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Introduction

The strong CP problem

N A 1 2 g3 ~
Lacp = Xq:q(zw = Mg)g = 5 Tr G + facp 25 Tr GG.

Data show:
o large CP violation in quark mixing, dcxkm = (some phase in Mg) ~ 1;
e no CP violation in neutron dipole, 0= argdet My + 0qcp S 10719,

Doubts, the total derivative in .’ has no classical effect, selects a state of H.
L J

Low energy:
1) Axion, aGG.
High energy:
2) GG is P-odd: P suitably broken by a real (scalar).
3) GG is CP-odd: CP suitably broken by complex (scalars).




1) Cancel 0gcp via axion

Goldstone of global anomalous U(1)pq spontaneously broken at f, > 10° GeV:
(aua)Q _a

2 fa

e Adjusts § = 0 acquiring m, ~ AEQCD/fa ~5.7ueV (102 GeV/ f.).

e Can be DM: Quisalisnement o 15 (fa/10' GeV) e (ax/fa)? + defects.
e Main searches rely on DM detection via the coupling gayy = cya/27 fa:

gae)gon = {%GZVGZV + C’ygiﬂ_F;u/Fuu + -

Axion decay constant f, in GeV
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1) Cancel 0gcp via axion

Goldstone of global anomalous U(1)pq spontaneously broken at f, > 10° GeV:

~

dua)? a | as ~ o -
eff s ~a a
Laion = % 5 {g G + ngF;wFuu 4o

e Adjusts § = 0 acquiring mq, ~ Adcp/fa & 5.7peV (10" GeV/ fa).
e Can be DM: Quisalisnement o 15 (fa/10' GeV) e (ax/fa)? + defects.

e Main searches rely on DM detection via the coupling gayy = cya /27 fo.
e Measuring mg, ¢y tells charge/color of fermions in the anomaly loop:

P
E  Y;4%F 8

= = — in the SM.
N3 q?QTf 3

% _ known x (% — 1.92>,

Mq

¢ Quality problem: gravity expected to break global symmetries,
Planck-suppressed operators up to dimension 2 9 ruin the axion.
Special models of accidental global symmetries e.g. SU(10) broken by S;;.



2) Forbid 0gcp via P

Parity is badly broken in the SM. Big extensions needed.

SU(2)r ® SU(2)r with L <+ R and extra heavy singlets @ such that [Babu 90]

qr  Qr
qr 0  yquL .
M, = has real det if vp,vr are real.
Qe <y$vR M ) o

But V(Hr, Hr) can be complex: restrict V adding supersymmetry.

Loops small enough for vg 2 10 TeV:
e one loop d,, ~ eg*mgy/(4mvr)?;

e two loop 0 ~ (y:/47)*vr Jur.

Related models: mirror SU(2), ® SU(2)%...



3) Forbid Ogcp via T ~ CP

Imposing CP needs milder SM extensions and is interesting: why % is complex?
CP invariance spontaneously broken by ‘complex’ scalar singlets z.

Special mass matrices involving heavy quarks @ [Nelson-Barr]:

qr Qr
qL Yqv 0
My ~ 5. " has real det.
QR (y<2>+y’<2> M>

Extended into model [Bento-Branco-Parada]:

yeHqrar + (2 + y'2")Qrar + MQrQR — V(H, 2)

e HqrQr forbidden by imposing a Zo that flips Qr, Q%, 2.
e 7y allows SHqrQr/Mpi, needs (z) < OMp) ~ 10% GeV.
e Loop: 0 ~ A4/ (4m)?, needs small couplings or SUSY.

New idea from 2305.08908 and 2406.01689 with Feruglio, Titov, Parriciatu.



3) Understand 0gcp with U(1)cp

Assume that CP is a spontaneously broken flavour symmetry, U(1) or modular:

m = (real constants ¢) x (CP-breaking operators Za)(powers ka)

with positive powers k, > 0 and no z}.

Toy example with one z and Ny = 2 generations:
qR1 qRr2

M, = qr1 (cnzk“ 0122’]“2) where ki; — kqr; + kap; + ku,

ka2

k
qr2 \ c212"%t  cao2z k.
after matching the U(1) charges k or modular weights k. Then
k114k k1o+k k
det Mq = C11C22 % tithkez C12C21 2 12+k21 = (611(322 - 012021)Z

can be real for any c;;, z if the total charge of fields involved in the det is

Ng=2

k= Z kQLi +kQRi+qu =0

i=1

dckm = 0: one ‘scalar’ z only does not break CP, it can be U(1)-rotated to real.



Get é =0 and 6CKM 7é 0

CP-breaking arises if U(1) is broken by multiple scalars z, with different phases.

The det identity det M,(Azs) oc A* still holds for multiple z, and any N,, even
adding heavy quarks. Real det if the total charge is

k= ZQsz + ku, +kp, +ku, +ku, =0

T

Now éckm # 0 can be obtained. Even assuming the Ny, = 3 generations and no
heavy quarks. In such a case there is a unique Yukawa matrix:

0 0 C13
Y = 0 C22 Y23 9 det Y = C13C22C31 .
c31 Yz Yag

For example realised with N = 2 scalars z; and z; with U(1) charge 1 and 2

-1 0 +1
-1 0 0 c13
Y = 0 0 C22 C23 Z+ 1+1=2.

2
+1 \e31 c3224 3325 + C3324+



Get é =0 and 6CKM 7é 0

CP-breaking arises if U(1) is broken by multiple scalars z, with different phases.

The det identity det My(Azq) o< AF still holds for multiple z, and any N, even
adding heavy quarks. Real det if the total charge is

k=Y 2kq, + ku, + kb, + ku, +kn, =0

1

Now éckm # 0 can be obtained. Even assuming the Ny = 3 generations and no
heavy quarks. In such a case there is a unique Yukawa matrix:

0 0 C13
Y = 0 C22 Y23 9 det Y = C13C22C31 .
c31 Yz Yag

For example realised with N = 2 scalars z4 and z¢ with U(1) charge 4 and 6

—6 0 +6
—6 0 0 C13
Y= 0 0 C22 62325/ 6+6=4+4+4.

2 3
+6 \c31 3226 3325 + C332%

More choices. More structures (including Nelson-Barr) adding heavy quarks.



QFT implementation
Must avoid z]: justified assuming supersymmetry, possibly broken at high scale.
A global supersymmetric theory is described by

e the holomorphic super-potential
W = Y% (%) UiQj Hy + Y3 (2a) DiQ; Hy + - - -

e the ‘Kahler’ kinetic term K can be general, as it does not contribute to 8.

e the gauge kinetic function f, real as we assume CP.
For example the minimal form is f = 1/g* — 6/87% with § = 0.

Assume a local flavour symmetry to avoid Goldstones and troubles with gravity.

All anomalies must vanish, in particular the U(1)cp - SU(3)? anomaly:

A:ZQin"_iji"_iji =0.

7

Its cancellation coincides with solving the QCD # = 0 problem by imposing
k=Y 2kq, +ku, + kb, + ku, +kn, =0

if kg, +kr, = 0 meaning that the Higgs H, 4 do not break the flavour symmetry.

0 = 0 understood if CP is an anomaly-free flavour symmetry not broken by Higgs.



Models with extra heavy quarks

In models with heavy quarks, for example Qr ® Q%, the mass matrix becomes

qr Qr
M= <yv y’v>‘
Qr o M

Nelson-Barr assume 3’ = 0, real y, M, complex ;. Realised assuming U(1) charges

0o -1
0 fyv O
M_l(cz M)

More general models have complex M, v,y and an anomalous light field content.
In the full theory 6 = 0 as real det miight Mheavy. In the low-energy EFT 6 = 0 as

e complex det mijgnt cancels with
e anomalous gauge kinetic function fgrr = fuv — Indet Micavy/ ]2,
It’s the anomaly cancellation mechanism in string models with anomalous EFT.
Completing to a full theory needs:
1) a potential V(z) minimised by z, with relative phases.
2) mediators that give k;;... > 0 only.
Not nice with U(1).



U(1)cp — modular SL(2,Z)
Better implementation with modular invariance. What’s that? It’s like a U(1)
automatically broken in a predictive k > 0 way by 2 scalars with different phases.
Modular invariance can be done as math independently from its string motivation.
Super-strings are real in 4 + 6 dimensions. Chiral families of fermions can arise

compactifying on spaces with a complex structure. So CP can be a geometric
symmetry spontaneously broken by the compactification.

N = 1 supersymmetry needs a Ricci-flat compactification. Simplest: orbi-folded
6d flat tori. 2d torus obtained writing a 2d flat space as z = x + iy and identifying

z=2z+w and z=2z+ wa.

T = w1 /wo tells the geometry: Im 7 is the relative radius, Re 7 is the CP twisting.



Modular invariance

Modular invariance is a sub-group of discrete global reparametrizations, because

) (SIS

%

w2 c d w2

gives an equivalent lattice torus if a, b, c,d are integers with ad — bc = 1.

So the 4-dimensional EFT contains a modulus superfield 7 rotating under SL(2, Z)

ar +b
cr+d’

T S:t-> -1/t T:r-o7+1



Modular invariance

Modular invariance is a sub-group of discrete global reparametrizations, because

o)~ (S )

_>

wa c d w2

gives an equivalent lattice torus if a, b, ¢, d are integers with ad — bc = 1.

So the 4-dimensional EFT contains a modulus superfield 7 rotating under SL(2, Z)

ar +b
cr+d

Unusual: appears integrating out infinite states, because of how strings experience
the geometry (e.g. R = 1/R). Matter fields ® transform as phase and scaling

D — (cr +d) Frd with ‘weight’ ks.
The minimal global SUSY action with h < Mpy

otV e
_ 32 , - i N D
K = &h'ln(—ir+ir')+ E@ Cir + )k
W = YY1)UiQj Hu + Yi(T)D:iQ; Hy

is modular invariant if Yukawa couplings transform with definite weights

YA/ =s(er 2D VTR, T koot Bige



Modular invariance and CP

The only modular functions of 7 with weight k& and no singularity (‘forms’) are
the Eisenstein series Ej, that transform nicely thanks to lattice summation

1 1
E = —_— finite and non-vanishing for even k > 4.
k(m) 2¢(k) Z (m+nr)k v & v -
(m,n)#(0,0)
Weight £ | 0 1,2,3 4 6 8 10 12
Forms ‘ 1 - FEy, FEs FEs=EFE; FEw=FEsEs FEia~E;+ B¢

v E4 and FEs are like two scalars with charge 4 and 6.
v' They have different phases:

Idm 0 Ey)l Idm 73 Eg(o) arg E3/E2
2.0 2.0
3
18 18
3
1.6 als 16
E 14 E 14 E
1.2 p 12
k PR — A S
oo P ~L 05 o _— ——

0.6 -04 -02 00 02 04 0.€ -0.6 -04 -02 00 02 04 0.6

Rer Rer



Modular invariance and CP

The only modular functions of 7 with weight k& and no singularity (‘forms’) are
the Eisenstein series Fj, that transform nicely thanks to lattice summation

1 1
Ex(r) = %) Z mtnrF finite and non-vanishing for even k > 4.
(m,n)#(0,0)
Weight k [0 1,2,3 4 6 8 10 12
Forms |1 - Ei Es Es=FE; FEw=EiEs Ei2~Fj+E;

v E4 and Eg are like two scalars with charge 4 and 6.
v' They have different phases.

v The modulus 7 breaks CP, as 7 29 7t ® Lot
v' Forms forbid negative weight k£ < 0.

v' Nicer than triangles.





https://d2r55xnwy6nx47.cloudfront.net/uploads/2023/03/UnboundedDenominators-byDavidLowryDuda-Lede.mp4

Recap: ¢ = 0 from modular invariance

Assume:
e CP broken by modulus Re 7 only.

e Supersymmetry, broken such that the gluino mass M3 is real.
E.g. gauge mediation. No weak-scale SUSY needed.

e Higgses don’t break modular invariance, ku, + kg, = 0.
Then:

Yi(T) = c; Fya (1) where c is real and F is a modular form with weight k.
]

e No anomalies, no QCD modular anomaly. E.g. with SM quarks only:

3
A= Z(Qin + kUi + kDi) =0.
i=1
o det M, is a modular form with weight A = 0, so it’s a real constant, so

argdet M, My =0 Oqcp = 0.

dcxm o Im det[Y,] Yy, Y;Yd] ~ 1 has no special modular properties.

Quark kinetic matrices Z; can be made canonical via a quark linear
transformation that affects ¢ masses and mixing but not §. Minimal Kéhler:

q
Y lean = ¢y (2m 1)/ Fyg (7).



The Minimal MSSM Model

Simplest model: modular weights kg = ky = kp = {—6,0,+6} so det Yy is real:

qr1 qr2 qrL3
qr1 [ O 0 iy
qucan = 4R2 0 632 633(2Im T)3E6 (T)

qR3 Cg1 ch(QIm T)3E6(7') (QIm 7')6 [Cg3E2 (7') + Clg3Eg (7')]
Onion-like form: a numerical or approximate diagonalisation
_ Y13Ys1 0, Y31
ysz a3’ " yss’ T y20ys3

shows that all quark masses and mixings can be reproduced with comparable ¢

Y3 = Y33, Y2 X Y22, Y1 3 = J52 013 ~ gs1 012 ~ Y3128

0 0 1.56 0 0 1.55
y~107° 0 -1.86 087 =107 0 —2.59 4.59
129 414  3.51,1.40 0.378 0.710 0.734,1.76

for tan 8 = 10 and 7 = 1/8 4+ 4. No predictions. The quark hierarchies are repro-
duced somehow like in U(1)px Froggatt-Nielsen, thanks to the modular ‘6’ e.g.
(2Im 7)® = 64 for T ~ i.



The Minimal MSSM Model

Simplest model: modular weights ko = kv = kp = {—6,0,+6} so det Yy is real:

qri qrL2 qrs3
qr1 [ O 0 iy
Yolean = aro | 0 , ¢4 (2Im 7)° Bg(r)

ars \ ¢§; ¢ (2Im7)°Es(r)  (2Im7)° [c§; B (7) + ¢ §3 58 (7)]
Onion-like form: a numerical or approximate diagonalisation

_y13y317 O3 ~ @7 015 ~ @, 015 ~ Y31Y23

Y3 = Y33, Y2 X Y22, Y1 = ~
Y33 Y33 Y33 Y2233

shows that all quark masses and mixings can be reproduced with comparable ¢

0 0 1.56 0 0 1.55
ay~107% | 0 —1.86 0.87 =107 0 —2.59 4.59
1.29 414 3.51,1.40 0.378 0.710 0.734,1.76

for tan 8 = 10 and 7 = 1/8 +i. Leptons too assuming k1, = kg = kg:

0 0 1.29 . 0 0 3.4
e -3 v
& =10 0 595  0.35 =0 71 12 |.
—2.56 1.47 1.01,1.32 10%GeV A3y 12 019,095



Modular sub-groups I'( V)

Compactifications + orbifolds/branes give modular sub-groups at higher level N

I'(N) = SL(2,Z) subgroup with v = ( CCL Z ) = ( (1) (1) ) mod N.

allowing models with SM quarks and lower weights as ‘motivated’ by strings.

I'(2) has two modular forms with weight k£ = 2.

n(r/2) " n((r+1)/2) " n(2r) 2 n(r/2)  n((r +1)/2)
Models with weights ko, = ku, = kp, = {—2,0,2} can fit data.

0 0 iy

0 i, Imr [cg3Z}2) + c’2q3Z£2)

o Im [z +pzP]  (mn)? [, 200 + g ZE0 + i zlY |

23 — 2i [’7’(7/2) L7+ D/2) 87/(27)] Loz 2V3i {n’(T/Z) n'((r + 1)/2)}

s s

Yq =



Modular sub-groups I'( V)

Compactifications + orbifolds/branes give modular sub-groups at higher level N

I'(N) = SL(2,Z) subgroup with v = ( Z Z ) = ( (1) (1) ) mod N.

allowing models with SM quarks and lower weights as ‘motivated’ by strings.

I'(2) has two modular forms with weight k& = 2.
Models with weights ko, = ku, = kp, = {—2,0,2} can fit data.

I'(3) has two modular forms with weight k =1

20— 3 TeD g 1B n°(/3)

n(r) ’ n(m) — 3a(r)
Models with weights kq, = kv, = kp, = {—1,0,1} can fit data.

0 0 iy
0 & vVImT |:C(213Z{1> 4k c;%Z(l)}

Yq =
cd, VIm [0322(1) + cngZél)} ImT [cgngg) + 03%252) + qu(2)}



Non-abelian modular representations

Generation number can be embedded in SL(2,Z) as multiplets of the finite group
I'n = with Iy :Sg, I's :T/NA4.

Used to explain large neutrino mixings. Heavy quarks needed to get small mixings.

N = 2 allows models with doublets and low weights +2:

SM quarks Extra vector-like quarks
Q D U D' D'e U’ U'e
Flavour I'y 2@®1y 2641, 261y | 2601y 261, 2@&1y 2&1p
Weights k —2 —2 —2 +2 +2 +2 +2

N = 3 could allow models with triplets and low weights 41

SM quarks Extra vector-like quarks
Q D U D/ D/c U/ U/c

Flavour I's 3 3 3 3 3 3 3
Weights k -1 ==1l +1 +1 F1 +1 F1

but generic non-minimal Kahler are needed to fit data.



Supergravity and superstrings

Strings etc motivate a Planckian 7 decay constant h = nMp; with integer n.

If h ~ Mp, supergravity predicts new effects:
e W acquires modular weight kw = h?/Mg, > 0;

The gluino phase rotates, so the modular anomaly becomes

3
A= Aquark + Agluino = Z (QkQ’L + kUi + le - ka) + 3]€VV.

i=1
e A =0 again implies 0 o arg M3 det My = 0. But...

e Extra states needed to avoid massless quarks e.g. 8 of SU(3) with k = —kw .

Could something similar happen in strings? Modular invariance is non-anomalous,
but the QFT field content is. Strong CP problem solved if Aguark = 07



Conclusions
New solution to the QCD 0 < dcrm ~ 1 problem

Assume: CP is part of a local flavour symmetry, spontaneously broken by
multiple scalars z, in a theory where Y, are proportional to positive powers
of z, but no z} (so, SUSY). Then det Y, x z" is real selecting charges such
that k = 0, as demanded by anomaly cancellation in simpler models.

e Without heavy quarks: unique Y structure.
o With heavy quarks: justifies and extends Nelson-Barr models.

e Can be realized with U(1), up to complications.
L J

Modular realization

Modular invariance SL(2,Z) as flavour symmetry avoids complications.

e N =1 is like two scalars Eu, Fg, assume ko,u,p,r,5 = {—6,0,6},
q and ¢ masses and mixings reproduced up to order one coefficients.

o N =2 allows kq,u,p,.,5 = {—2,0,2}. Or as 2@ 1, adding heavy Q.
o N =3 allows kq,u,p,,g = {—1,0,1}. Or as 3, adding heavy Q7

All can be heavy... how can this be tested confirmed?



