Exciting Prospects @ Neutrino Detectors

B. Dutta, W.C. Huang, D. Kim, J. Newstead, <u>JCP</u>, I. Shaukat Ali [2401.09529]

Jong-Chul Park

The XVIth Quark Confinement & Hadron Spectrum Conference August 20 (2024)

Outline

- Dark Matter: WIMP?
- Nuclear Scattering
- * Boosted Dark Matter (BDM)
- ***** Exciting Prospects for Dark Matter
- ***** Summary

Dark Matter: WIMP?

Message from Cosmology: Dark Matter (DM)

Classic Solution*: WIMP

Cosmological Lower Bound on Heavy-Neutrino Masses

Benjamin W. Lee^(a) Fermi National Accelerator Laboratory,^(b) Batavia, Illinois 60510

and

Steven Weinberg^(c) Stanford University, Physics Department, Stanford, California 94305 (Received 13 May 1977)

The present cosmic mass density of possible stable neutral heavy leptons is calculated in a standard cosmological model. In order for this density not to exceed the upper limit of 2×10^{-29} g/cm³, the lepton mass would have to be *greater* than a lower bound of the order of 2 GeV.

PRL (1977)

Correct thermal relic abundance:

 $\Omega h^2 \sim \frac{0.1 \, pb}{\langle \sigma v \rangle}$ with $\langle \sigma v \rangle \sim \frac{\alpha_X^2 m_\chi^2}{M^4}$ (*M*: dark scale/mediator)

- > Weak coupling \rightarrow naturally weak scale mass:
 - $\sim 1\,{\rm GeV}-100\,{\rm TeV}$ mass range favored
 - \rightarrow weak scale (new) physics

* Of course also **axion**

Diverging Efforts for WIMP Searches

Particle DM: Larger Space beyond WIMP

 Light DM models involving new light mediators: growing attention.
 The experimental detection of such light DM candidates: challenging as the conventional search efforts are designed and optimized for WIMP.

Nuclear Scattering

Nuclear Scattering: Elastic

Coherent elastic nuclear scattering

Nuclear Scattering: Elastic Neutrino

✤ Coherent Elastic v Nucleus Scattering (CEvNS)

PRD (1974)

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should have a sharp coherent forward peak just as $e + A \rightarrow e + A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The experiments are very difficult, although the estimated cross sections (about 10^{-38} cm² on carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasi-

PRD (1984)Principles and applications of a neutral-current detector for neutrino physics and astronomy

A. Drukier and L. Stodolsky Max-Planck-Institut für Physik und Astrophysik, Werner-Heisenberg-Institut für Physik, Munich, Federal Republic of Germany (Received 21 November 1983)

We study detection of MeV-range neutrinos through elastic scattering on nuclei and identification of the recoil energy. The very large value of the neutral-current cross section due to coherence indicates a detector would be relatively light and suggests the possibility of a true "neutrino observatory." The recoil energy which must be detected is very small $(10-10^3 \text{ eV})$, however. We examine a realization in terms of the superconducting-grain idea, which appears, in principle, to be feasible through extension and extrapolation of currently known techniques. Such a detector could permit determination of the neutrino energy spectrum and should be insensitive to neutrino oscillations since it detects all neutrino types. Various applications and tests are discussed, including spallation sources, reactors, supernovas, and solar and terrestrial neutrinos. A preliminary estimate of the most difficult backgrounds is attempted.

COHERENT [1708.01294]

Nuclear Scattering: Elastic DM

♦ Coherent Elastic DM Nucleus Scattering → DM Direct Detection

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

PRD (1985)

No solid observation yet.

Nuclear Scattering: *In***elastic**

Why inelastic channel?

➤ Signatures

- ✓ **Elastic**: low energy nuclear recoil
- ✓ **Inelastic**: γ cascade ($\Delta E \lesssim 10$ MeV),
 - γ cascade + nucleons ($\Delta E\gtrsim 10$ MeV)

Motivation

- ✓ A new channel to study
- ✓ Larger energy $\sim O(1 10)$ MeV
- ✓ Better S/B ratio

Nuclear Scattering: Inelastic Neutrino

♦ Inelastic *v* Nucleus Scattering (I*v*NS)

TESTING THE STRUCTURE OF WEAK NEUTRAL CURRENTS BY INELASTIC NEUTRINO SCATTERING FROM NUCLEI*

T.W. DONNELLY^{*} and R.D. PECCEI Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305

Received 13 June 1976 Revised manuscript received 17 September 1976

By using selected nuclear transitions specific pieces of the weak neutral current may be greatly enhanced, leading to widely different results for different models of the weak neutral current. Predictions for low-energy inelastic neutrino scattering from 12 C are examined within the framework of a variety of SU(2)_W × U(1) gauge theory models. PLB (1976)

First observation of the neutral current nuclear excitation ${}^{12}C(v, v'){}^{12}C^*(1^+, 1)$

KARMEN Collaboration

The neutral current nuclear excitation ${}^{12}C(v, v'){}^{12}C^*$ (1⁺, 1; 15.1 MeV) has been observed for the first time. For v_e and \bar{v}_{μ} from μ^+ -decay at rest the flux averaged cross section was determined to be $\langle \sigma_{NC}(v_e + \bar{v}_{\mu}) \rangle = [10.8 \pm 5.1 (\text{stat.}) \pm 1.1 (\text{syst.})] \times 10^{-42} \text{ cm}^2$.

- ➢ Recent
- ✓ Inclusion of multiple excited states
- improvements
- S ✓ Consistent handling of hadronic currents
- Dutta, Newstead et al., [2206.08590] ✓ Exclusive cross sections for each state

PLB (1991)

Nuclear Scattering: Inelastic DM @ Direct Exps.

♦ Inelastic DM Nucleus Scattering

RATES FOR INELASTIC NUCLEAR EXCITATION BY DARK MATTER PARTICLES

John ELLIS^{a)}, R.A. FLORES^{a,1} and J.D. LEWIN^b

CERN, CH-1211 Geneva 23, Switzerland

Rutherford-Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK

Received 29 June 1988

PLB (1988)

We calculate rates for the inelastic scattering of dark matter particles X on nuclei to produce low-lying excited nuclear states. Assuming a maxwellian velocity distribution for the dark matter particles X, the inelastic two-body phase space suppresses all rates by factors > 10 for $m_X \leq 100$ GeV unless the excitation energy $\Delta E < 100$ keV. We catalogue all stable nuclei with excited states in this range, and we estimate inelastic scattering matrix elements by relating them to Ml transitions, after correcting for internal conversions. Our calculated rates are typically $\leq 10^{-4}$ events/kg·day, with the least unfavourable rates being for ${}^{169}_{69}$ Tm and ${}^{187}_{75}$ Os. Problems of natural radioactivity and expense disfavour these and many other materials, leaving ${}^{127}_{53}$ I, ${}^{183}_{74}$ W and ${}^{201}_{80}$ Hg as the least unpromising isotopes.

39.6 keV **de-excitation** γ from ¹²⁹Xe 10Cross-section [cm²] 10 10^{-10} 10^{-39} XENON1T [2011.10431] 10^{2} 10^{3} 10^{4} WIMP mass $[\text{GeV}/\text{c}^2]$ [cm²] Upper limit at 90% CL section 1σ (Sensitivity) 2σ (Sensitivity) - · ELEGANTS V (1994) cross 10⁻³³ • 57.6 keV **de-excitation** γ from ¹²⁷I WIMP-proton 10⁻³⁴ -35 10^{-30} nelastic 10⁻³⁷ COSINE-100 [2307.09814] 10^{3} 10^{2} WIMP mass [GeV/c²

Is it possible to search for *inelastic* nuclear scatterings by DM in neutrino detectors?

Kinematically impossible for the ambient DM to leave detectable MeV-range signatures through the inelastic channel: $E_R \sim \mu_{\chi N} v^2 < \text{MeV}$

Is it possible to search for *inelastic* nuclear scatterings by DM in neutrino detectors?

Kinematically impossible for the ambient DM to leave detectable MeV-range signatures through the inelastic channel: $E_R \sim \mu_{\chi N} v^2 < MeV$

Boosted Dark Matter (BDM)

4

DM Boosting Mechanisms: <u>Dark Sector</u>

Boosted DM (BDM) coming from the Universe

DM Boosting Mechanisms: <u>Cosmic-Rays</u> (CRs)

- ★ Energetic cosmic-ray-induced BDM: <u>energetic cosmic-rays</u> <u>kick DM</u> (large $E_{e^{\pm},p^{\pm},\text{He},\nu,\dots}$ → large E_{χ})
 - → Efficient for Light DM

Cosmic-Ray-Induced BDM

- Charged CRs: [Bringmann & Pospelov, PRL (2019); Ema et al., PRL (2019); Cappiello & Beacom, PRD (2019); Dent & Dutta et al., PRD (2020); Jho, JCP, Park & Tseng, PLB (2020); Cho et al., PRD (2020); more]
- CR ν (νBDM): [Jho, JCP, Park & Tseng,
 2101.11262; Das & Sen, 2104.00027; Chao, Li,
 Liao, 2108.05608; Lin, Wu, Wu, Wong,
 2206.06864; more]

BDM from astrophysical processes:
Solar evaporation - Kouvaris, PRD (2015)
Dark cosmic rays - Hu +, PLB (2017)
Solar reflection - An +, PRL (2018)
Solar acceleration - Emken +, PRD (2018)
Atmospheric collider - Alvey+, PRL (2019)
PBH evaporation - Calabrese +, PRD (2022)
Blazar jets - Wang +, PRL (2022)
Supernova shocks - Cappiello
more

BDM Signatures: Elastic or Inelastic DM

* BDM signal: detectable at **large volume** detectors

p- or *e*-scattering (primary) Decay (secondary)

Exciting Prospects for DM

Benchmark: BDM by Cosmic Rays

* Focus: the interaction between DM & quark

 $\mathcal{L} \supset g_D A'_\mu \bar{\chi} \gamma^\mu \chi + \epsilon Q_b A'_\mu \bar{q} \gamma^\mu q$

- → DM can be boosted by energetic cosmic rays
 (p, He) throughout the galaxy.
- CR-BDM flux

$$\frac{d\Phi_{\chi}}{dT_{\chi}} = \int_{V} dV \int_{T_{i}^{\min}} dT_{i} \frac{d^{2}\Gamma_{i \to \chi}}{dT_{i}dT_{\chi}} \\
= D_{\text{eff}} \frac{\rho_{\chi}}{m_{\chi}} \sum_{i} \int_{T_{i}^{\min}} dT_{i} \frac{d\sigma_{\chi i}^{\text{el}}}{dT_{\chi}} \frac{d\Phi_{i}^{\text{LIS}}}{dT_{i}}$$

[Bringmann & Pospelov, PRL (2019)]

Inelastic Nuclear Scattering of DM

 Gamow-Teller (GT) transitions are the dominant contribution to the inelastic cross section.

$$\frac{d\sigma_{\chi N}^{\text{inel}}}{d\cos\theta} = \frac{2\epsilon^2 g_D^2 E'_{\chi} p'_{\chi}}{(2m_T E_R + m_{A'}^2 - \Delta E^2)^2} \frac{1}{2\pi} \frac{4\pi}{2J+1} \\ \times \sum_{s_i, s_f} \vec{l} \cdot \vec{l^*} \frac{g_A^2}{12\pi} |\langle J_f|| \sum_{i=1}^A \frac{1}{2} \hat{\sigma_i} \hat{\tau_0} ||J_i\rangle|^2 ,$$
$$\sum_{s_i, s_f} \vec{l} \cdot \vec{l^*} = 3 - \frac{1}{E_{\chi} E'_{\chi}} \left[\frac{1}{2} \left(p_{\chi}^2 + p'_{\chi}^2 - 2m_T E_R \right) + \frac{3m_{\chi}^2}{4} \right]$$

* For more details, See e.g. Dutta et al., [2206.08590].

The expected # of signal events

$$N_{\chi} = N_T \Delta t \int \sigma_{\chi N}^{\text{inel}}(E_{\chi}) \frac{d\Phi_{\chi}}{dE_{\chi}} dE_{\chi} \cdot \frac{\Gamma_{N^* \to N\gamma}}{\Gamma_{\text{total}}}$$

The GT strengths are derived from experimental results & the large-scale shell model code BIGSTICK.

Benchmark Detectors

* Key specifications of the benchmark detectors

	Experi-	Target	Mass	Time	$E_{\rm res}$	E_{range}	Back-
	ment		(kton)	(year)	(MeV)	$({ m MeV})$	ground
	Super-K	water	22.5	20	2	10 - 22	2.9×10^{-3}
	Hyper-K	water	188	10	2	10 - 22	1.2×10^{-2}
inelastic	DUNE	Ar	40	10	2	7 - 15	167.5
	JUNO	CH_2	20	10	-	15.1	47
	Borexino	CH_2	0.1	5.6	-	15.1	0.13
	DUNE	p,n	40	10	-	50 - 1270	550
	JUNO	\mathbf{p}	20	10	-	15 - 100	1420
elastic	Borexino	\mathbf{p}	0.1	1.22	-	12.3 - 24.6	84
	LZ	Xe	0.0055	0.167	-	$(1-68) \cdot 10^{-3}$	1.4
	DarkSide	Ar	0.02	5	-	0.03 - 0.1	1.6

Estimated Background Rates

The main irreducible background: the elastic & inelastic neutral-current scattering of solar & atmospheric neutrinos.

Projected/Attainable Sensitivity Reaches

Inelastic channels (solid) better than elastic channels (dashed: LZ & Borexino – data, others - future)

Projected/Attainable Sensitivity Reaches - σ_{χ}

Inelastic channels (solid) better than elastic channels (dashed: LZ & Borexino – data, others - future)

DM-quark interactions \rightarrow cosmic-ray <u>boosting of DM</u> & <u>DM-nuclear scattering</u>.

******Inelastic* nuclear scattering:

- ✓ Nuclear line: $E \sim O(10)$ MeV → No need for low threshold detectors.
- ✓ Lower background → Statistical advantage.
- ***** Large volume neutrino detectors: wonderful to probe light DM.

✤ Inelastic channels: better than elastic channels in keV – GeV range.

Supplemental

Elastic vs. Inelastic

p-Scattering vs. DIS

- ✤ If a momentum transfer is too large, a proton may break apart.
- ♦ What is large? → A SK simulation study [Fechner et al, PRD (2009)] showed about 50 % events accompany (at least) a pion or a secondary particle for $p_p \approx 2$ GeV.
- ♦ We categorize any event with $p_p < 2$ GeV as the *p*-scattering (i.e., simplified step-function-like transition).

p-Scattering vs. DIS: Numerical Study

- ✓ We study $\sigma_{\chi_1 p}^{\text{cut}} / \sigma_{\text{DIS}}$ where 200 MeV < p_p < 2 GeV is applied to $\sigma_{\chi_1 p}$ while no cuts are imposed to σ_{DIS} .
- ✓ *p*-scattering dominates over DIS for $m_X < O(GeV)$ (cf. *v* scattering via W, Z).
- ✓ As the process becomes more "inelastic", *p*-scattering dominates over DIS for a given E_1 .
- ✓ DIS-preferred region expands in increasing E_1 .

p-Scattering vs. e-Scattering

- ✓ If a BDM search hypothesizes a heavy dark photon (say, sub-GeV range), the *p*-channel may expedite discovery.
- ✓ If a model conceiving iBDM signals allows for large mass gaps between χ_1 and χ_2 , the *p*-channel is more advantageous.
- ✓ The *e*-channel becomes comparable in probing the parameter regions with smaller m_1 and m_X .
- ✓ As the boosted χ_1 comes with more energy, more parameter space where the *e*-channel is comparable opens up.
- ✓ With cuts, more e-channel favored region.

Many More Well-Motivated Exps.

Dark Matter	Target	Volu	ume [t]	Depth	$E_{\rm th}$		Resolution		DID	Run	D.f.
Experiments	Material	Active	Fiducial	[m]	[keV]	Position [cm]	Angular [°]	Energy [%]	PID	Time	Kets.
DarkSide	LAr	46.4	36.9	3,800	(2 (1)			< 10		9019	[119]
-50	DP-TPC	kg	kg	m.w.e.	O(1)	$\sim 0.1 - 1$	_	$\gtrsim 10$	_	2013-	[112]
DarkSide	LAr	23	20	3,800	$\mathcal{O}(1)$	$\sim 0.1 - 1$	_	$\lesssim 10$	_	goal:	[79]
-20k	k DP-TPC			m.w.e.						2021-	
XENON1T	LXe DP-TPC	2.0	1.3	3,600 m.w.e.	$\mathcal{O}(1)$	$\sim 0.1 - 1$	-	_	-	-2016 -2018	[113, 114]
XENONnT	LXe DP-TPC	5.9	~ 4	3,600 m.w.e.	$\mathcal{O}(1)$	$\sim 0.1 - 1$	_	-		goal: 2020–	[113]
DEAP -3600	SP LAr S1 only	3.26	2.2	2,000	$\mathcal{O}(10)$	< 10	-	$\sim 10-20$	-	2016-	[99–101]
DEAP -50T	SP LAr S1 only	150	50	2,000	$\mathcal{O}(10)$	15	-	-	-	_	[99]
LUX- ZEPLIN	LXe DP-TPC	7	5.6	1,500	$\mathcal{O}(1)$	$\sim 0.1 - 1$	-	$2.5 \mathrm{MeV}: 2$	_	goal: 2020–	[115, 116]
Neutrino	Target	Volu	me [kt]	Depth	$E_{\rm th}$		Resolu	tion	PID	Run	Rofe
Experiments	Material	Active	Fiducial	$[\mathbf{m}]$	[MeV]	Vertex [cm]	Angular [°]	Energy [%]	TID	Time	neis.
Borexino	organic LS	0.278	0.1	3,800 m.w.e.	~ 0.2	$\sim 9-17$	-	$\frac{5}{\sqrt{E (MeV)}}$	_	> 5.6 year	[117]
KamLAND	LS	1	0.2686	1,000	0.2 - 1	$\frac{12-13}{\sqrt{E(\text{MeV})}}$	-	$\frac{6.4-6.9}{\sqrt{E (\text{MeV})}}$	_	~ 10 year?	[118, 119]
JUNO	LS	_	20	700	< 1, goal: 0.1	$\frac{12}{\sqrt{E(\text{MeV})}}$	μ : L > 5 m: < 1, L > 1 m: < 10	$\frac{3}{\sqrt{E(\text{MeV})}}$	$\mu^{\pm} \text{ vs } \pi^{\pm},$ $e^{\pm} \text{ vs } \pi^{0}:$ difficult	goal: 2021–	[120–122]
DUNE	LArTPC	Total: 17.5 ×4	$\gtrsim 10$ $\times 4$	1500	e : 30, p : 21-50	$\lesssim 1-2$	$e, \mu: 1,$ $\pi^{\pm}, p, n: 5$	$\begin{split} e &: 20 \; (E < 0.4 {\rm GeV}), \\ 10 \; (E < 1.0 {\rm GeV}), \\ 2 &+ \frac{8}{\sqrt{E/{\rm GeV}}} \; (E > 1.0 {\rm GeV}) \\ p &: 10 \; (E < 1.0 {\rm GeV}), \\ 5 &+ \frac{5}{\sqrt{E/{\rm GeV}}} \; (E > 1.0 {\rm GeV}), \end{split}$	good e, μ, π^{\pm}, p separation	10 kt: 2026-, 20 kt: 2027-	[77, 80–84]
SK	Water Cherenkov	Total: 50	22.5	1,000	e : 5, p : 485	5 MeV: 95, 10 MeV: 55, 20 MeV: 40	10 MeV: 25, 0.1 GeV: 3, 1.33 GeV: 1.2	10 MeV: 16, 1 GeV: 2.5	e, μ : good	$\gtrsim 14$ year	[123–125]
НК	Water Cherenkov	Total: 258 ×2	187 ×2	Japan: 650, Korea: 1,000	e:<5, p:485	5 MeV: 75, 10 MeV: 45, 15 MeV: 40, 0.5 GeV: 28	similar to SK	better than SK	e, μ : good, π^0, π^{\pm} : mild	goal: 2027–	[85-87]
Neutrino	Target	Eff	ective	Depth	$E_{\rm th}$		Resolu	tion	DID	Run	D.C
Telescopes	Material	Volu	me [Mt]	[m]	[GeV]	Vertex [m]	Angular [°]	Energy [%]	гш	Time	Refs.
IceCube	Ice	$100 \text{ GeV}: \sim 30$, $200 \text{ GeV}: \sim 200$		1,450	~ 100	vertical: 5,	μ -track: ~ 1, shower: ~ 20	100 GeV: 28,	only	2011-	[89, 126]
DeepCore	Ice	10 Ge	eV: ~ 5, eV: ~ 30	2,100 Ice	~ 10	better	μ -track: ~1, shower: > 10	-	only	(2003) 2011– (2010)	[88, 89]
IceCube	Ice	-		2,150	(50 De $\mathcal{O}(1)$	much	$5 \text{ GeV}: \sim 20$,		only	goal:	(1.07)
Upgrade	Cherenkov			Ice		better	$10 \text{GeV}: \sim 15$	-	μ	2023	[127]
PINGU	Ice	1 Ge	$V: \gtrsim 1$,	2,100	~ 1	much	1 GeV: 25,	1 GeV: 55,	only	>	[128, 129]
	Cherenkov	$10 \mathrm{Ge}$	$eV: \sim 5$	Ice		better	10 GeV: 10	10 GeV: 25	μ	2023	
Gen2	Ice Cherenkov	~	10 Gt	1,360 Ice	~ 50 TeV	worse	μ -track: < 1 shower: ~ 15	_	μ	_	[130]

[P. Machado, D. Kim, JCP & S. Shin, JHEP (2020)]

- Many existing/upcoming experiments are potentially capable of testing models conceiving BDM signals.
- * Additional physics opportunity on top of the main mission of each

experiment.

Many More Well-Motivated Exps.

