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Introduction

The strong CP problem

LQCD =
∑
q

q̄(i /D −Mq)q −
1

4
Tr G2 + θQCD

g2
3

32π2
Tr GG̃.

Data show:
• large CP violation in quark mixing, δCKM = (some phase in Mq) ∼ 1;
• no CP violation in neutron dipole, θ̄ = arg detMq + θQCD <∼ 10−10.

Doubts, the total derivative in L has no classical effect, selects a state of H.

Solutions

Low energy:
1) Axion, aGG̃.

High energy:
2) GG̃ is P-odd: P suitably broken by a real 〈scalar〉.
3) GG̃ is CP-odd: CP suitably broken by complex 〈scalars〉.



1) Cancel θQCD via axion
Goldstone of global anomalous U(1)PQ spontaneously broken at fa & 109 GeV:

L eff
axion =

(∂µa)2

2
− a

fa

[
αs

8π
GaµνG̃

a
µν + cγ

α

8π
Fµν F̃µν

]
+ · · ·

• Adjusts θ̄ = 0 acquiring ma ∼ Λ2
QCD/fa ≈ 5.7µeV (1012 GeV/fa).

• Can be DM: Ωmisalignement
a ≈ 0.15

(
fa/1012 GeV

)7/6
(a∗/fa)2 + defects.

• Main searches rely on DM detection via the coupling gaγγ = cγα/2πfa:
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.
• Measuring ma, cγ tells charge/color of fermions in the anomaly loop:

caγγ
ma

= known×
(
E

N
− 1.92

)
,

E

N
=

∑
f q

PQ
f q2

f∑
f q

PQ
f T 2

f

=
8

3
in the SM.

• Quality problem: gravity expected to break global symmetries,
Planck-suppressed operators up to dimension & 9 ruin the axion.
Special models of accidental global symmetries e.g. SU(10) broken by Sij .
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2) Forbid θQCD via P

Parity is badly broken in the SM. Big extensions needed.

SU(2)L ⊗ SU(2)R with L↔ R and extra heavy singlets Q such that [Babu 90]

Mq =

( qR QR

qL 0 yqvL
QL y†qvR M

)
has real det if vL, vR are real.

But V (HL, HR) can be complex: restrict V adding supersymmetry.

Loops small enough for vR & 10 TeV:
• one loop dn ∼ eg2mq/(4πvR)2;
• two loop θ̄ ∼ (yt/4π)4vL/vR.

Related models: mirror SU(2)L ⊗ SU(2)′L...



3) Forbid θQCD via T ∼ CP

Imposing CP needs milder SM extensions and is interesting: why L is complex?
CP invariance spontaneously broken by ‘complex’ scalar singlets z.

Special mass matrices involving heavy quarks Q [Nelson-Barr]:

Mq ∼
( qR QR

qL yqv 0
QcR y〈z〉+ y′〈z〉∗ M

)
has real det.

Extended into model [Bento-Branco-Parada]:

yqHqLqR + (yz + y′z∗)QcRqR +MQRQ
c
R − V (H, z)

• HqLQR forbidden by imposing a Z2 that flips QR, QcR, z.
• Z2 allows SHqLQR/MPl, needs 〈z〉 . θ̄MPl ∼ 108 GeV.
• Loop: θ̄ ∼ λHzy2/(4π)2, needs small couplings or SUSY.

New idea from 2305.08908 and 2406.01689 with Feruglio, Titov, Parriciatu.



3) Understand θQCD with U(1)CP
Assume that CP is a spontaneously broken flavour symmetry, U(1) or modular:

m = (real constants c)× (CP-breaking operators za)(powers ka)

with positive powers ka ≥ 0 and no z†a.
Toy example with one z and Ng = 2 generations:

Mq =

( qR1 qR2

qL1 c11z
k11 c12z

k12

qL2 c21z
k21 c22z

k22

)
where kij =

kqLi + kqRj + kHq

kz

after matching the U(1) charges k or modular weights k. Then

detMq = c11c22 z
k11+k22 − c12c21 z

k12+k21 = (c11c22 − c12c21)zk

can be real for any cij , z if the total charge of fields involved in the det is

k =

Ng=2∑
i=1

kqLi + kqRi + kHq = 0

δCKM = 0: one ‘scalar’ z only does not break CP, it can be U(1)-rotated to real.



Get θ̄ = 0 and δCKM 6= 0
CP-breaking arises if U(1) is broken by multiple scalars za with different phases.

The det identity detMq(λza) ∝ λk still holds for multiple za and any Ng, even
adding heavy quarks. Real det if the total charge is

k =
∑
i

2kQi + kUi + kDi + kHu + kHd = 0

Now δCKM 6= 0 can be obtained. Even assuming the Ng = 3 generations and no
heavy quarks. In such a case there is a unique Yukawa matrix:

Y =

 0 0 c13

0 c22 Y23

c31 Y32 Y33

 , detY = c13c22c31.

For example realised with N = 2 scalars z+ and z++ with U(1) charge 1 and 2

Y =


−1 0 +1

−1 0 0 c13

0 0 c22 c23 z+

+1 c31 c32z+ c33 z
2
+ + c

′
33z++

 1 + 1 = 2.

For example realised with N = 2 scalars z4 and z6 with U(1) charge 4 and 6

Y =


−6 0 +6

−6 0 0 c13

0 0 c22 c23 z6

+6 c31 c32z6 c33 z
2
6 + c

′
33z

3
4

 6 + 6 = 4 + 4 + 4.

More choices. More structures (including Nelson-Barr) adding heavy quarks.
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QFT implementation
Must avoid z†a: justified assuming supersymmetry, possibly broken at high scale.
A global supersymmetric theory is described by
• the holomorphic super-potential

W = Y uij (za)UiQj Hu + Y dij(za)DiQj Hd + · · ·

• the ‘Kahler’ kinetic term K can be general, as it does not contribute to θ̄.
• the gauge kinetic function f , real as we assume CP.
For example the minimal form is f = 1/g2 − θ/8π2 with θ = 0.

Assume a local flavour symmetry to avoid Goldstones and troubles with gravity.
All anomalies must vanish, in particular the U(1)CP · SU(3)2

c anomaly:

A =
∑
i

2kQi + kUi + kDi = 0.

Its cancellation coincides with solving the QCD θ̄ = 0 problem by imposing

k =
∑
i

2kQi + kUi + kDi + kHu + kHd = 0

if kHu +kHd = 0 meaning that the Higgs Hu,d do not break the flavour symmetry.

θ̄ = 0 understood if CP is an anomaly-free flavour symmetry not broken by Higgs.



Models with extra heavy quarks
In models with heavy quarks, for example QR ⊕QcR, the mass matrix becomes

M =

( qR QR

qL yv y′v
QcR µ M

)
.

Nelson-Barr assume y′ = 0, real y,M , complex µ. Realised assuming U(1) charges

M =

( 0 −1

0 yv 0
1 cz M

)
.

More general models have complex M,y′, y and an anomalous light field content.
In the full theory θ̄ = 0 as real detmlightMheavy. In the low-energy EFT θ̄ = 0 as
• complex detmlight cancels with
• anomalous gauge kinetic function fEFT = fUV − ln detMheavy/8π

2.
It’s the anomaly cancellation mechanism in string models with anomalous EFT.
Completing to a full theory needs:
1) a potential V (z) minimised by za with relative phases.
2) mediators that give kij··· ≥ 0 only.

Not nice with U(1).



U(1)CP → modular SL(2,Z)
Better implementation with modular invariance. What’s that? It’s like a U(1)
automatically broken in a predictive k > 0 way by 2 scalars with different phases.
Modular invariance can be done as math independently from its string motivation.

Super-strings are real in 4 + 6 dimensions. Chiral families of fermions can arise
compactifying on spaces with a complex structure. So CP can be a geometric
symmetry spontaneously broken by the compactification.
N = 1 supersymmetry needs a Ricci-flat compactification. Simplest: orbi-folded
6d flat tori. 2d torus obtained writing a 2d flat space as z = x+ iy and identifying

z = z + ω1 and z = z + ω2.

τ = ω1/ω2 tells the geometry: Im τ is the relative radius, Re τ is the CP�� twisting.



Modular invariance
Modular invariance is a sub-group of discrete global reparametrizations, because(

ω1

ω2

)
→
(
a b
c d

)(
ω1

ω2

)
gives an equivalent lattice torus if a, b, c, d are integers with ad− bc = 1.
So the 4-dimensional EFT contains a modulus superfield τ rotating under SL(2, Z)

τ → aτ + b

cτ + d
.

1 0

0 1

τ

0 1

-1 0

S: τ  -1/τ

1 1

0 1

T: τ  τ + 1

Allows to restrict τ to its ‘fundamental domain’.

Unusual: appears integrating out infinite states, because of how strings experience
the geometry (e.g. R = 1/R). Matter fields Φ transform as phase and scaling

Φ→ (cτ + d)−kΦΦ with ‘weight’ kΦ.

The minimal global SUSY action with h� M̄Pl

K = −h2 ln(−iτ + iτ†) +
∑
Φ

Φ†e2V Φ

(−iτ + iτ†)kΦ
,

W = Y uij (τ)UiQj Hu + Y dij(τ)DiQj Hd

is modular invariant if Yukawa couplings transform with definite weights

Y qij(τ)→ (cτ + d)k
q
ijY qij(τ) kqij = kqRi + kqLj + kHq .
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Modular invariance and CP
The only modular functions of τ with weight k and no singularity (‘forms’) are
the Eisenstein series Ek, that transform nicely thanks to lattice summation

Ek(τ) ≡ 1

2ζ(k)

∑
(m,n)6=(0,0)

1

(m+ nτ)k
finite and non-vanishing for even k ≥ 4.

Weight k 0 1, 2, 3 4 6 8 10 12 · · ·
Forms 1 − E4 E6 E8 = E2

4 E10 = E4E6 E12 ∼ E3
4 + E2

6 · · ·

X E4 and E6 are like two scalars with charge 4 and 6.
X They have different phases:
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X The modulus τ breaks CP, as τ CP→ −τ†, Φ

CP→ Φ†.
X Forms forbid negative weight k < 0.
X Nicer than triangles.
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[Credits: Quanta, “Modular Forms, the Fifth Fundamental Operation of Math”]

https://d2r55xnwy6nx47.cloudfront.net/uploads/2023/03/UnboundedDenominators-byDavidLowryDuda-Lede.mp4


Recap: θ̄ = 0 from modular invariance
Assume:
• CP broken by modulus Re τ only.
• Supersymmetry, broken such that the gluino mass M3 is real.
E.g. gauge mediation. No weak-scale SUSY needed.

• Higgses don’t break modular invariance, kHu + kHd = 0.
Then:
• Y qij(τ) = cqij Fkqij

(τ) where c is real and Fk is a modular form with weight k.

• No anomalies, no QCD modular anomaly. E.g. with SM quarks only:

A =
3∑
i=1

(2kQi + kUi + kDi) = 0.

• detMq is a modular form with weight A = 0, so it’s a real constant, so

arg detMuMd = 0 θQCD = 0.

• δCKM ∝ Im det[Y †uYu, Y
†
d Yd] ∼ 1 has no special modular properties.

• Quark kinetic matrices Zq can be made canonical via a quark linear
transformation that affects q masses and mixing but not θ̄. Minimal Kähler:

Y qij |can = cqij(2Im τ)k
q
ij/2Fkqij

(τ).



The Minimal MSSM Model
Simplest model: modular weights kQ = kU = kD = {−6, 0,+6} so detYq is real:

Yq|can =


qL1 qL2 qL3

qR1 0 0 cq13

qR2 0 cq22 cq23(2Im τ)3E6(τ)
qR3 cq31 cq32(2Im τ)3E6(τ) (2Im τ)6

[
cq33E

3
4(τ) + c′

q
33E

2
6(τ)

]
.

Onion-like form: a numerical or approximate diagonalisation

y3 ' y33, y2 ' y22, y1 ' −
y13y31

y33
, θ23 '

y32

y33
, θ13 '

y31

y33
, θ12 '

y31y23

y22y33

shows that all quark masses and mixings can be reproduced with comparable c

cuij ≈ 10−3

 0 0 1.56
0 −1.86 0.87

1.29 4.14 3.51, 1.40

 cdij ≈ 10−3

 0 0 1.55
0 −2.59 4.59

0.378 0.710 0.734, 1.76


for tanβ = 10 and τ = 1/8 + i. No predictions. The quark hierarchies are repro-
duced somehow like in U(1)FN Froggatt-Nielsen, thanks to the modular ‘6’ e.g.
(2Im τ)6 = 64 for τ ∼ i.

Leptons too assuming kL = kE = kQ:

ceij = 10−3

 0 0 1.29
0 5.95 0.35

−2.56 1.47 1.01, 1.32

 cνij =
1

1016 GeV

 0 0 3.4
0 7.1 1.2

3.4 1.2 0.19, 0.95

 .
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Modular sub-groups Γ(N)
Compactifications + orbifolds/branes give modular sub-groups at higher level N

Γ(N) ≡ SL(2,Z) subgroup with γ =

(
a b
c d

)
=

(
1 0
0 1

)
modN.

allowing models with SM quarks and lower weights as ‘motivated’ by strings.
Γ(2) has two modular forms with weight k = 2.

Z
(2)
1 =

2i

π

[
η′(τ/2)

η(τ/2)
+
η′((τ + 1)/2)

η((τ + 1)/2)
− 8

η′(2τ)

η(2τ)

]
, Z

(2)
2 =

2
√
3i

π

[
η′(τ/2)

η(τ/2)
−
η′((τ + 1)/2)

η((τ + 1)/2)

]
Models with weights kQi = kUi = kDi = {−2, 0, 2} can fit data.

yq =


0 0 cq13

0 cq22 Im τ
[
cq23Z

(2)
1 + c′q23Z

(2)
2

]
cq31 Im τ

[
cq32Z

(2)
1 + c′q32Z

(2)
2

]
(Im τ)2

[
cq33Z

(4)
1 + c′q33Z

(4)
2 + c′′q33Z

(4)
3

]


Γ(3) has two modular forms with weight k = 1

Z
(1)
1 =

√
2
η3(3τ)

η(τ)
, Z

(1)
2 =

η3(3τ)

η(τ)
+
η3(τ/3)

3 η(τ)
.

Models with weights kQi = kUi = kDi = {−1, 0, 1} can fit data.

yq =


0 0 cq13

0 cq22

√
Im τ

[
cq23Z

(1)
1 + c′q23Z

(1)
2

]
cq31

√
Im τ

[
cq32Z

(1)
1 + c′q32Z

(1)
2

]
Im τ

[
cq33Z

(2)
1 + c′q33Z

(2)
2 + c′′q33Z

(2)
3

]

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0 0 cq13

0 cq22

√
Im τ

[
cq23Z

(1)
1 + c′q23Z

(1)
2

]
cq31

√
Im τ

[
cq32Z

(1)
1 + c′q32Z

(1)
2

]
Im τ

[
cq33Z

(2)
1 + c′q33Z

(2)
2 + c′′q33Z

(2)
3

]




Non-abelian modular representations
Generation number can be embedded in SL(2,Z) as multiplets of the finite group

ΓN ≡
SL(2,Z)

Γ(N)
with Γ2 = S3, Γ3 = T ′ ∼ A4.

Used to explain large neutrino mixings. Heavy quarks needed to get small mixings.

N = 2 allows models with doublets and low weights ±2:

SM quarks Extra vector-like quarks
Q D U D′ D′c U ′ U ′c

Flavour Γ2 2⊕ 10 2⊕ 11 2⊕ 10 2⊕ 10 2⊕ 11 2⊕ 10 2⊕ 10

Weights k −2 −2 −2 +2 +2 +2 +2

N = 3 could allow models with triplets and low weights ±1

SM quarks Extra vector-like quarks
Q D U D′ D′c U ′ U ′c

Flavour Γ3 3 3 3 3 3 3 3
Weights k −1 ±1 ±1 +1 ∓1 +1 ∓1

but generic non-minimal Kahler are needed to fit data.



Supergravity and superstrings

Strings etc motivate a Planckian τ decay constant h = nM̄Pl with integer n.

If h ∼ M̄Pl supergravity predicts new effects:
• W acquires modular weight kW = h2/M̄2

Pl > 0;
• The gluino phase rotates, so the modular anomaly becomes

A = Aquark +Agluino =

3∑
i=1

(2kQi + kUi + kDi − 2kW ) + 3kW .

• A = 0 again implies θ̄ ∝ argM3
3 detMq = 0. But...

• Extra states needed to avoid massless quarks e.g. 8 of SU(3) with k = −kW .

Could something similar happen in strings? Modular invariance is non-anomalous,
but the QFT field content is. Strong CP problem solved if Aquark = 0?



Conclusions
New solution to the QCD θ̄ � δCKM ∼ 1 problem

Assume: CP is part of a local flavour symmetry, spontaneously broken by
multiple scalars za in a theory where Yq are proportional to positive powers
of za but no z†a (so, SUSY). Then detYq ∝ zk is real selecting charges such
that k = 0, as demanded by anomaly cancellation in simpler models.
• Without heavy quarks: unique Yq structure.
• With heavy quarks: justifies and extends Nelson-Barr models.
• Can be realized with U(1), up to complications.

Modular realization

Modular invariance SL(2,Z) as flavour symmetry avoids complications.

• N = 1 is like two scalars E4, E6, assume kQ,U,D,L,E = {−6, 0, 6},
q and ` masses and mixings reproduced up to order one coefficients.

• N = 2 allows kQ,U,D,L,E = {−2, 0, 2}. Or as 2⊕ 1, adding heavy Q.
• N = 3 allows kQ,U,D,L,E = {−1, 0, 1}. Or as 3, adding heavy Q?

All can be heavy... how can this be tested confirmed?


