\phi_S)}\cos(2\phi_h-\phi_S)$

$$A_{UT}^{\sin(\phi_h-\phi_s)} \propto f_{1T}^{\perp q} \otimes D_{1q}^h$$
 Sivers

 $A_{I/T}^{\sin(\phi_h + \phi_s)} \propto h_1^q \otimes H_{1a}^{\perp h}$ Collins

 $A_{UT}^{\sin(3\phi_h-\phi_s)} \propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h}$

Twist-3

Twist-2

$$A_{UT}^{\sin(\phi_s)} \stackrel{WW}{\propto} Q^{-1} \Big(h_1^q \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h + ... \Big)$$

$$A_{UT}^{\sin(2\phi_h-\phi_s)} \stackrel{ww}{\propto} Q^{-1} \Big(h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h + ... \Big)$$

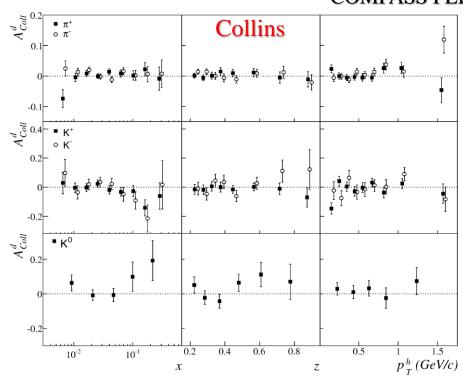
$$A_{LT}^{\cos(\phi_h-\phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$$

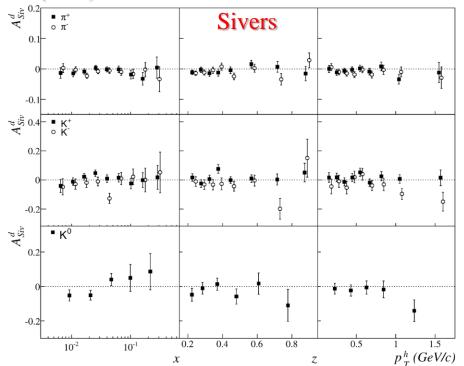
$$A_{LT}^{\cos(\phi_s)} \stackrel{WW}{\propto} Q^{-1} \left(g_{1T}^{\ q} \otimes D_{1q}^h + ... \right)$$

$$A_{LT}^{\cos(2\phi_h-\phi_s)} \stackrel{WW}{\propto} Q^{-1} \left(g_{1T}^q \otimes D_{1q}^h + ...\right)$$

SIDIS TSAs: Collins and Sivers effects (deuteron)

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_S)} \sin(\phi_h - \phi_S) + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) \dots \right\}$$


$$F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} \boldsymbol{h}_1^q \boldsymbol{H}_{1q}^{\perp h} \right]$$



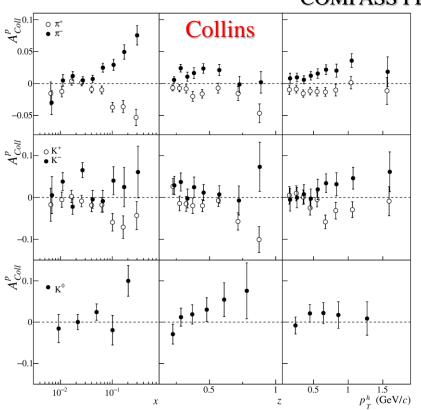
$$F_{UT,T}^{\sin(\phi_h - \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M} f_{1T}^{\perp q} \boldsymbol{D}_{1q}^h \right], F_{UT,L}^{\sin(\phi_h - \phi_S)} = 0$$

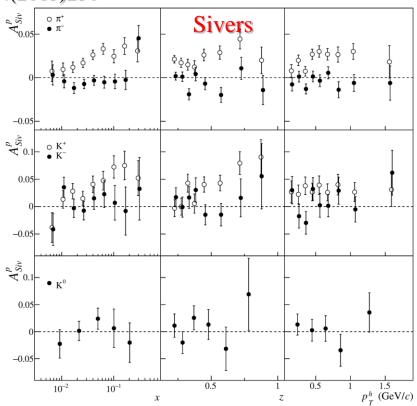
COMPASS PLB 673 (2009) 127

- 1st COMPASS deuteron measurements
- Collins and Sivers asymmetries compatible with zero within uncertainties.

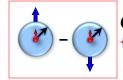
SIDIS TSAs: Collins and Sivers effects (proton)

$$\frac{d\sigma}{dx dy dz dp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \ldots + S_{\mathrm{T}} \frac{A_{UT}^{\sin(\phi_h - \phi_S)}}{CT} \sin\left(\phi_h - \phi_S\right) + S_{\mathrm{T}} \frac{\varepsilon A_{UT}^{\sin(\phi_h + \phi_S)}}{CT} \sin\left(\phi_h + \phi_S\right) \ldots \right\}$$


$$F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p_T}}{M_h} h_1^q \boldsymbol{H}_{1q}^{\perp h} \right]$$



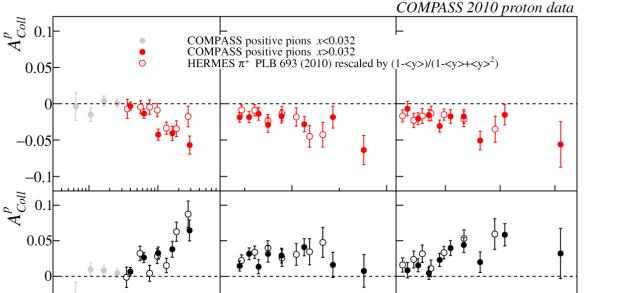
$$F_{UT,T}^{\sin(\phi_h-\phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M} f_{1T}^{\perp q} D_{1q}^h \right], F_{UT,L}^{\sin(\phi_h-\phi_S)} = 0$$



COMPASS PLB 744(2015)250

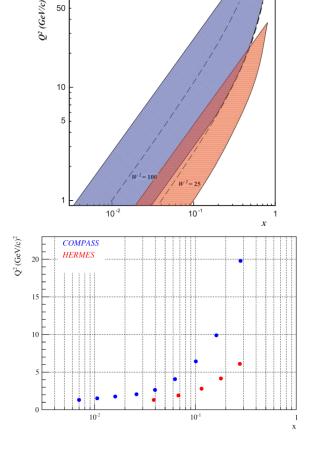
- 1st COMPASS deuteron measurements Collins and Sivers asymmetries compatible with zero
- COMPASS proton measurements clear non-zero signal for both asymmetries

$$\frac{a\sigma}{dxdydzdp_T^2d\phi_h d\phi_S}$$


$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \dots\right\}$$

$$F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} h_1^q \boldsymbol{H}_{1q}^{\perp h} \right]$$

COMPASS PLB 744 (2015) 250


- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results HERMES/COMPASS (Q^2 is different by a factor of ~2-3)
- No impact from Q²-evolution? Clear signal at STAR energies

COMPASS negative pions x>0.032HERMES π^- PLB 693 (2010) rescaled by (1-<y>)/(1-<y>+<y>²)

COMPASS negative pions x < 0.032

0.5

 10^{-2}

 10^{-1}

x

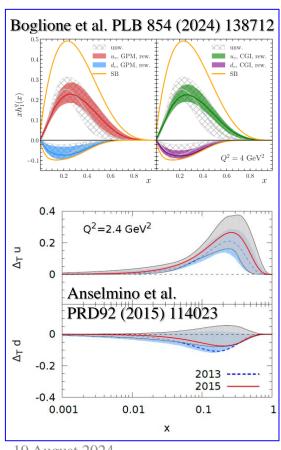
-0.05

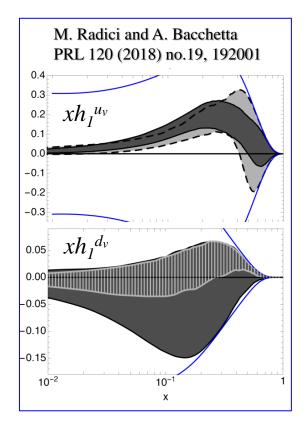
-0.1

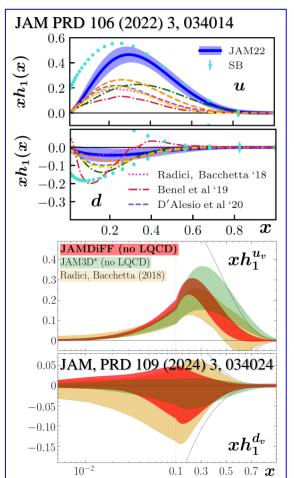
 p_T^h (GeV/c)

0.5

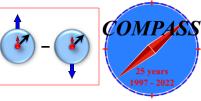
$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \ldots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \ldots \right\}$$




$$F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} h_1^q \boldsymbol{H}_{1q}^{\perp h} \right]$$



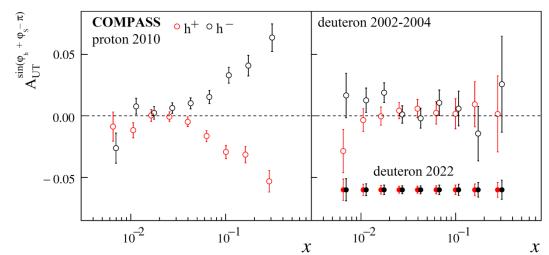
- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results HERMES/COMPASS (Q^2 is different by a factor of ~2-3)
- No impact from Q²-evolution? Clear signal at STAR energies
- Extensive phenomenological studies and various global fits by


different groups

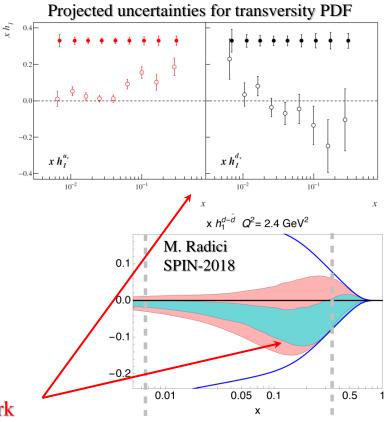
$$\{a_1 a_1 s \in b_s\}$$

$$\frac{a\sigma}{dxdydzdp_T^2d\phi_h d\phi_S}$$

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \dots\right\}$$


$$F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p_T}}{M_h} h_1^q \boldsymbol{H}_{1q}^{\perp h} \right]$$

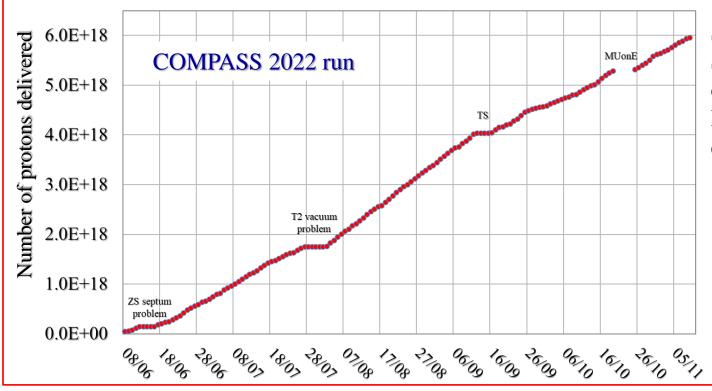
- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results HERMES/COMPASS (Q^2 is different by a factor of $\sim 2-3$)
- New deuteron data crucial to constrain d-quark transversity


[Addendum to the COMPASS-II Proposal]


Projected uncertainties for Collins asymmetry

COMPASS-II (2022)

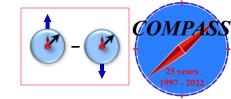
- 2nd COMPASS deuteron measurements performed
- Crucial to constrain the transversity TMD PDF for the d-quark


$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \ldots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \ldots \right\}$$

$$F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} \frac{\boldsymbol{h}_1^q \boldsymbol{H}_{1q}^{\perp h}}{M_1} \right]$$

- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results HERMES/COMPASS (Q² is different by a factor of ~2-3)
- New deuteron data crucial to constrain d-quark transversity

Total protons delivered on the production target: ~5.95×10¹⁸ (98% of the request) in ~150 days

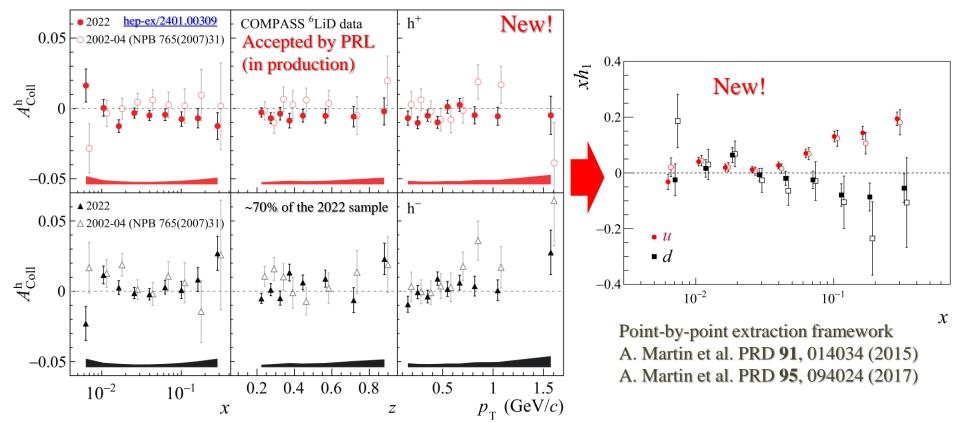

SPS efficiency: ~ 73% Spectrometer

efficiency: ~ 90%

Physics data collection

efficiency: ~ 75%

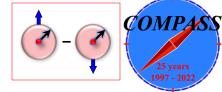
Highly successful Run in 2022!

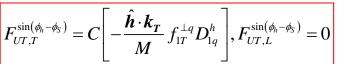


$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \dots \right\}$$

$$F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-rac{\hat{m{h}} \cdot m{p}_T}{M_h} m{h}_1^q m{H}_{1q}^{\perp h}
ight]$$

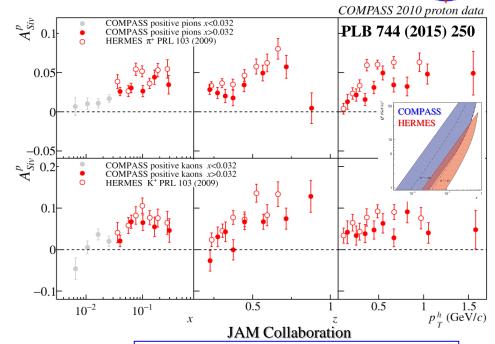
- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results HERMES/COMPASS (Q² is different by a factor of ~2-3)
- New deuteron data crucial to constrain d-quark transversity

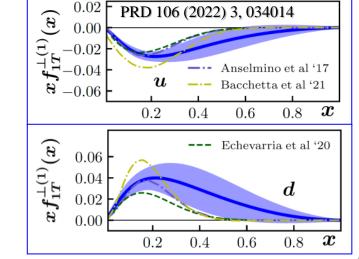


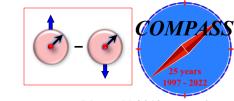

COMPASS 2022 run – highly successful data-taking!

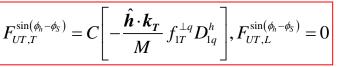
• 2nd COMPASS deuteron measurements conducted in 2022: unique SIDIS data for the next decades

SIDIS TSAs: Sivers effect

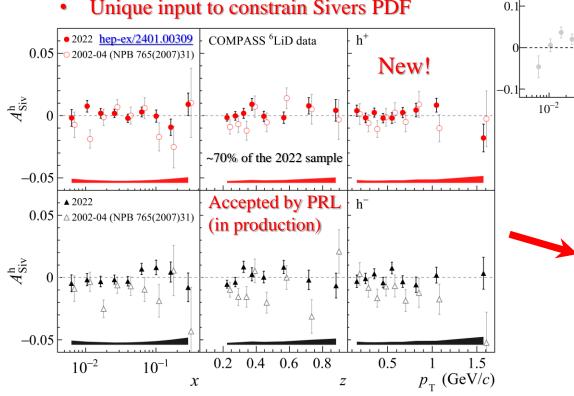

$$\frac{d\sigma}{dx dy dz dp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \ldots + S_T \frac{A_{UT}^{\sin(\phi_h - \phi_S)}}{CT} \sin\left(\phi_h - \phi_S\right) + \ldots \right\}$$

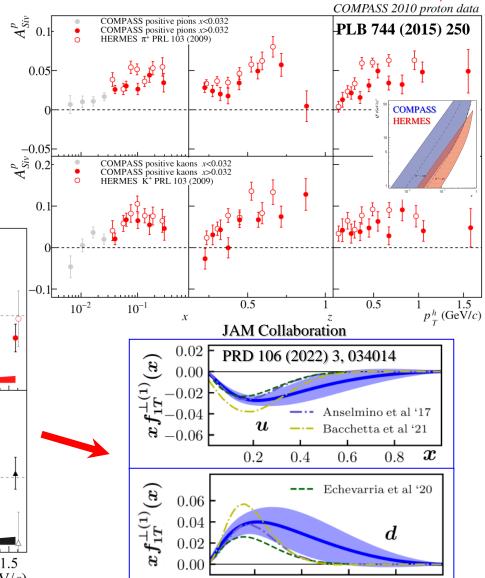



- COMPASS-HERMES discrepancy
- T-oddness: sign-change (SIDIS ↔ Drell-Yan)
 - Explored by COMPASS

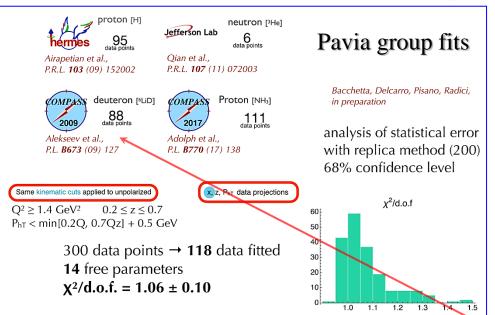


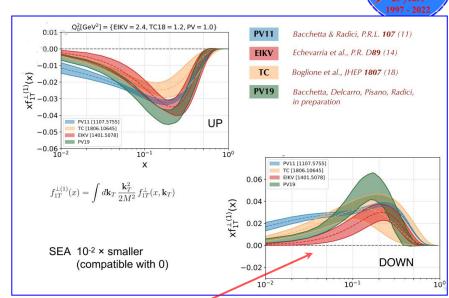
SIDIS TSAs: Sivers effect

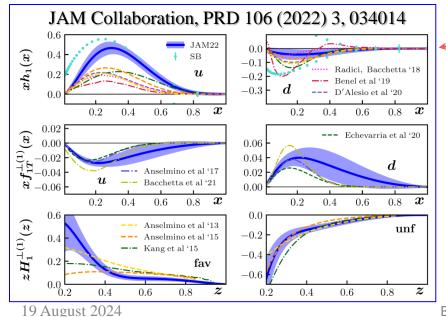

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \ldots + S_{\rm T} \frac{A_{UT}^{\sin\left(\phi_h - \phi_S\right)}}{A_{UT}^{\sin\left(\phi_h - \phi_S\right)}} \sin\left(\phi_h - \phi_S\right) + \ldots \right\}$$



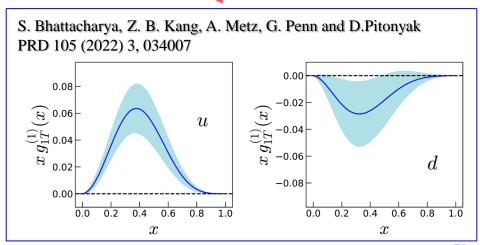
- **COMPASS-HERMES** discrepancy
- T-oddness: sign-change (SIDIS \leftrightarrow Drell-Yan)
 - **Explored by COMPASS**
- New precise deuteron data from COMPASS
 - Unique input to constrain Sivers PDF

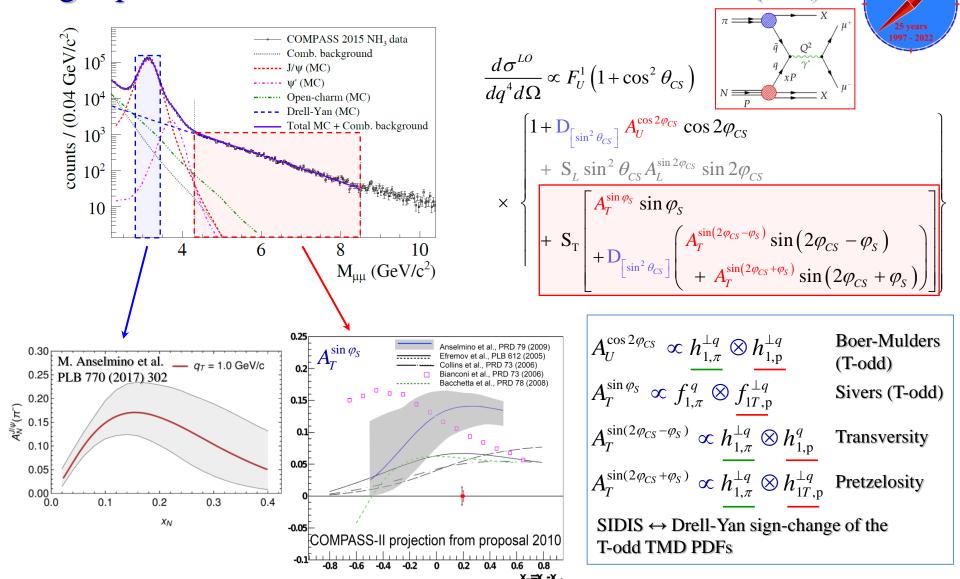

0.2


0.4

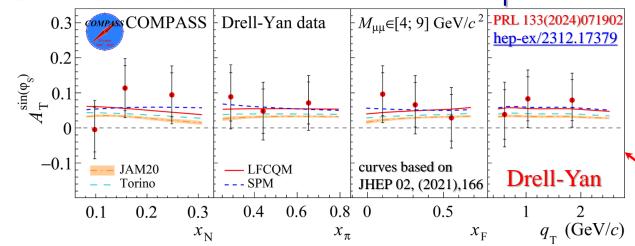

0.6

0.8


COMPASS 2022 run: new unique deuteron data


COMPASS 2022 deuteron run

B. Parsamyan More news soon...

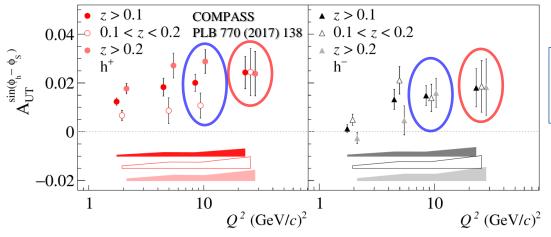


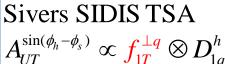
Single-polarized Drell-Yan cross-section at twist-2 (LO)

COMPASS phase-II proposal submitted in 2010 (Drell-Yan, DVCS,...) Predictions for a large Sivers effect in Drell-Yan and J/ ψ at COMPASS \rightarrow sign change test

Sivers effect: Drell-Yan and J/ψ

Sivers DY TSA


 $A_T^{\sin arphi_S} \propto f_{1,\pi}^{\ q} \otimes f_{1T,p}^{\perp q}$

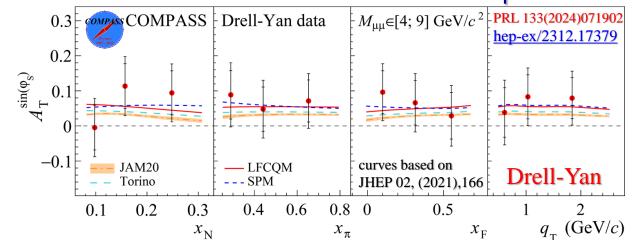


COMPASS 2015 data Drell-Yan NH₃

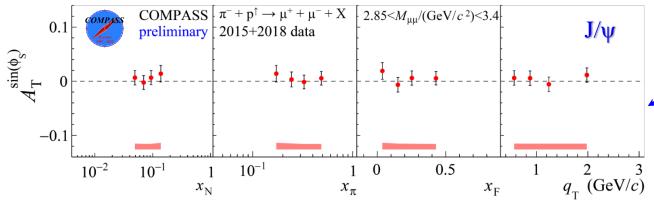
 10^{-1}

• The Drell-Yan Sivers asymmetry tends to be positive (~1.5 s.d.)

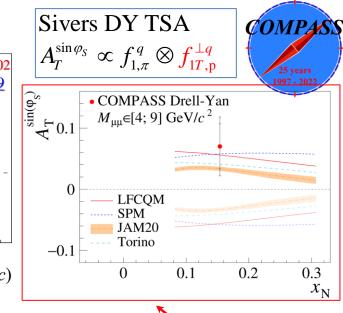
COMPASS proton Sivers measurements

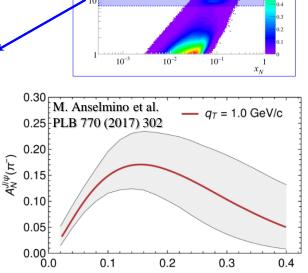

• Clear signal in the matching Q^2 ranges

 10^{-3}


 10^{-2}

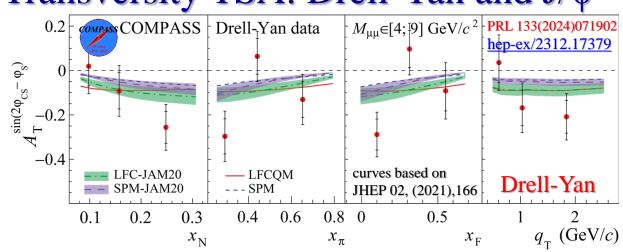
19 August 2024 B. Parsamyan


Sivers effect: Drell-Yan and J/ψ

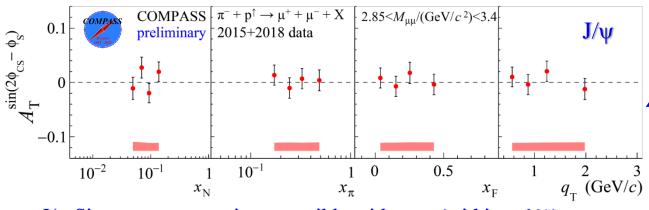


The Drell-Yan Sivers asymmetry tends to be positive (~1.5 s.d.)

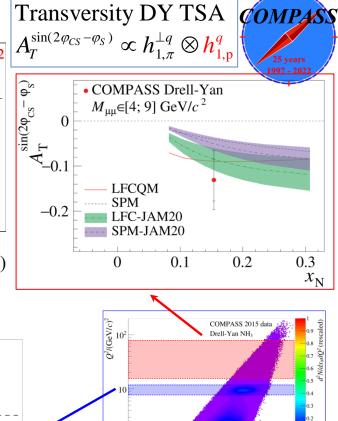
- J/ ψ Sivers asymmetry is compatible with zero (within ~ 1%)
- Predictions for a large Sivers effect in Drell-Yan and J/ψ at COMPASS $\stackrel{\circ}{\rightleftharpoons}$
- Hint that J/ψ production might go via gg fusion in COMPASS?
- Access to small gluon TMDs?

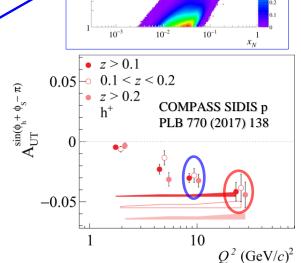


 X_N


55

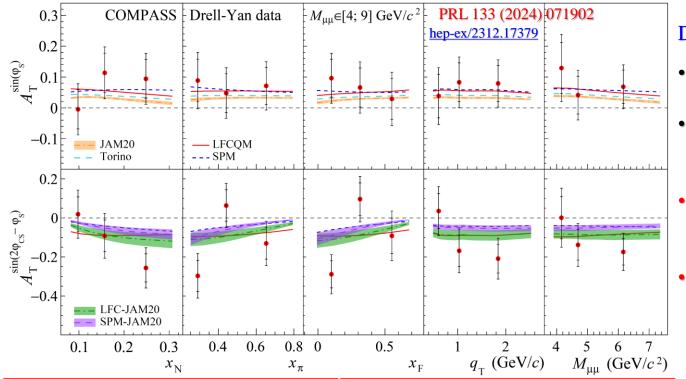
COMPASS 2015 data Drell-Yan NH


Transversity TSA: Drell-Yan and J/ψ



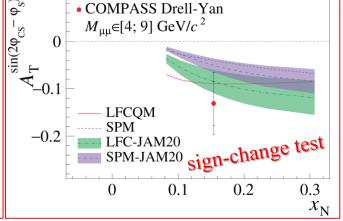
The Drell-Yan Transversity asymmetry is negative (~2 s.d.)

- J/ ψ Sivers asymmetry is compatible with zero (within ~ 1%)
- Predictions for a large Sivers effect in Drell-Yan and J/ψ at COMPASS
- J/\psi Transversity TSA is also compatible with zero
- Hint that J/ψ production might go via gg fusion in COMPASS?
- Access to small gluon TMDs?



Transverse-spin asymmetries in π^-p^{\uparrow} scattering

Theory curves based on S. Bastami et al. JHEP 02, (2021),166



- Ruled out predictions for large asymmetries
- General agreement with currently available model calculations
- COMPASS data favors the sign-change hypothesis for the Sivers TMD PDF
- COMPASS data also favors proton Boer-Mulders TMD PDF sign-change (indirect, model-based)

J/ψ production channel

- All TSAs are small and compatible with zero
- Hint that J/ψ production might go via gluon-gluon fusion in COMPASS
- Access to small gluon TMDs?

19 August 2024 B. Parsamyan

Conclusions

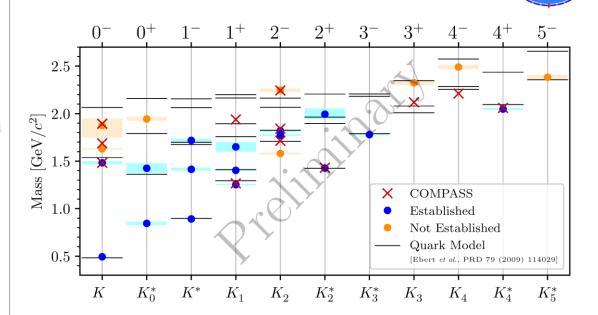
COMPASS - longest-running CERN experiment (20 years of data-taking)

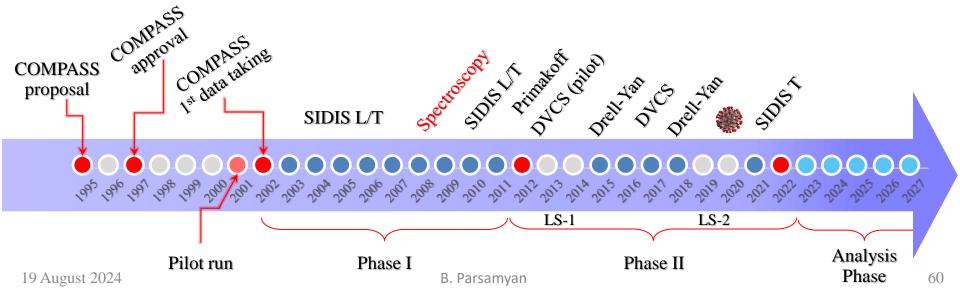
25 years 1997 - 2022

- Series of successful and important measurements addressing nucleon spin-structure
 - Inclusive measurements, unpolarized and polarized SIDIS (longitudinal/transverse)
 - o First-ever polarized Drell-Yan measurements
- A wealth of Spectroscopy, (SI)DIS, Drell-Yan, DVCS, HEMP data collected across the years
 - Petabytes of data available for analysis
- Wide and unique kinematic domain accessing low x and large Q^2
 - Will remain unique for at least another decade
- World-unique SIDIS deuteron data collected in 2022
 - Highly successful run, promising preliminary results
- Since 2023 the experiment entered the Analysis Phase
 - o 3 new groups joined COMPASS in the course of 2023 for the Analysis Phase
 - The spectrometer has been transferred to the COMPASS successor in the M2 beamline the AMBER collaboration
- AMBER took its first data in 2023-2024!
 - Antiproton production studies and input for DM search
- AMBER phase one comprises also PRM and unique Drell-Yan measurements
 - o Phase I will be resumed after LS3
- Long AMBER program is being developed: Phase-II proposal is being drafted

If you are interested in joining COMPASS or AMBER – don't hesitate to get in touch!

COMPASS Physics Program

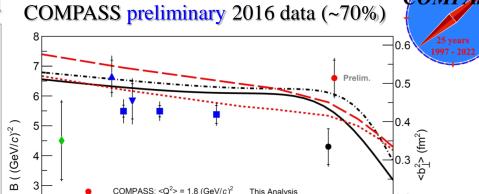

Hadron spectroscopy


- Diffractive $\pi(K)$ dissociation reaction with proton target
- PWA technique employed
- High-precision measurement of light-meson excitation spectrum
- Search for exotic states

Chiral dynamics

- Test chiral perturbation theory in $\pi(K)$ γ reactions
- π^{\pm} and K^{\pm} polarizabilities
- Chiral anomaly $F_{3\pi}$

See Stefan Wallner's talk (Wednesday)



COMPASS Physics Program

GPDs

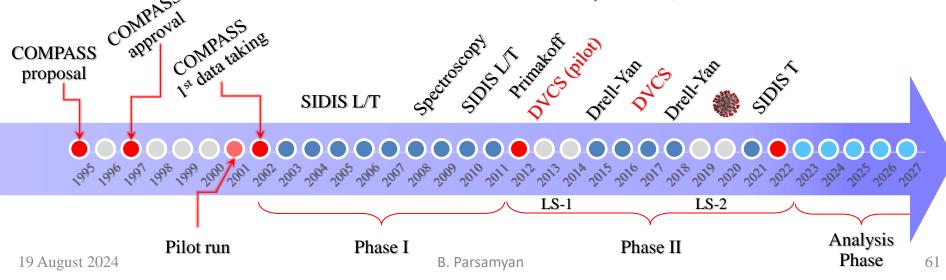
- Transverse position \vec{b}_T of partons
 - 8 GPDs correlation between \vec{b}_T and x
 - Complementary to TMD PDFs
 - Contain information about parton orbital angular momentum
- Accessed via exclusive processes:
 - Deeply virtual Compton scattering (DVCS): $\mu + N \rightarrow \mu + \gamma + N$
 - Hard exclusive meson production (HEMP): $\mu + N \rightarrow \mu + M + N$ with $M = \pi^0$, $\rho(770)$, $\omega(782)$,...

COMPASS: $<Q^2> = 1.8 (GeV/c)^2$

 $<Q^2> = 4.0 (GeV/c)^2$

 $x_{Bi}/2$

This Analysis

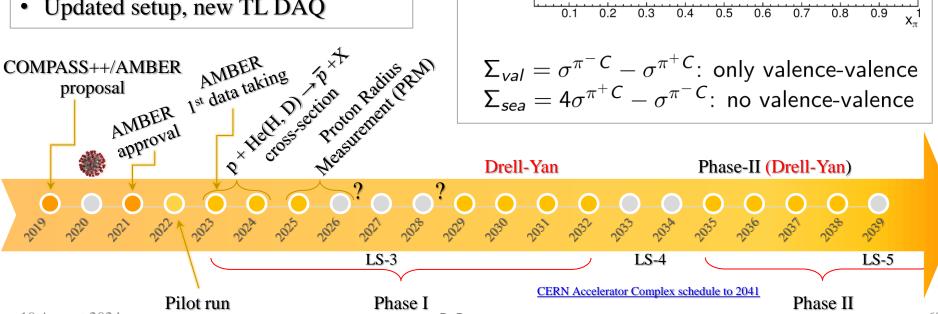

Phys. Lett. B793 (2019) 188

Phys. Lett. B681 (2009) 391

JHEP 0905 (2009) 108

Eur. Phys. C44 (2005) 1

Several ongoing analyses close to completion: exclusive π^0 cross-section, DVCS cross-section, SDMEs for φ meson, etc.



AMBER measurements 2023-2024; Drell-Yan

π^{\pm} , K^{\pm} induced dimuon production: Drell-Yan, J/ψ (and ψ')

- Study of pion and kaon PDFs
 - Crucial input for the study of the **Emergent Hadron Mass (EHM)**
 - Possibility to collect unique balanced π^+/π^- induced DY data
- Measurement of λ , μ and ν (DY, J/ ψ)
- J/ψ production mechanisms $(q\overline{q}, gg)$
- Carbon and tungsten targets
- Improved vertex/mass resolution
- Updated setup, new TL DAQ

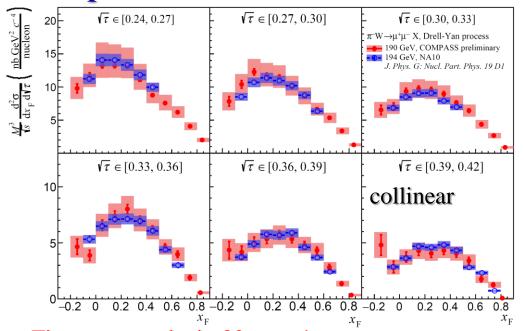
 $\Sigma_{
m sea}/\Sigma_{
m val}$

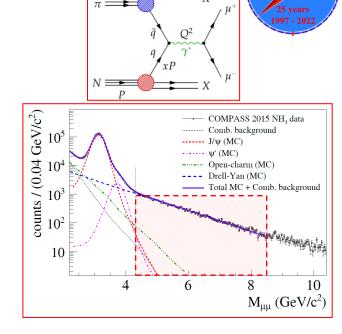
 $\Sigma_{\rm sea}/\Sigma_{\rm val}$

AMBER proposal

4.3 < M/(GeV/c) < 8.5

4.0 < M/(GeV/c) < 8.5


0.2

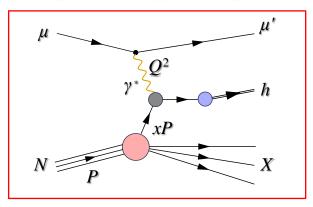

0.5

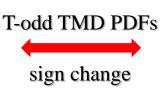
0.6

improved vertexing

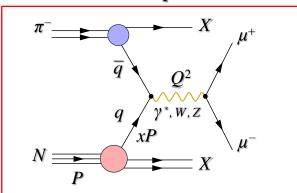
19 August 2024 B. Parsamyan 3D unpolarized Drell-Yan cross section on NH₃ and W

COMPASS


- First new results in 30 years!
- Data from light/heavy targets
 - NH₃-He, Al, W
 - Nuclear dependence
- 1D/2D/3D representations $x_F:q_T:M$
- Unique data to access collinear and TMD distributions
 e.g. pion TMD PDF


Experiment	target	number of events	systematic uncertainty	datapoints (M, x _F)
COMPASS (2018 data)	NH ₃ -He	36000	~5%	110
	Al	6000	~15%	50
	W	43000	~15%	50
NA10	W	155000	6.50%	59
E615	W	36000	16%	168

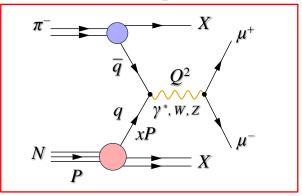
Polarized SIDIS and Drell-Yan: universality



Semi-inclusive DIS


Drell-Yan process

Polarized SIDIS and DY – factorization and kinematic regions



Semi-inclusive DIS

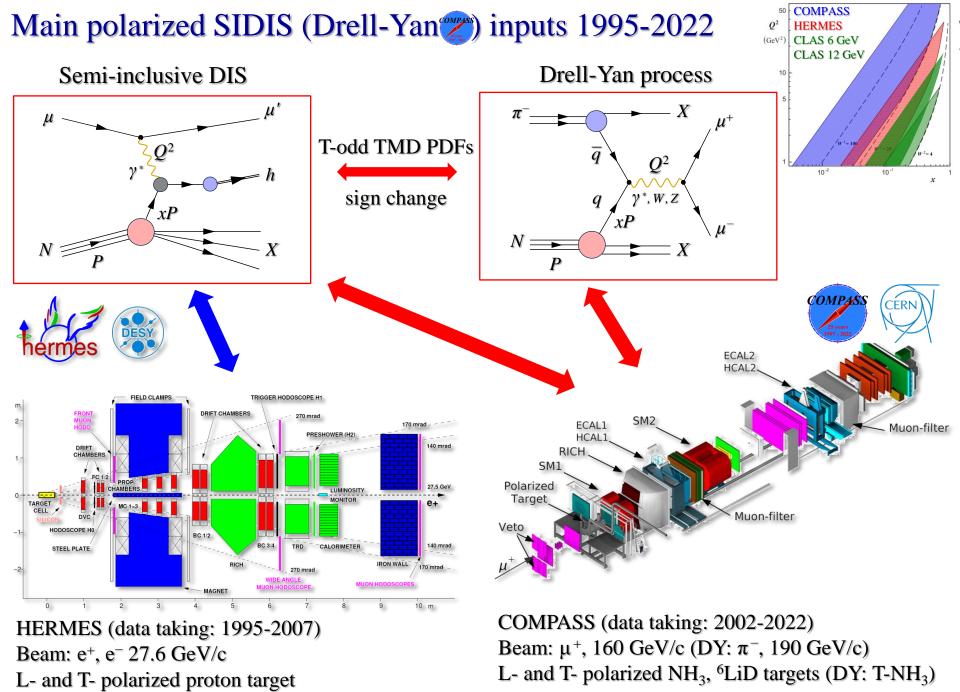
T-odd TMD PDFs
sign change

Drell-Yan process

 $\begin{array}{ll} High & q_T-Collinear \ factorization \\ Low & q_T-TMD \ factorization \end{array}$

Current fragmentation
Collinear factorization

High x_F – Current fragmentation Low x_F – Target fragmentation

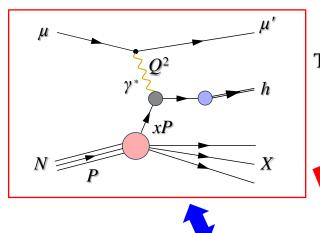

Target fragmentation
TMD factorization
Fracture Functions

Soft region

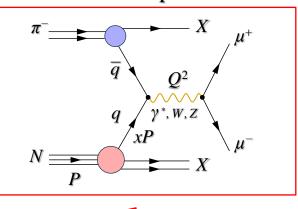
Current fragmentation
TMD factorization
PDFs, FFs

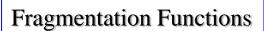
$$q_T \ll Q$$

 $x_{\rm F}$


19 August 2024 B. Parsamyan 60

Main TMD tools – universality and synergies

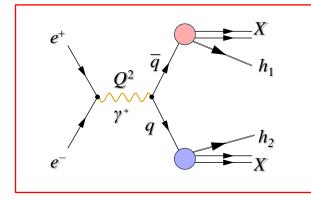

67

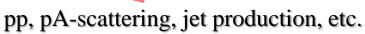


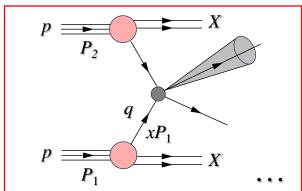


T-odd TMD PDFs
sign change

Drell-Yan process

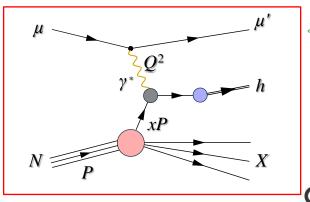




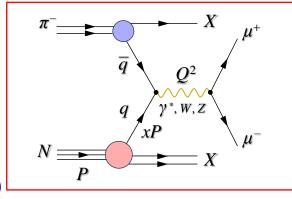


Electron-positron annihilation

Cleanest access to hadronization/fragmentation

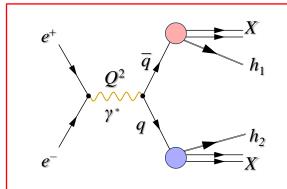


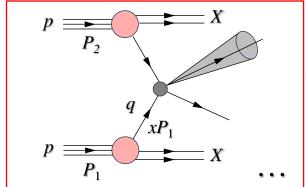
Hybrid collinear-TMD approach. The wealth of pp data allows studies of: TMD universality, evolution, expected factorization breaking


Main TMD tools – list of experiments (non exhaustive)

Semi-inclusive DIS

Drell-Yan process



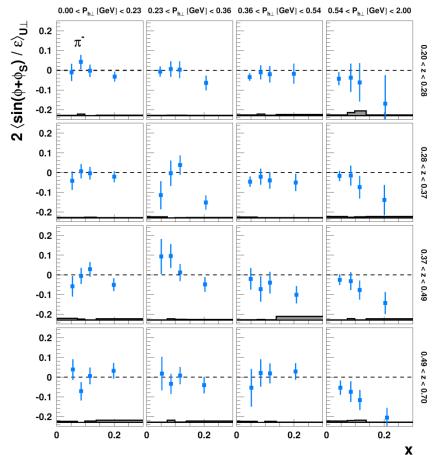


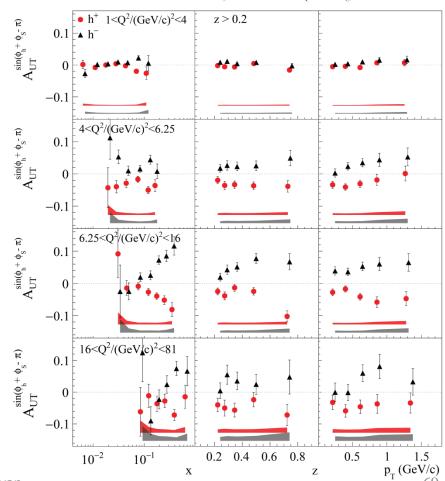
Electron-positron annihilation

pp, pA-scattering, jet production, etc.

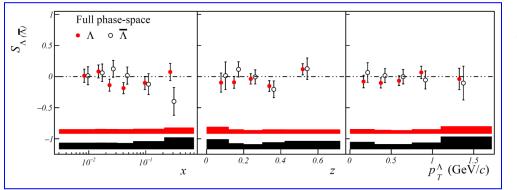
68

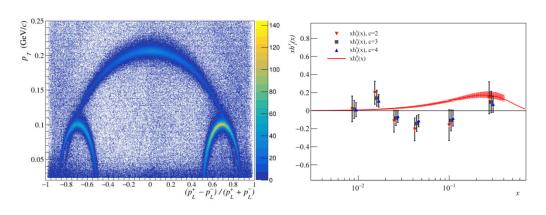
$$\frac{do}{dxdydzdp_T^2d\phi_h d\phi_S}$$

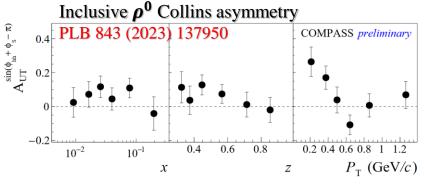

$$- \propto \left(F_{UU,T} + \varepsilon F_{UU,L} \right) \left\{ 1 + \ldots + S_{\mathrm{T}} \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \ldots \right\}$$


$$F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} \boldsymbol{h}_1^q \boldsymbol{H}_{1q}^{\perp h} \right]$$

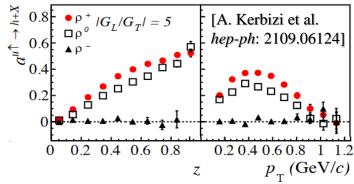
- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results HERMES/COMPASS (Q² is different by a factor of ~2-3)
- No impact from Q²-evolution? Clear signal at STAR energies COMPASS, PBL 770 (2017) 138


$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \dots\right\}$$


$$F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} h_1^q \boldsymbol{H}_{1q}^{\perp h} \right]$$



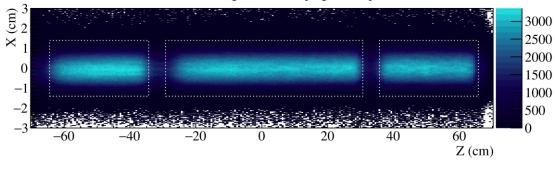
- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results HERMES/COMPASS (Q² is different by a factor of ~2-3)
- No impact from Q²-evolution? Clear signal at STAR energies

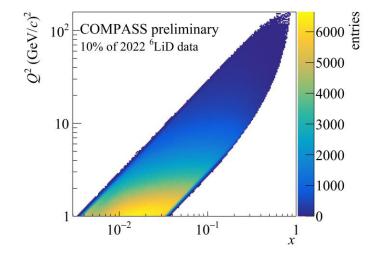

PLB 824 (2022) 136834

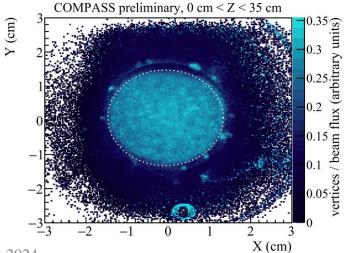
- · indication for a positive asymmetry
- opposite to π^+ and π^0 as predicted by the models
- Large effect at small P_T

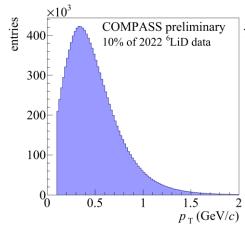
$$\frac{a\sigma}{xdydzdp_T^2d\phi_hd\phi_S}$$

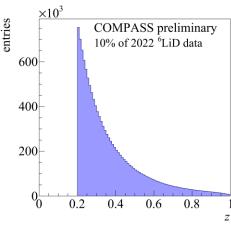
$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \ldots + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) + \ldots \right\}$$

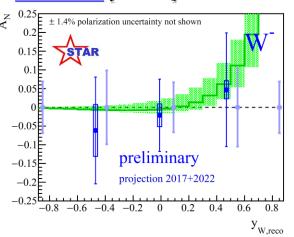

 $F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} h_1^q \boldsymbol{H}_{1q}^{\perp h} \right]$

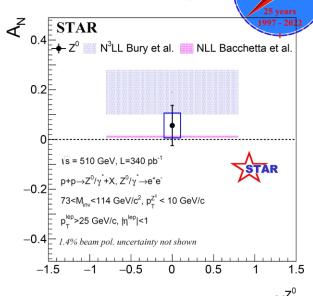



- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results HERMES/COMPASS (Q^2 is different by a factor of ~2-3)
- New deuteron data crucial to constrain d-quark transversity

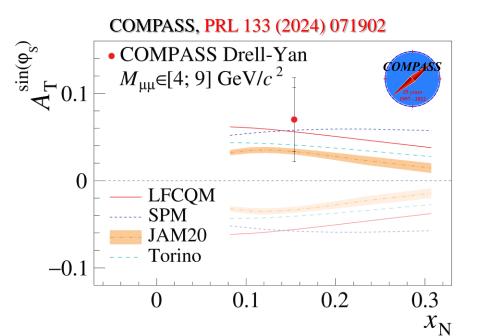

Highly successful Run in 2022!

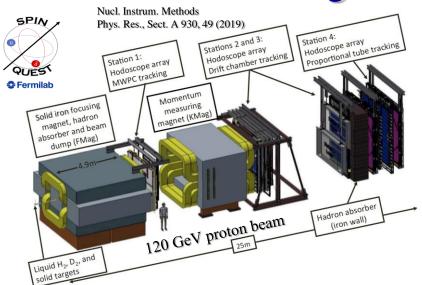

COMPASS preliminary, primary vertices

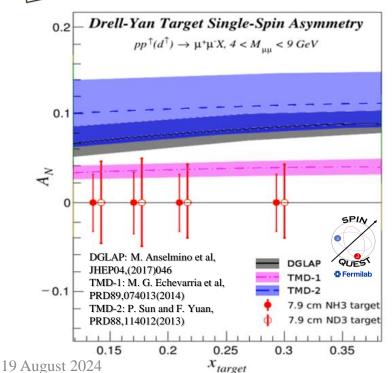




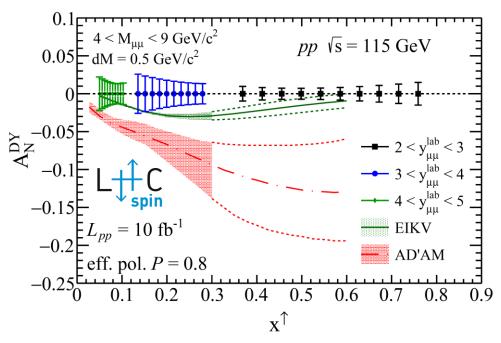
Sivers TMD PDF: sign change


The RHIC Cold QCD program: arXiv: 2302.00605 [nucl-ex]

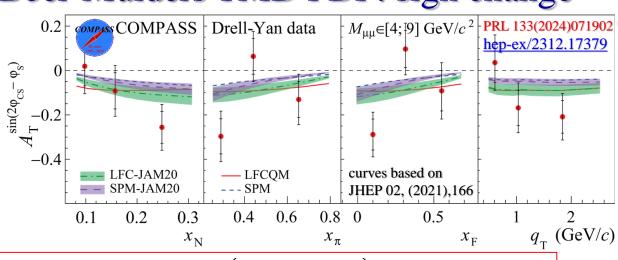

STAR, <u>arXiv:2308.15496</u> [hep-ex]

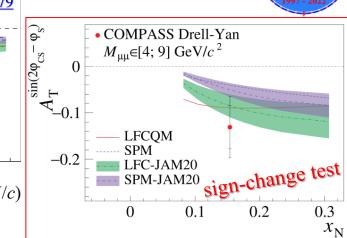


SIDIS↔Drell-Yan (W, Z) sign change of T-odd TMD PDFs


- Difficult measurement
 - Low x-section, background
- Sivers TMD PDF
- Pioneering measurements
 - COMPASS (Drell-Yan): 2015, 2018
 - STAR (W, Z): 2011, 2017, 2022
- COMPASS data favors the sign change
 - Useful input to constrain the fits

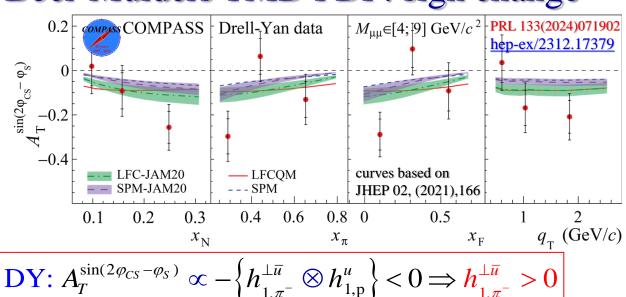
Sivers TMD PDF: sign change - future

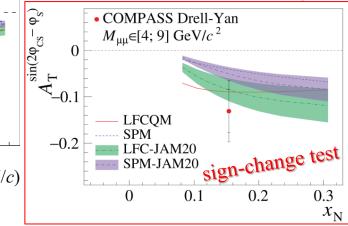


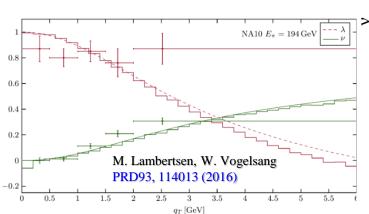


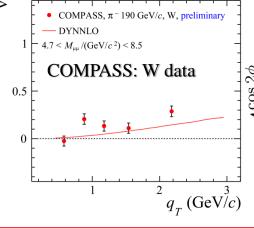
B. Parsamyan 73

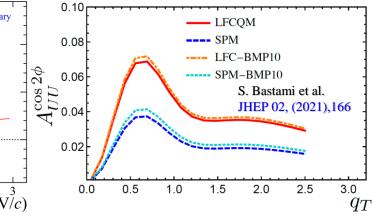
Boer-Mulders TMD PDF: sign change




COMPASS


DY:
$$A_T^{\sin(2\varphi_{CS}-\varphi_S)} \propto -\left\{h_{1,\pi^-}^{\perp \overline{u}} \otimes h_{1,p}^u\right\} < 0 \Longrightarrow h_{1,\pi^-}^{\perp \overline{u}} > 0$$


Boer-Mulders TMD PDF: sign change

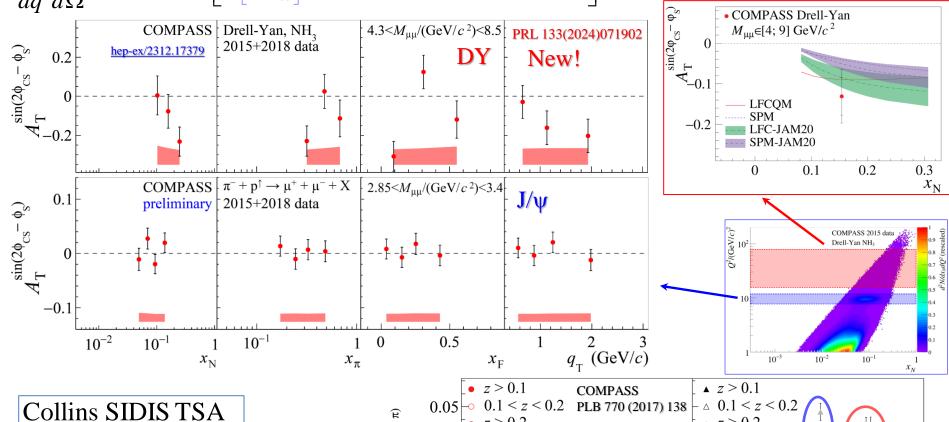


 $\boxed{\mathbf{DY}: A_{T}^{\sin 2\varphi_{CS}} \propto \left\{h_{1,\pi^{-}}^{\perp \overline{u}} \otimes h_{1,p}^{\perp u}\right\} > 0 \Rightarrow h_{1,p}^{\perp u} > 0 \Leftrightarrow \underbrace{\mathbf{SIDIS}: h_{1,p}^{\perp u} < 0}}$

COMPASS data favors proton Boer-Mulders TMD PDF sign-change

 $h_{1,p}^{\perp u} < 0 \rightarrow \text{SIDIS fits}$ V. Barone, et al. PRD 82 (2010) 114025

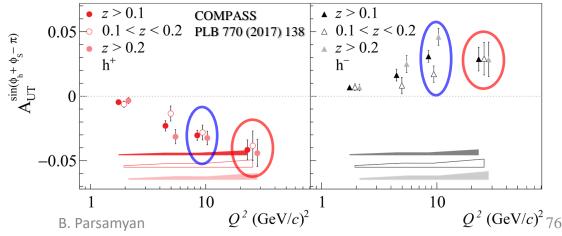
75


Drell-Yan TSAs – Transversity

 $\frac{d\sigma}{dq^4 d\Omega} \propto 1 + ... + S_T \left[D_{\left[\sin^2\theta_{CS}\right]} A_T^{\sin\left(2\varphi_{CS} - \varphi_S\right)} \sin\left(2\varphi_{CS} - \varphi_S\right) + ... \right]$

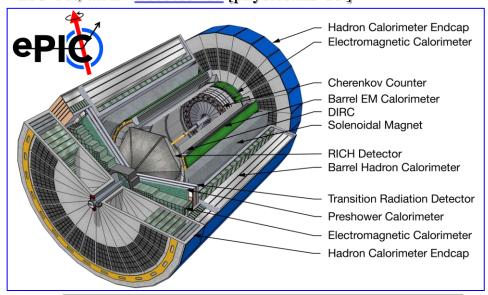
Transversity DY TSA

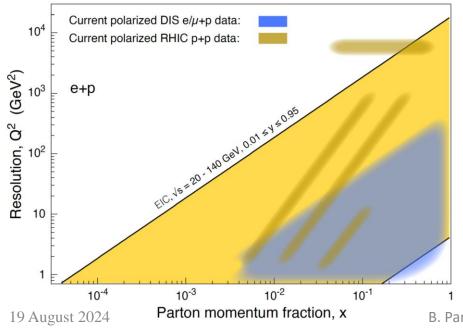
 $A_T^{\sin(2arphi_{CS}-arphi_S)} \propto h_{1,\pi}^{\perp q} \otimes h_{1,\mathsf{p}}^q$

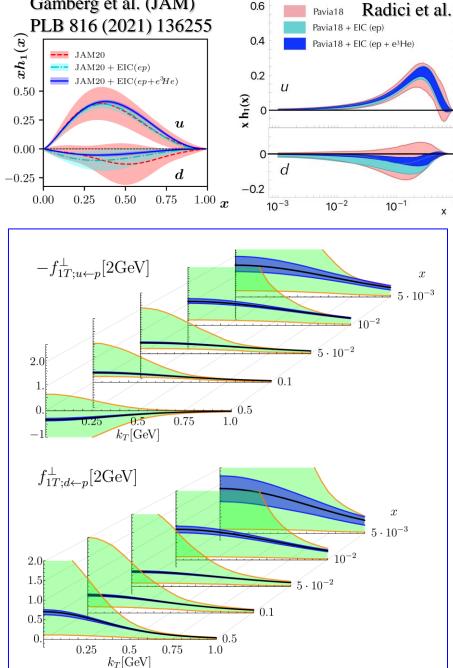


$A_{UT}^{\sin(\phi_h+\phi_s)} \propto h_1^q \otimes H_{1q}^{\perp h}$

COMPASS proton Collins measurements

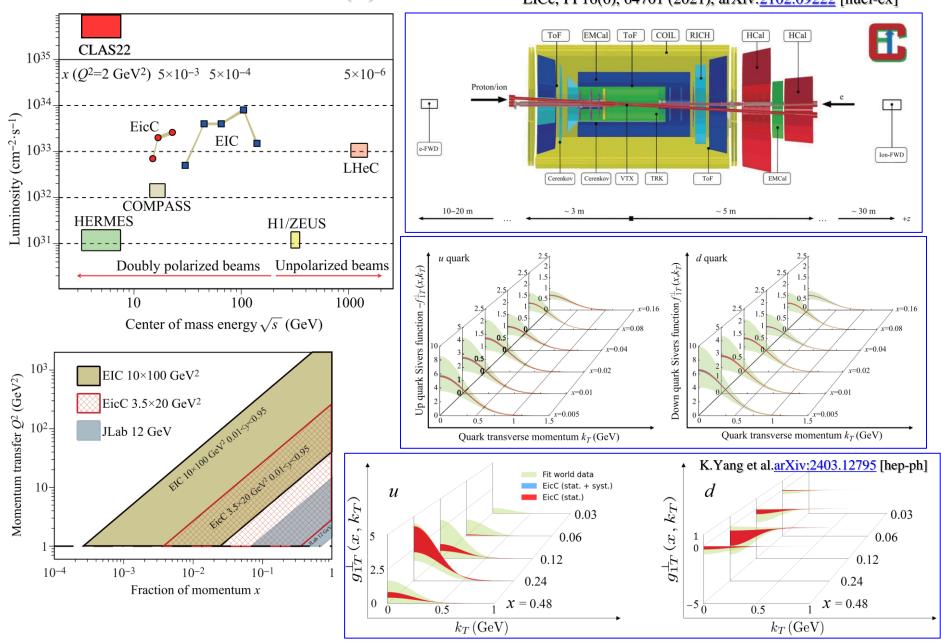

• Clear signal in the matching Q² ranges



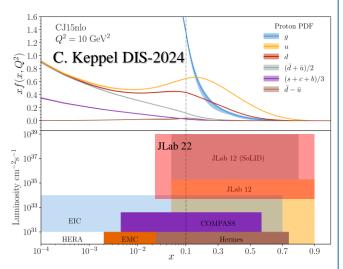

Electron Ion Collider(s): EIC

EIC WP, arXiv: 1212.1701 [nucl-ex],

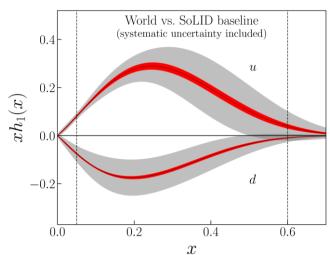
EIC YR, arXiv:2103.05419 [physics.ins-det]

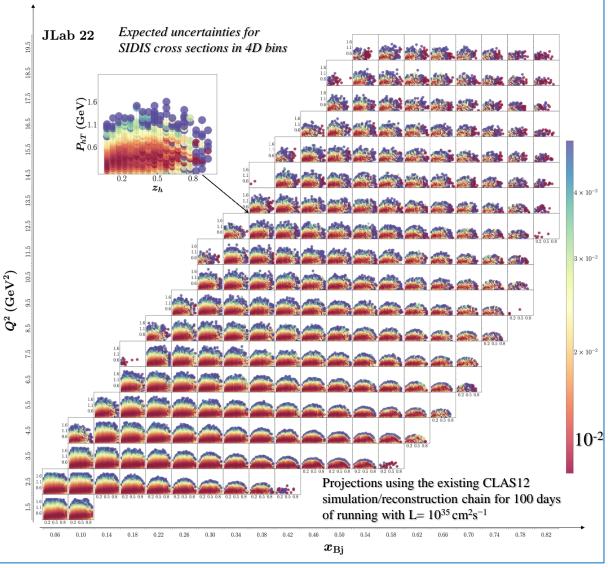


0.6


Gamberg et al. (JAM)

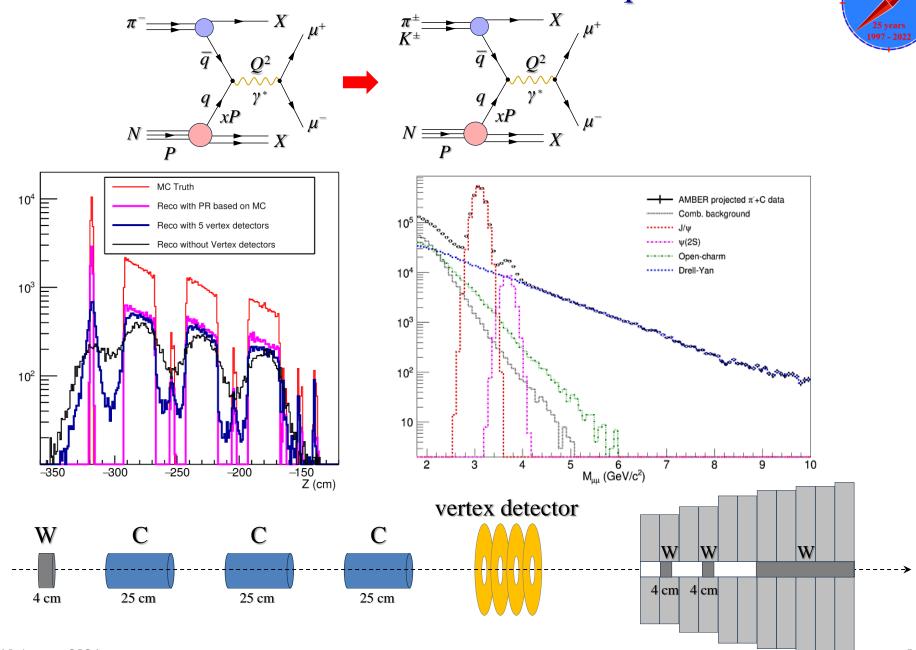
Electron Ion Collider(s): EICc


EICc, FP16(6), 64701 (2021), arXiv:2102.09222 [nucl-ex]



JLab from 12 GeV, SoLID to 22 GeV

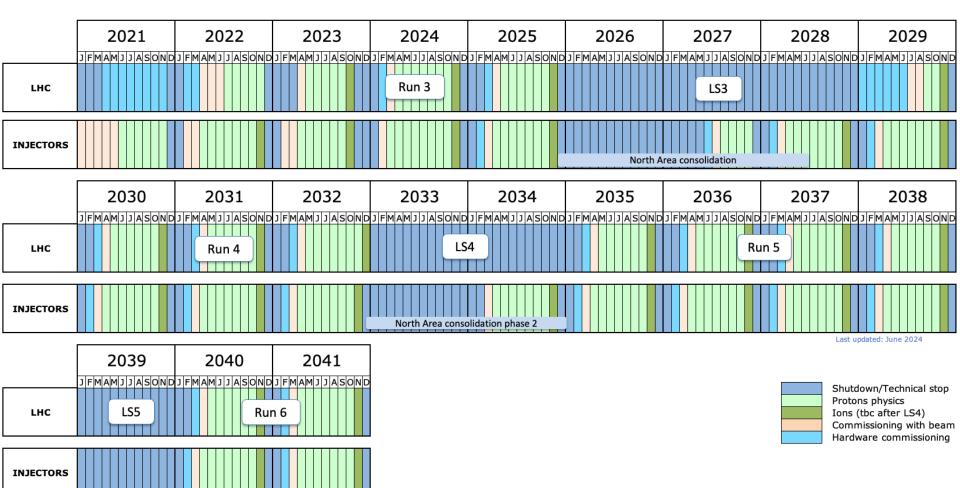
CEBAF at 12 GeV and Future opportunities arXiv: 2112.00060 [nucl-ex]



- High luminosity, complementary kinematic coverages, evolution studies, all TMDs, etc.
- Together with EIC/EICc complete picture!

COMPASS→AMBER: Vertex detector improvements

COMPASS data taking campaigns


Beam	Target	year	Physics program
μ^+	Polarized deuteron (6LiD)	2002 2003 2004	80% Longitudinal 20% Transverse SIDIS
		2006	Longitudinal SIDIS
	Polarized proton (NH ₃)	2007	50% Longitudinal 50% Transverse SIDIS
$\pi \mid K \mid p$	LH ₂ , Ni, Pb, W	2008 2009	Spectroscopy
μ^+	Polarized proton (NH ₃)	2010	Transverse SIDIS
		2011	Longitudinal SIDIS
$\pi K p$	Ni	2012	Primakoff
μ^{\pm}	LH ₂	2012	Pilot DVCS & HEMP & unpolarized SIDIS
π^-	Polarized proton (NH ₃)	2014	Pilot Drell-Yan
		2015 2018	Transverse Drell-Yan
μ^{\pm}	LH ₂	2016 2017	DVCS & HEMP & unpolarized SIDIS
μ^+	Polarized deuteron (⁶ LiD)	2021 2022	Transverse SIDIS

19 August 2024 B. Parsamyan

CERN LHC and NA schedules

25 years 1997 - 2022

CERN Accelerator Complex schedule to 2041

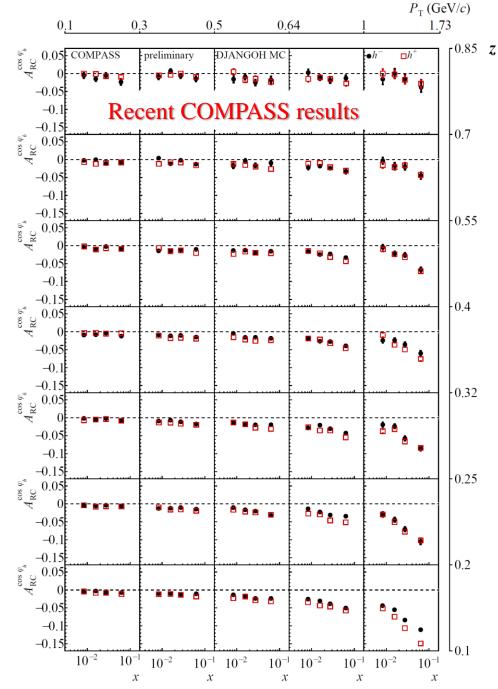
Cahn effect in SIDIS

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} =$$

$$\left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$$

$$\times (1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h+\ldots)$$

Cahn effect



As of 1978 – simplistic kinematic effect:

• non-zero k_T induces an azimuthal modulation

As of 2023 – complex SF (twist-2/3 functions)

- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no clear interpretation
- A set of complex corrections:
 - Acceptance, diffractively produced VMs, radiative corrections, etc.

Cahn effect in SIDIS

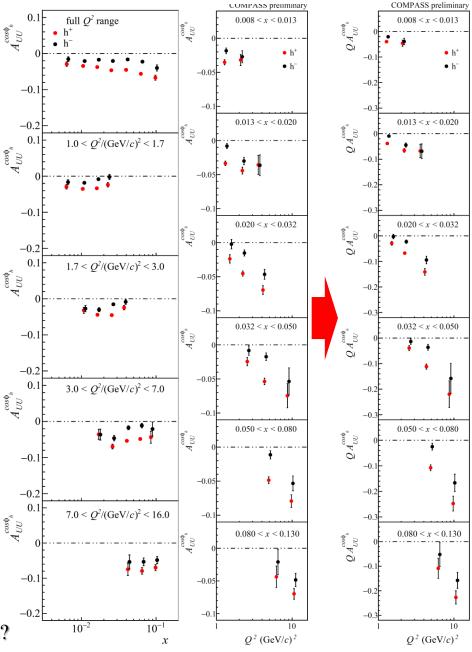
$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} =$$

$$\left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$$

$$\times (1+\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h+\ldots)$$

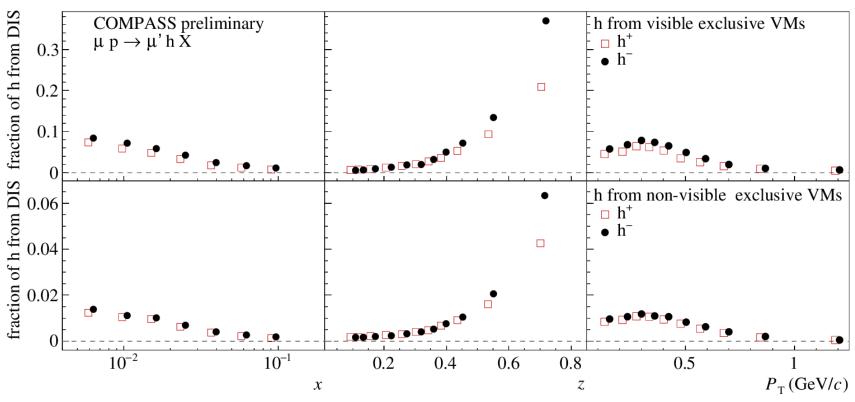
Cahn effect

$$f_1^q(x, \mathbf{k}_T^2)$$
 number density


As of 1978 – simplistic kinematic effect:

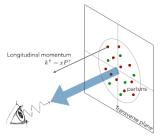
• non-zero k_T induces an azimuthal modulation

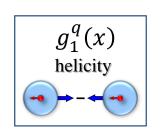
As of 2023 – complex SF (twist-2/3 functions)


- Measurements by different experiments
- Complex multi-D kinematic dependences
 - So far, no clear interpretation
- A set of complex corrections:
 - Acceptance, diffractively produced VMs, radiative corrections, etc.
- Strong Q² dependence unexplained
 - Do not seem to come from RCs
 - Transition between TMD collinear regions?

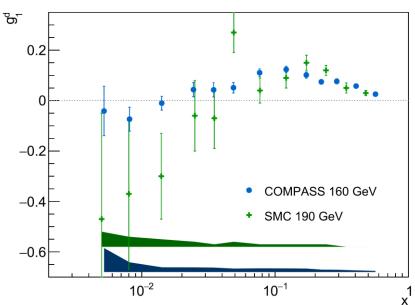
Recent COMPASS results

Exclusive Vector mesons in SIDIS

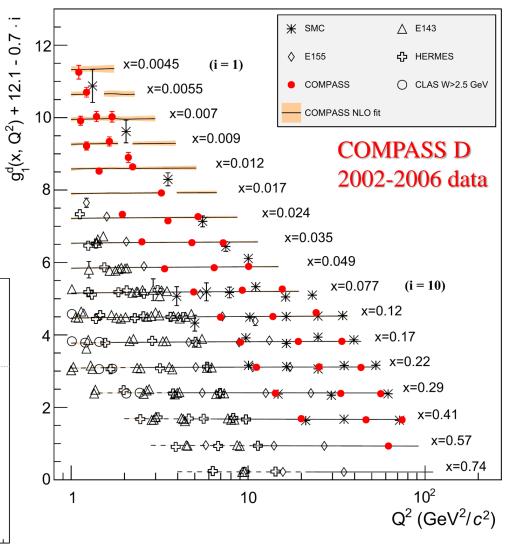


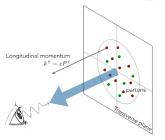


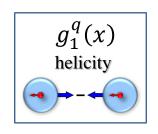
Nucleon spin structure: helicity $g_{1,d}^q(x)$



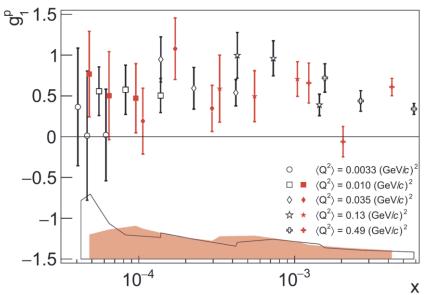
86

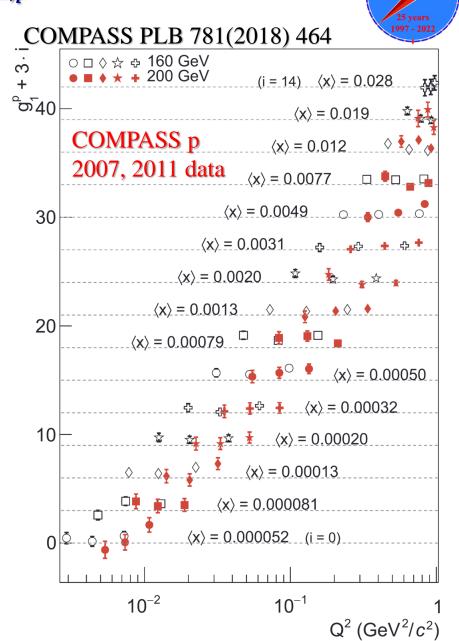



• COMPASS contribution: lowest *x* and highest *Q*² regions

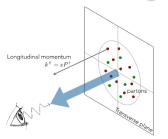


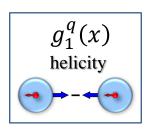
COMPASS PLB 769(2017) 34



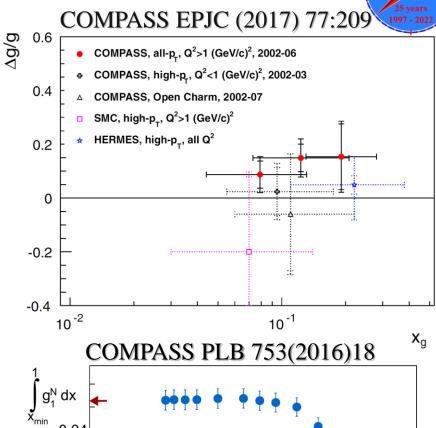

Nucleon spin structure: helicity $g_{1,p}^{q}(x)$

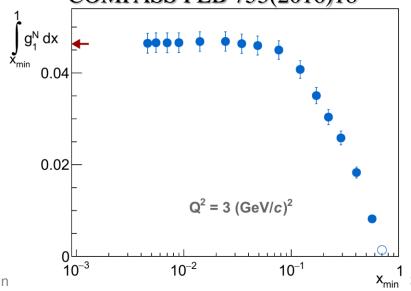
- COMPASS contribution: lowest *x* and highest *Q*² regions
- Both deuteron and proton target data
- For the first time non-zero spin effects at smallest x and Q^2 positive signal for $g_1^p(x)$



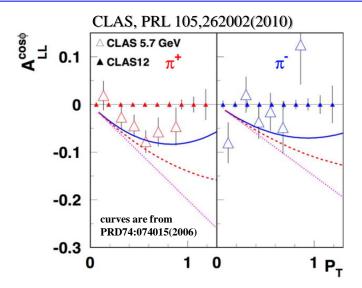

19 August 2024

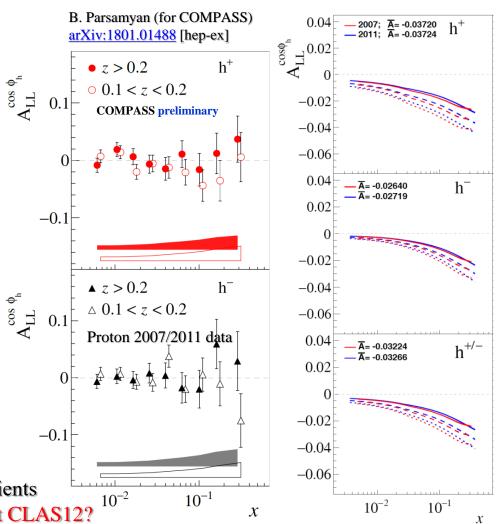
B. Parsamyan


87


Nucleon spin structure: helicity $g_{1,d(p)}^q(x)$

- COMPASS contribution: lowest *x* and highest *Q*² regions
- Both deuteron and proton target data
- For the first time non-zero spin effects at smallest x and Q^2 positive signal for $g_1^p(x)$
- Gluon polarization measurements via open charm and SIDIS
- COMPASS first to rule out a large gluon polarization in the nucleon!
 Precise test of Bjorken sum rule (9% level)

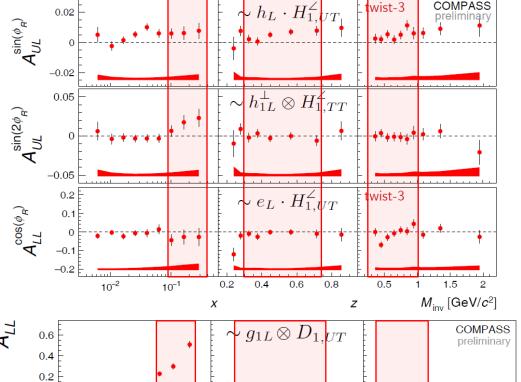

SIDIS: target longitudinal spin dependent asymmetries



$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \lambda \sqrt{2\varepsilon \left(1 - \varepsilon\right)} A_{LL}^{\cos\phi_h} \cos\phi_h + \dots \right\}$$

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_L \lambda \sqrt{2\varepsilon \left(1 - \varepsilon\right)} A_{LL}^{\cos\phi_h} \cos\phi_h + \dots \right\}$$

$$F_{LL}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{C} \left\{ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p_T}}{M_h} \left(x e_L^q H_{1q}^{\perp h} + \frac{M_h}{M} g_{1L}^q \frac{\tilde{D}_q^{\perp h}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k_T}}{M} \left(x g_L^{\perp q} D_{1q}^h - \frac{M_h}{M} h_{1L}^{\perp q} \frac{\tilde{E}_q^h}{z} \right) \right\}$$



- Q-suppression, various different "twist" ingredients
- Measured to be non zero at CLAS6, what about CLAS12?
- HERMES/COMPASS small and compatible with zero, in agreement with model predictions

Selected results for di-hadron LSAs

COMPASS (NH₃) 2007+2011 data: preliminary

Alternative way to access various twist-2/-3 distributions

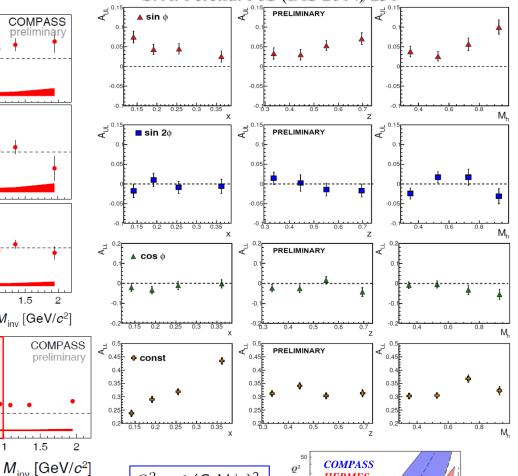
0.2

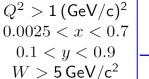
X

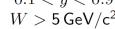
Non zero signal for $A_{UL}^{\sin\phi_R}$ and A_{LL}^1

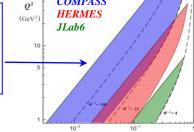
 10^{-1}

CLAS-COMPASS: different behavior for $A_{UL}^{\sin 2\phi_R}$ at large x?

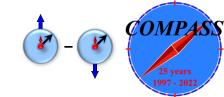

8.0


z


0.6

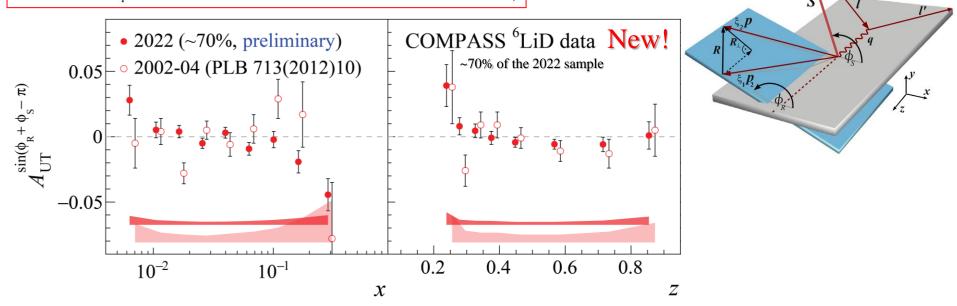

CLAS 6 GeV (NH₃)

S. A. Pereira: PoS (DIS 2014) 231


19 August 2024

 10^{-2}

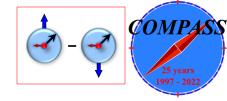
B. Parsamyan

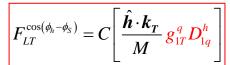

1.5

Dihadron Collins effect and Transversity

$$\begin{split} \frac{\mathrm{d}^{7} \, \sigma}{\mathrm{d} \cos \theta \, \mathrm{d} \, M_{\mathrm{hh}} \, \mathrm{d} \, \phi_{\mathrm{R}} \, \mathrm{d} \, z \, \mathrm{d} \, x \, \mathrm{d} \, y \, \mathrm{d} \, \phi_{\mathrm{S}}} = \\ \frac{\alpha^{2}}{2 \pi \, Q^{2} y} \left((1 - y + \frac{y^{2}}{2}) \sum_{q} e_{q}^{2} \, f_{1}^{q}(x) \, D_{1,q}(z, M_{\mathrm{hh}}^{2}, \cos \theta) + \right. \\ \left. S_{\perp}(1 - y) \sum_{q} e_{q}^{2} \frac{|\mathbf{p}_{1} - \mathbf{p}_{2}|}{2 M_{\mathrm{hh}}} \sin \theta \, \sin \phi_{\mathrm{RS}} \, h_{1}^{q}(x) \, H_{1,q}^{\triangleleft}(z, M_{\mathrm{hh}}^{2}, \cos \theta) \right) \end{split}$$

$$A_{\text{UT}}^{\sin\phi_{\text{RS}}} = \frac{|\mathbf{p}_1 - \mathbf{p}_2|}{2M_{\text{hh}}} \frac{\sum_q e_q^2 h_1^q(x) H_{1,q}^{\triangleleft}(z, M_{\text{hh}}^2, \cos\theta)}{\sum_q e_q^2 f_1^q(x) D_{1,q}(z, M_{\text{hh}}^2, \cos\theta)}$$

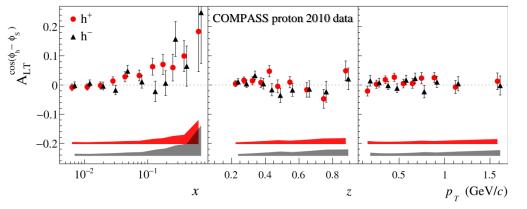


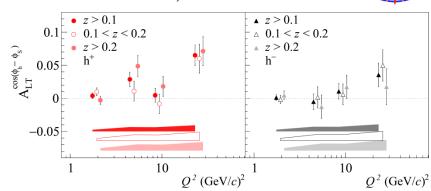

COMPASS 2022 run – highly successful data-taking!

- 2nd COMPASS deuteron measurements conducted in 2022: unique SIDIS data for the next decades
- New results dihadron Collins-like asymmetries
- Access to collinear transversity PDF; Non-zero trend at large x
- Precision comparable with proton results

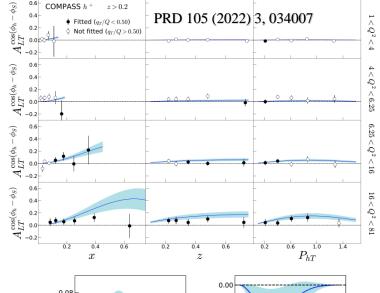
SIDIS TSAs: Kotzinian-Mulders asymmetry

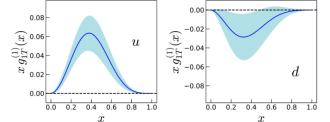
$$\frac{d\sigma}{\epsilon dy dz dp_T^2 d\phi_h d\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + ... + \lambda S_T \sqrt{\left(1 - \varepsilon^2\right)} A_{LT}^{\cos(\phi_h - \phi_S)} \cos\left(\phi_h - \phi_S\right) + ... \right\}$$




COMPASS/HERMES/CLAS6 results $A_{LT}^{\cos(\phi_h - \phi_S)}$

- Only "twist-2" ingredients
- Sizable non-zero effect for h⁺!
- Similar effect at HERMES


COMPASS, PBL 770 (2017) 138; PoS QCDEV2017 (2018) 042



See also, PRD 107, (2023) 034016 – global fit by: M. Horstmann, A. Schafer and A. Vladimirov

