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NRQCD vs. Data at large pT
• Prompt J/𝝍 cross sections have been measured up to pT = 360 GeV at the 13 TeV LHC 

• Preliminary results have been available since 2019.  
It seemed that NLO NRQCD has trouble describing data for pT ≫ 100 GeV.

2

10 210
) [GeV]µµ(

T
p

2−10

1−10
1

10

210

310

410

510

610

710

810

910

dy
 [f

b/
G

eV
]

T
/d

p
σ2

)d-
µ+

µ
→

ψ
(J

/
B

 |y| < 2.00≤  1.50 2Data x 10

 |y| < 1.50≤  0.75 1Data x 10

 |y| < 0.75≤  0.00 0Data x 10

ATLAS
 = tdL∫

 < 60 GeV
T

   p-1 2.6 fb
 60 GeV≥ 

T
   p-1140 fb

 = 13 TeVs pp
ψPrompt J/

(a) (b)

Figure 3: Differential cross-sections for (a) prompt and (b) non-prompt production of �/k mesons. For visual
clarity, a scaling factor of 1, 10, or 100 is applied to the rapidity slices 0.00  |H | < 0.75, 0.75  |H | < 1.5, and
1.5  |H | < 2.0, respectively. For each data point, the horizontal bar spans the ?T range covered by that bin, with the
horizontal position of each point representing the mean ?T in that bin. The vertical uncertainty range (obscured by
the marker for some values) combines both the statistical (the inner bar) and total uncertainty. Uncertainties related to
spin alignment or integrated luminosity are not included. Data up to 60 GeV were taken with a dimuon trigger with
integrated luminosity 2.6 fb�1; data above 60 GeV were taken with a single-muon trigger with integrated luminosity
140 fb�1.

presented in Figures 5(a) and 5(b). Finally, the k(2S)-to-�/k production ratios are presented in Figures 6(a)
and 6(b) for the prompt and non-prompt production mechanisms, respectively.

While the non-prompt fractions shown in Figure 5 increase steadily with ?T up to about 100 GeV, they are
almost constant for both �/k and k(2S) in the high ?T range, which suggests similar ?T-dependences for
the prompt and non-prompt differential cross-sections at very high transverse momenta.

5.1 Acceptance and spin alignment corrections

The transition between the low-?T dimuon trigger and the high-?T single-muon trigger at ?T = 60 GeV
presents a particular challenge because of the sharp change in event kinematics. The corresponding changes
in the acceptance and efficiency correction factors are significant and could lead to discontinuities in the
measured distributions.
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Figure 8: Ratios of various theoretical predictions (described in the text) to the data points from this measurement,
for the prompt production of (a) �/k and (b) k(2S) in the central rapidity region. In each ?T bin, the shaded
area represents the ratio of the theoretical prediction to the measured value, with the vertical spread showing
the uncertainties of the respective model. Error bars on the black circles show fractional uncertainties of this
measurement.
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Figure 3: Di�erential cross sections of prompt (a) and non-prompt (b) production of J/ mesons. A scaling factor of
1,10,100 is applied for visual clarity to the rapidity slices |y | < 0.75, 0.75 < |y | < 1.5, 1.5 < |y | < 2.0, respectively.
For each data point, the horizontal bar spans the pT range covered by that bin, with the vertical uncertainty (obscured
behind the marker for some values) combining both the statistical (with a bar), and the combined total uncertainty.
The horizontal position of each point represents the mean of the weighted pT distribution for that bin.
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Figure 4: Di�erential cross sections of prompt (a) and non-prompt (b) production of  (2S) mesons. A scaling factor
of 1,10,100 is applied for visual clarity to the rapidity slices |y | < 0.75, 0.75 < |y | < 1.5, 1.5 < |y | < 2.0, respectively.
For each data point, the horizontal bar spans the pT range covered by that bin, with the vertical uncertainty (obscured
behind the marker for some values) combining both the statistical (with a bar), and the combined total uncertainty.
The horizontal position of each point represents the mean of the weighted pT distribution for that bin.
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ATLAS EPJC 84, 169 (2024) ATLAS-CONF-2019-047 NLO NRQCD calculation from  
Butenschoen and Kniehl,  

based on PRD 84, 051501 (2011)
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NRQCD factorization
• Inclusive production cross section of a quarkonium 𝒬 is given by 


• QQ̅ cross sections are computed in perturbative QCD. 
Long-distance matrix elements describe evolution of QQ̅ into quarkonium+X.


• For J/𝝍 or 𝝍(2S), dominant contributions come from 𝒩 = 3S1[1], 3S1[8], 1S0[8], 3PJ[8]. 
For 𝜒cJ, 𝒩 = 3PJ[1] and 3S1[8] at leading order in the nonrelativistic expansion.


• Color-singlet QQ̅ has direct overlap with quarkonium state, while color-octet QQ̅ must go 
through transition to evolve into a color-singlet quarkonium. 


• QQ̅(1S0[8]) → J/𝝍+X occurs through ΔS=1 (spin flip), while 
QQ̅(3PJ[8]) → J/𝝍+X needs ΔL=1 with ΔS=0, and QQ̅(3S1[8]) → J/𝝍+X requires ΔL=ΔS=0.  
QQ̅(3S1[8]) → 𝜒cJ+X occurs through ΔL=1 with ΔS=0. Color-octet MEs are determined from data. 


• P-wave QQ̅ cross sections are negative at large pT.
3

Resummation of threshold double logarithms in hadroproduction of heavy quarkonium
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We resum threshold double logarithms that appear in inclusive production of heavy quarkonium.
This resolves the catastrophic failure of fixed-order perturbation theory where quarkonium cross
sections at large transverse momentum can turn negative due to large radiative corrections. We find
that resummation is imperative for describing measured prompt production rates of J/ at large
transverse momentum.

Introduction.— Recent measurements of charmonium
production rates at the LHC at very large transverse
momentum [1] posed a serious challenge to the phe-
nomenology of heavy quarkonium production based on
the nonrelativistic QCD (NRQCD) factorization formal-
ism [2]. This formalism describes the inclusive cross sec-
tion of a heavy quarkonium in terms of sums of prod-
ucts of perturbatively calculable short-distance coe�-
cients (SDCs) and nonperturbative long-distance matrix
elements (LDMEs). Predictions based on SDCs com-
puted at next-to-leading order (NLO) accuracy in fixed-
order (FO) perturbation theory fail to describe the mea-
sured J/ production rates at the LHC for transverse
momentum much larger than 100 GeV. Moreover, pre-
dictions based on FO calculations of SDCs can yield un-
physical, negative cross sections at large transverse mo-
mentum [3, 4]. It has been suggested that this problem
arises from threshold logarithms, which originate from
singularities in radiative corrections near boundaries of
phase space [3, 4]. Hence, the catastrophic failure of FO
perturbation theory may be resolved by resumming the
threshold logarithms to all orders in perturbation theory,
which have not yet been done in the NRQCD factoriza-
tion formalism for production of heavy quarkonium.

In this Letter, we resum the threshold logarithms in
the NRQCD factorization formula for production of J/ ,
 (2S), and �cJ to all orders in perturbation theory.
We work at the leading double logarithmic level, which
produces the dominant singularities in the SDCs. We
focus on the large-transverse momentum region, where
the e↵ect of resummation is most significant. By using
the Grammer-Yennie approximation [5] we obtain ex-
pressions for the singularities in the SDCs in terms of
soft functions, which make possible the resummation of
threshold logarithms by exponentiation. The resummed
SDCs that we obtain are free of singularities, so that
we can ensure the positivity of heavy quarkonium cross
sections at large pT . We then compute J/ production
rates at large pT from pp collisions at

p
s = 13 TeV by

using our resummed SDCs, and find that we obtain sub-
stantially improved descriptions of LHC data compared
to FO calculations.

NRQCD factorization and fragmentation.—In the

NRQCD factorization formalism, the inclusive cross sec-
tion of a heavy quarkonium Q at large transverse mo-
mentum pT is given by [2]

�Q =
X

N
�QQ̄(N )hO

Q(N )i, (1)

where �QQ̄(N ) is the SDC that corresponds to the pro-
duction rate of a heavy quark (Q) and a heavy antiquark
(Q̄) pair in a specific color and angular momentum state
N , and hO

Q(N )i is the LDME that represents the prob-
ability for a QQ̄ in the state N to evolve into a quarko-
nium Q. The sum over N can be truncated at a chosen
accuracy in the nonrelativistic expansion; for Q = J/ 

or  (2S), dominant contributions come from 3
S
[1]

1
, 3

S
[8]

1
,

1
S
[8]

0
, and 3

P
[8]

J channels, while for Q = �cJ the 3
P

[1]

J

and 3
S
[8]

1
channels appear at leading order in the non-

relativistic expansion. Because we are interested in the
large-pT region, we focus on the leading large-pT behav-
iors of the SDCs which are given by leading-power (LP)
fragmentation [6, 7]

�
LP

QQ̄(N )
=

X

i=g,q,q̄

Z
1

0

dz �̂i(K)Di!QQ̄(N )(z), (2)

where �̂i(K) is the production rate of a massless parton
i = g, q, or q̄ with momentum K, Di!QQ̄(N )(z) is the
fragmentation function (FF) for fragmentation of a par-
ton i into QQ̄(N ), z = P

+
/K

+ with P the QQ̄ mo-
mentum and the + direction defined along P in the lab
frame. The correction to Eq. (2) is suppressed by m

2
/p

2

T ,
with m the heavy quark mass, which can be written in
terms of next-to-leading power (NLP) fragmentation [8–
10]. In large-pT hadroproduction, the cross section is
dominated by gluon fragmentation (i = g). Gluon FFs

for N = 3
S
[8]

1
, 3

P
[8]

J , and 3
P

[1]

J involve distributions that
are singular at z = 1 [11–13]. It is useful to define the
Mellin transform

D̃i!QQ̄(N )(N) =

Z
1

0

dz z
N�1

Di!QQ̄(N )(z). (3)

The inverse Mellin transform is singular at z = 1 if
D̃i!QQ̄(N )(N) does not vanish as N ! 1. At lead-

ing order in the strong coupling ↵s, D̃LO

g!QQ̄(3S[8]
1 )

(N) is
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NLO NRQCD vs. Data at large pT
• Prompt J/𝝍 data vs. direct J/𝝍 from NLO NRQCD from various ME sets.  

√s=13 TeV LHC, |y|<0.75. Uncertainties from matrix elements only.
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Butenschoen and Kniehl, 
PRD84, 051501 (2011)

J.X.Wang et al,  
PRD99, 014044 (2019)

Hamburg IHEP
Brambilla, HSC, Vairo, Wang 

JHEP03 (2023) 242

TUM Peking
K.T.Chao et al, 

PRL114, 092005 (2015)
Large 3S1[8],  

negative 3PJ[8] ME  
(positive P-wave  

contribution)

Prediction  
overshoots data. 
Predicts transverse 
polarization, disagrees  
LHC measurements  

Large 1S0[8],  
small 3S1[8] and 3PJ[8]

Strong tension with  
𝜼c data. Predicts  
near-zero polarization

Based on ME universality 
and evolution equations. 

Near-zero 1S0[8] ME. 
Cross section  

turns negative  
at large pT

Based on J/𝝍 and 𝜼c data. 
Near-zero 1S0[8] ME. 

Cross section  
turns negative  

at large pT

Compatible with 𝜼c data.  
Predicts slightly transverse  
polarization

Similar strategy/results  
from W.L.Sang et al,  
PRL114, 092006 (2015)
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𝜒cJ production in NRQCD at large pT
• 𝜒cJ cross sections from NLO NRQCD always turn 

negative at large pT, regardless of choice of the color-
octet ME 3S1[8].


• A significant amount of prompt J/𝝍 comes from 
feeddowns from 𝜒c1,2 → J/𝝍+𝛄.  
Without solving the negative cross section problem,  
it is IMPOSSIBLE to make any solid prediction of 
prompt J/𝝍 production rates.

5
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𝜒c MEs from Ma, Wang, Chao,  
PRD 83,111503 (2011)

Similar results are  
obtained with  
MEs from Brambilla,  
HSC, Vairo, 
JHEP 09 (2021) 032
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What happens at large pT
• Large-pT cross sections are dominated by gluon fragmentation.  

 
 
 
Fragmentation function describes production of hadron 𝒬 from massless parton i=g, q, q̅. 
z = fraction of 𝒬 momentum compared to parton momentum in the + direction


• NRQCD factorization for fragmentation functions 
 
 
 
The perturbative fragmentation functions Dg→QQ̅(𝒩)(z) are singular distributions at z = 1 for 
𝒩 = 3S1[8], 3PJ[8], and 3PJ[1], because ΔS=0 processes can occur by emitting soft gluons. 


• The 3S1[1] and 1S0[8] fragmentation functions are regular functions. 
6

4

FIG. 1. Gluon FFs with resummed threshold double loga-
rithms times z3 for production of J/ (top) and �cJ (bottom)
for J = 1 and 2. Central values of FO results are also shown
for comparison. BrJ ⌘ Br�cJ!J/ +� is the branching frac-
tion for decays of �cJ into J/ + �.

Numerical results.— We now show the numerical re-
sults for the resummed FFs. We work with FFs
for production of quarkonium Q written in terms of
Di!QQ̄(N )(z) as

Dg!Q(z) =
X

N
Dg!QQ̄(N )(z)hO

Q(N )i, (22)

where the sum is over N = 3
S
[1]

1
, 3

S
[8]

1
, 1

S
[8]

0
, and 3

P
[8]

J

for Q = J/ or  (2S), and N = 3
P

[1]

J and 3
S
[8]

1
for

Q = �cJ . Note that we include the contributions from
3
S
[1]

1
and 1

S
[8]

0
, which do not contain singularities and

are not a↵ected by resummation at the current level
of accuracy [13, 20, 22, 23]. For consistency, we com-

pute the FO FFs to order ↵2
s, except for the 3

S
[1]

1
FF,

which we compute at leading nonvanishing order because
it begins at order ↵3

s [20, 22, 23]. Because we are in-
terested in the large pT region, we evolve the FFs to
the MS scale 50 GeV from the scale 3 GeV by using
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution
equation [24–27] at leading logarithmic accuracy. We
take the J/ LDMEs determined in Ref. [28] in the large
pT region, and we use the �cJ LDMEs from Ref. [29].
The LDMEs are renormalized in the MS scheme at the
scale m. In order to compensate for the fact that re-
summation enhances the relative size of the 3

P
[8] SDCs

compared to 3
S
[8] by about 10%, from which the 3

P
[8]

LDME was determined in Ref. [28], we reduce the cen-
tral value of the 3

P
[8] LDME by 10%. That is, we

use hO
J/ (3S[1]

1
)i = 1.18 ± 0.35 GeV3, hOJ/ (3S[8]

1
)i =

(1.40 ± 0.42) ⇥ 10�2 GeV3, hO
J/ (1S[8]

0
)i = (�0.63 ±

3.22) ⇥ 10�2 GeV3, hO
J/ (3P [8]

0
)i = (5.25 ± 1.86) ⇥

10�2 GeV5, hO�c0(3P [1]

0
)i = (8.16 ± 2.45) ⇥ 10�2 GeV5,

and hO
�c0(3S[8]

1
)i = (1.57±0.47)⇥10�3 GeV3. Note that

due to the universality relations obtained in Refs. [28, 30],
the  (2S) LDMEs can be obtained by uniformly rescal-
ing the J/ LDMEs, and so, the  (2S) FFs can also be
obtained in the same way. We display the gluon FFs for
transversely and longitudinally polarized J/ in Fig. 1.
We show the FFs multiplied by z

3, because when com-
puting pT -di↵erential cross sections using Eq. (2), the
�̂i behave approximately like z

3. For comparison, we
also show results for FO FFs; note that the FO FFs
involve singularities at z = 1 that cannot be displayed
like regular functions. We see that the resummed J/ 

FFs are smooth functions of z, and they are positive or
at least consistent with zero within uncertainties for all
0 < z < 1, which ensures the positivity of J/ produc-
tion rates. In contrast, the transversely polarized FF in
FO perturbation theory rapidly changes sign near z = 1.
The longitudinal J/ FF is una↵ected by resummation,
because it is free of singularities at the current level of
accuracy [14, 31]. The results for the resummed FFs lead
to an estimate of the polarization of J/ and  (2S) at
pT = 100 GeV given by �0.25 <

⇠ �✓
<
⇠ +0.15 in the

helicity frame at midrapidity, which is compatible with
previous estimates [28, 30] but smaller than recent CMS
measurements at large pT [32]. Similarly, we show the
FFs for �c1 and �c2 in Fig. 1, scaled by the branching
fractions into J/ + � we take from PDG [33]. Just like
the J/ case, the resummed �cJ FFs are smooth func-
tions of z that are positive for the whole range of z, unlike
the FO calculations which change sign rapidly near z = 1.

Finally, we compute the prompt J/ production rates
at the

p
s = 13 TeV LHC to compare with ATLAS mea-

surements in Ref. [1]. We use the method used in Ref. [34]
to compute the cross sections, except that we use the
resummed gluon FFs to compute the LP contribution.
We also include the contributions from light-quark FFs,
which are not a↵ected by resummation at the current
level of accuracy. We include feeddown contributions
from decays of �cJ and  (2S), with branching fractions
taken from PDG [33]. We include the NLP contribu-
tions we obtain from FO SDCs calculated by using the
FDCHQHP package [35]. We find that the NLP con-
tributions amount to about 10% at pT = 60 GeV, and
diminish to less than 1% for pT larger than 100 GeV.
We show the large-pT cross sections computed from the
resummed FFs in Fig. 2 compared to ATLAS data [1].
The resummed results are in fair agreement with data
in the large pT region. In contrast, the results from FO
SDCs shown in Fig. 2 fall below measured data and turn
negative at large pT . This shows that resummation of
threshold logarithms is absolutely necessary in order to



Threshold Double Logarithms in Quarkonium Production                                        CONFINEMENT XVI                                                                                                                   Hee Sok Chung

What happens at large pT
• The J/𝝍 fragmentation function contains singular 

distributions 𝜹(1−z), 1/(1−z)+, [log(1−z)/(1−z)]+, … . 
These change sign rapidly near z = 1, so that  
no choice of ME sets will lead to positive definite 
fragmentation functions.


• Gluon production rates rise with z.  
Slope at z = 1 grows steeper with pT.


• Contributions from singular distributions  
become increasingly more important  
as pT increases.  
As more singular distributions appear at 
higher orders in 𝛼s, this disturbs  
convergence of perturbation theory. 7
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What happens at large pT
• Similarly, 𝜒cJ fragmentation function contains singular 

distributions 𝜹(1−z), 1/(1−z)+, [log(1−z)/(1−z)]+, … .


• Same problem as J/𝝍 : contributions from  
singular distributions become increasingly  
more important as pT rises. 


• As more singular distributions appear at 
higher orders in 𝛼s, this disturbs  
convergence of perturbation theory.

8
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Threshold logarithms
• Singular distributions in fragmentation functions : 

 
 
 
 
 
 

• The severity of the singularities can be quantified in terms of Mellin moments: 
 
 
Singularities in D(z) at z = 1 correspond to nonvanishing/divergence of D̃(N) at N→∞.

9

less singular/regular functions

Mellin transform of a delta function is a constant Plus distributions give logarithmically diverging Mellin transforms

Braaten and Lee, NPB 586, 427 (2000)
Ma, Qiu, Zhang, PRD 89, 094029 (2014)

Zhang, Meng, Ma, Chao, JHEP 08 (2021) 111
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Threshold logarithms
• N→∞ divergences in Mellin-space fragmentation functions : 

 
 
 
 
 

• The most severe singularity at loop level involves 𝛼s log2 N compared to LO.  
Since this divergence is associated with the singularity at the boundary z = 1,  
we refer to them as threshold double logarithms.


• Resummation of threshold double logarithms can be accomplished by 
soft factorization→loop calculation of soft function→resummation by exponentiation

10
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Soft factorization
• The z→1 singularities in the gluon FF are identified by taking the Grammer-Yennie 

approximation to gluon attachments to Q and Q̅. This turns quark lines to Wilson lines: 


• This essentially provides the soft factorization with tree-level Wilson coefficient.  
Loop level coefficient will not be needed until next-to-leading logarithmic accuracy.

11

→Wilson lines can produce an arbitrary number of soft gluons. Then, the fragmentation

function in the soft approximation may be written as

Dsoft[g ! QQ̄] = 2M(�gµ⌫)Cfrag

����
�i

K2 + i"
+O(↵s)

����
2 ✓

gµ↵ �
Kµn↵

K+

◆✓
g⌫↵

0
�

K⌫n↵0

K+

◆

⇥h0|T̄
h
A

↵0,a0

soft
�ba0

n (1, 0)
i†
2⇡�(n · p̂�K+(1� z))T

⇥
A

↵,a
soft

�ba
n (1, 0)

⇤
|0i.(54)

Here, M is the invariant mass of the QQ̄, the factor 2M comes from the relativistic normal-

ization used in the definition of the fragmentation function while the Q and Q̄ spinors are

nonrelativistically normalized, (�gµ⌫) comes from the polarization sum for the fragmenting

gluon, K is the momentum of the fragmenting gluon, �i/(K2 + i") is the propagator of the

fragmenting gluon at leading order in ↵s, and P is the momentum of the QQ̄ produced by

the virtual gluon. The momentum operator p̂ = iD reads o↵ the momentum of the state

T
⇥
A

↵,a
soft

�ba
n (1, 0)

⇤
|0i. Because we are working in the soft approximation, we do not dis-

tinguish between the momentum of the fragmenting gluon and P . Loop corrections to this

factor can involve both virtual and real corrections; because the virtuality of the fragmenting

gluon is of order M2, these corrections do not a↵ect the leading threshold logarithms and

can be neglected at this accuracy. Hence, we do not distinguish between the momentum of

the fragmenting gluon K and the momentum of the QQ̄ given by p1 + p2 = P .

The expression in Eq. (54) can be regarded as a factorization formula, where the vacuum

expectation value is a soft function, and the remaining factors are short-distance coe�cients.

As have been stated in arXiv:1910.05497, this corresponds to a reorganization of perturbation

series at z = 1 from soft and ultrasoft regions; the di↵erence from arXiv:1910.05497 is that

we retain the z dependence in the low-energy matrix element, rather than the short-distance

coe�cient, so that we can study the z ! 1 behavior of the fragmentation function. This can

be related to the shape function approach to heavy quarkonium production, which involves

resummation of higher dimensional NRQCD matrix elements that depend on the total QQ̄

momentum.

The formula in Eq. (54) can further be simplified by projecting the soft amplitude Asoft

onto QQ̄ states with specific quantum numbers. In order to make contact with NRQCD,

we will expand in powers of the relative momentum q ⌘ (p1 � p2)/2, and project onto

specific angular momentum and color states to obtain results that correspond to NRQCD

short-distance coe�cients.
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Wilsonlinescanproduceanarbitrarynumberofsoftgluons.Then,thefragmentation
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◆✓
g⌫↵

0
�

K⌫n↵0

K+

◆

⇥h0|T̄
h
A

↵0,a0

soft
�ba0

n(1,0)
i†

2⇡�(n·p̂�K+(1�z))T
⇥
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⇤
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frame. This applies to the virtual gluon in the process g⇤ ! QQ̄. Second, we can apply

soft approximations to gluon attachments to heavy quark and antiquark lines. In the soft

approximation, the outermost gluon attachment to the heavy quark line can be written as

ū(p1)�
µT a i(p/1 + k/+m)

(p1 + k)2 �m2 + i"
= ū(p1)T

a i[2(p
µ
1
+ kµ)� (p/1 + k/)�µ +m�µ]

2p1 · k + k2 + i"

= ū(p1)T
a i[2(p

µ
1
+ kµ)� k/�µ]

2p1 · k + k2 + i"

⇡ ū(p1)T
a ipµ

1

p1 · k + i"
. (49)

Similarly, applying soft approximation to the antiquark line yields

i(�p/2 � k/+m)

(p2 + k)2 �m2 + i"
�µT av(p2) =

i[�2(pµ
2
+ kµ) + �µ(p/2 + k/) +m�µ]

2p2 · k + k2 + i"
T av(p2)

= �
i[2(pµ

2
+ kµ)� �µk/]

2p2 · k + k2 + i"
T av(p2)

⇡ �
ipµ

2

p2 · k + i"
T av(p2). (50)

For multiple gluon insertions, these approximations can be applied sequentially starting

from the outermost gluon attachment; then because of the scalar nature of the soft gluon

attachment, the same formulas apply to subsequent soft gluon attachments. In the case

of the heavy quark line, the Feynman rule for the soft gluon attachment is equivalent to

the Feynman rule for the path ordered, time ordered Wilson line in the direction of the

heavy quark momentum. Similarly, the Feynman rule for the soft gluon attachment to

the antiquark line is equivalent to the anti-path ordered, time ordered Wilson line in the

direction of the antiquark momentum. Let us use the following notation

Wp1(t
0, t) = P exp

"
�ig

Z t0

t

d� p1 · A
a(p1�)T

a

#
, (51)

W †
p2(t

0, t) = P̄ exp

"
+ig

Z t0

t

d� p2 · A
a(p2�)T

a

#
, (52)

where P and P̄ stand for path and anti-path ordering of the color matrices. Then, the

g⇤ ! QQ̄ amplitude can be written in the amplitude level as the operator

A
µ,a
soft

= T
⇥
ū(p1)Wp1(1, 0)(�ig�µT a)W †

p2(1, 0)v(p2)
⇤
, (53)

where T is time ordering. This combination of Wilson lines here may be considered a Wilson

loop, if we neglect gauge fields at spacetime infinity as is done in perturbation theory. The
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soft function

Grammer and Yennie, PRD 8, 4332 (1973)

Fragmentation function
Soft function

z→1

(soft approximation)

2

a nonzero constant as N ! 1, while D̃
LO

g!QQ̄(3P [8]
J )

(N)

and D̃
LO

g!QQ̄(3P [1]
J )

(N) diverge like logN , which imply

that the fragmentation functions for these states involve
singular distributions such as delta functions and plus
distributions [11–13]. Moreover, these singularities are
exacerbated by radiative corrections; the NLO correc-
tions involve double logarithms in N that are propor-
tional to ↵s log

2
N times the leading-order result, which

correspond to the plus distributions [log(1� z)/(1� z)]+
for 3

S
[8]

1
and [log2(1�z)/(1�z)]+ for 3

P
[8]

J and 3
P

[1]

J [14–
17]. Because these logarithmic corrections are associated
with singularities at the boundary z = 1, we refer to
them as threshold logarithms. Resummation of thresh-
old logarithms is necessary because they can jeopardize
the convergence of perturbation theory.

Soft approximation.—In order to resum the singulari-
ties in the FFs, we obtain an expression for the FFs valid
near z = 1 by using the Grammer-Yennie approximation
for soft gluon attachments to the Q and Q̄ produced from
the fragmenting gluon [5, 7, 18]. We obtain

D
soft

g!QQ̄(z) = 2M(�gµ⌫)Cfrag

����
i

K2 + i"

����
2

⇥

✓
g
µ↵

�
K

µ
n
↵

K+

◆✓
g
⌫�

�
K

⌫
n
�

K+

◆

⇥ h0|T̄ [A�,c
soft

�bc
n ]†�+z T [A

↵,a
soft

�ba
n ]|0i, (4)

where M =
p
P 2, Cfrag = z

d�3
K

+
/[2⇡(N2

c � 1)(d � 2)],
d = 4 � 2✏ is the number of spacetime dimensions,
Nc is the number of colors, n is a lightlike vector de-
fined through K

+ = n · K, |0i is the QCD vacuum,
�k ⌘ �k(1, 0) = P exp[�ig

R1
0

d� k · A
adj(k�)] is a

Wilson line in the adjoint representation defined along
a vector k, with P the path ordering, g the strong cou-
pling, and A the gauge field, T and T̄ are time and anti-
time orderings, respectively, and we use the shorthand
�
+
z ⌘ 2⇡�(n · p̂� (1� z)P+), where p̂ is an operator that
reads o↵ the momentum of the operator to the right. The
operator A

↵,a
soft

represents an arbitrary number of soft-
gluon attachments onto the Q and Q̄ lines in the soft
approximation, and is given by

A
↵,a
soft

= ū(p1)Wp1(1, 0)(�ig�
↵
T

a)W †
p2
(1, 0)v(p2), (5)

where p1 and p2 are the momenta of the Q and Q̄, re-

spectively, and Wk(t0, t) = P exp[�ig
R t0

t d� k · A(k�)] is
a Wilson line in the fundamental representation defined
along a vector k. Note that the operators on the right
and left of the �

+
z are always time ordered and anti-time

ordered, respectively. Hereafter we omit the time and
anti-time ordering symbols in expressions involving �

+
z .

In order to obtain expressions for specific N , we first
expand in powers of the relative momentum q ⌘ (p1 �

p2)/2 and then project onto specific color and angular

momentum states. In the 3
S
[8]

1
case, we set q = 0 in

Eq. (4) to obtain

D
soft

g!QQ̄(3S[8]
1 )

(z) =
Cfrag(d� 2)g2

4m3(d� 1)(N2
c � 1)

S3S[8]
1
(z), (6)

where S3S[8]
1
(z) is the soft function defined by

S3S[8]
1
(z) = h0|[�ca

p �ba
n ]†�+z �

cd
p �bd

n |0i, (7)

with p ⌘ (p1 + p2)/2 = P/2. The factor (d� 1)(N2
c � 1)

in the denominator comes from the normalization of the
LDME. For the 3

P
[8] case, we expand Eq. (4) in powers

of q and retain the contribution linear in q. The expan-
sion of the Wilson line in powers of q can be carried out
by using a straightforward generalization of Polyakov’s
identity [19], which was also used in Ref. [7]. We obtain

D
soft

g!QQ̄(3P [8]
J )

(z) = �
Cfrag(d� 2)g4S3P [8](z)

4m3(d� 1)2(N2
c � 1)

, (8)

where the soft function S3P [8](z) is given by

S3P [8](z) = h0|[Wyx
↵ ]†�+z W

yx
� |0ig↵� , (9)

with

W
yx
� =

Z 1

0

d���yc
p (1,�)pµGb

µ�(p�)d
bcd

⇥ �da
p (�, 0)�xa

n , (10)

where Gµ⌫ = @µA⌫ �@⌫Aµ+ ig[Aµ, A⌫ ] is the QCD field-

strength tensor. Finally, for the 3
P

[1]

J case, we have

D
soft

g!QQ̄(3P [1]
J )

(z) = �
Cfrag(d� 2)g4

4N2
cm

3(d� 1)2
9

(2J + 1)

⇥
⇥
cJS3P [1](z) + c

TT
J S

TT
3P [1](z)

⇤
, (11)

where c0 = (d � 1)�2, c1 = (d � 2)/[2(d � 1)], c2 =
(d�2)(d+1)/[2(d�1)2], cTT

0
= [(d�1)(d�2)]�1, cTT

1
=

�[2(d � 2)]�1, cTT
2

= (d � 3)/[2(d � 1)(d � 2)], and the
soft functions are given by

S3P [1](z) = h0|[W̄b
↵]

†
�
+

z W̄
b
� |0ig

↵�
, (12a)

S
TT
3P [1](z) = h0|[W̄b

↵]
†
�
+

z W̄
b
� |0i

⇥


p
2
n
↵
n
�

(n · p)2
+

g
↵�

d� 1

�
, (12b)

with

W̄
b
� =

Z 1

0

d��p
µ
G

d
µ�(p�)�

da
p (�, 0)�ba

n . (13)

We use the definitions of the color-singlet LDMEs in
Ref. [2], which di↵er from Refs. [17, 20] by a factor of
2Nc. The STT

3P [1](z) term comes from the anisotropic con-
tribution that arises from projecting onto specific J . As
we will see later, the anisotropic contribution will not
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Soft function for 3S1[8]

• Soft functions for individual channels are obtained by nonrelativistic 
expansion and projecting onto spin and color states. 


• The 3S1[8] soft function is given by an adjoint Wilson loop with timelike 
and lightlike segments.


• At tree level,  
 
 
This reproduces the tree-level result

12

FIG. 1: The Wilson line and field-strength tensor configurations for the soft functions for the
3S[8]

1
,

3P [8]
, and

3P [1]

J states for computation at leading nonvanishing order. The double lines are adjoint

eikonal lines, dashed double lines are lightlike Wilson lines, red dashed line is the final-state cut,

and ⌦ represent the field-strength tensor.

channel. The soft function at leading order is computed from

h0|W(3S[8]

1
)cb|0i = �ca�ba = �cb, (102)

so that

S3S
[8]
1
(z) = 2⇡�(P+(1� z))�cb�cb +O(↵s) =

(N2

c � 1)2⇡

P+
�(1� z) +O(↵s). (103)

Dsoft[g ! QQ̄(3S[8]

1
)] =

Cfrag(d� 2)g2

4m3

(N2

c � 1)2⇡

P+
�(1� z) +O(↵s)

=
⇡↵s

m3
�(1� z) +O(↵s). (104)

This reproduces the full result in Eq. (5.13) of arXiv:1208.5301. By using the tree-

level NRQCD matrix element h0|OQQ̄(
3S

[8]
1 )(3S[8]

1
)|0i = (d � 1)(N2

c � 1) [Eq. (6.1c) of

arXiv:1208.5301], we obtain the short-distance coe�cient

dsoft[g ! QQ̄(3S[8]

1
)] =

⇡↵s

m3(d� 1)(N2
c � 1)

�(1� z) +O(↵s). (105)

Now we consider the 3P [8] channel. We have This time, the leading order soft function
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which gives

(�gµ⌫)

✓
gµ↵ �

P µn↵

P+

◆✓
g⌫↵

0
�

P ⌫n↵0

P+

◆X

�

✏⇤S↵(�)✏S↵0(�)

= (�gµ⌫)

✓
gµ↵ �

P µn↵

P+

◆✓
g⌫↵

0
�

P ⌫n↵0

P+

◆✓
�g↵↵0 +

P↵P↵0

P 2

◆

= d� 2. (68)

We define the last line as the soft function for the 3S[8]

1
channel

S3S
[8]
1
(z) ⌘ h0|[W(3S[8]

1
)cb]†2⇡�(n · p̂� P+(1� z))W(3S[8]

1
)cb|0i, (69)

so that we obtain

Dsoft[g ! QQ̄(3S[8]

1
)] =

Cfrag(d� 2)g2

4m3
S3S

[8]
1
(z). (70)

B. 3P [8] channel

Next, we consider the 3P [8] state. The P -wave amplitude at leading order in v is propor-

tional to the term linear in q in the expansion in powers of q. As is known from threshold

expansion of spinors in Braaten and Chen, hep-ph/9610401, the expansion of ū(p1)�µv(p2)

in powers of q does not contain a term linear in q [see Eq. (A9b) of hep-ph/9610401]:

ū(p1)�
µv(p2) = Lµ

j

✓
2Eq⇠

†�j⌘ �
2

Eq +m
qj⇠†(q · �)⌘

◆
, (71)

where L is the Lorentz boost matrix from the QQ̄ rest frame. Hence the Dirac trace part

can be computed in the same way as the 3S[8]

1
case, which is just Eq. (56). The linear term

in q must then come from the nonrelativistic expansion of the Wilson lines.

The expansion of the Wilson line can be done by using the following identity for Wilson

loops. If we consider a closed path C parametrized by x(�) as and vary it infinitesimally by

x(�) ! x(�) ! �x(�), the variation of the Wilson line defined on the path is given by

�P exp


�ig

I

C

d�A↵(x(�))
dx↵(�)

d�

�
= P

I

C

ds exp


�ig

Z �f

s

d�A↵(x(�))
dx↵(�)

d�

�

(�ig)Gµ⌫(x(s))
dx⌫(s)

ds
exp


�ig

Z s

�i

d�0A↵(x(�
0))

dx↵(�0)

d�0

�
�xµ(s), (72)

where C is a closed path in spacetime parametrized by x(�), x(�i) = x(�f ) is an arbitrary

point on the and Gµ⌫ = @µA⌫ � @⌫Aµ + ig[Aµ, A⌫ ] is the QCD field-strength tensor. An
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which gives

W †
p (1, 0)T a0Wp(1, 0) = T c�a0c

p (1, 0). (61)

We will use similar identities in later calculations; for future reference we collect them here:

Wp(�f ,�i) = Wp(�f ,�)Wp(�,�i), (62a)

Wp(�f ,�i)T
aW †

p (�f ,�i) = T b�ba
p (�f ,�i), (62b)

W †
p (�f ,�i)T

aWp(�f ,�i) = �ab
p (�f ,�i)T

b, (62c)

Wp(�f ,�i)W
†
p (�f ,�i) = 1, (62d)

for �f > � > �i.

From this we obtain

trcolor

✓
Wp(1, 0)T aW †

p (1, 0)
q
T�1

F T a0
◆

=
1

p
TF

�ba
p (1, 0)trcolor(T

bT a0)

=
p
TF�

a0a
p (1, 0). (63)

We then obtain

Asoft(
3S[8]

1
) =

p
2TF ig✏

⇤
S
µ�a0a

p (1, 0), (64)

and by plugging this into Eq. (54) we have

Dsoft[g ! QQ̄(3S[8]

1
)] = 2M

����
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+O(↵s)

����
2

Cfrag2TFg
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1
)cb]†2⇡�(n · p̂� P+(1� z))W(3S[8]

1
)cb|0i, (65)

where

W(3S[8]

1
)cb ⌘ T

⇥
�ca

p (1, 0)�ba
n (1, 0)

⇤
. (66)

The polarization sum is evaluated by using

X

�

✏⇤S↵(�)✏S↵0(�) = I↵� ⌘ �g↵� +
P↵P�

P 2
, (67)
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Soft function for 3S1[8]

• 3S1[8] soft function at NLO : 


• The double pole and the associated double log [log(1−z)/(1−z)]+ term come only from the 
planar real and virtual diagrams. The self-energy diagrams only produce single poles.


• The same soft function in the fundamental representation appears in b→q+X, and exactly 
same NLO result is obtained by setting CA → CF.  
Especially, the cusp anomalous dimension 𝛼sCrep/𝜋 1/(1−z)+ is identified from the 
coefficient of the UV pole. 


• The double log term exactly reproduces the same term in the 3S1[8] fragmentation function. 
13

anomalous  
dimension

See e.g. Korchemsky and Sterman, PLB340, 96 (1994)
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Resummation for 3S1[8]

• We can write the double logarithmic correction as


• This is trivially exponentiated : 


• While the exponent diverges like −𝛼sCA/𝜋 log2 N, the exponential vanishes faster than any 
power of N, so that the resummed soft function has a convergent inverse Mellin transform.


• The resummed expression agrees at double logarithmic level with the resummation in the 
soft gluon factorization formalism.

14

Integrate[

Exp[+((pp y z)/(2 x)) - (psq z^2)/(4 x)] x^(-d/2) //. {pp :>

Sqrt[psq/2]}, {x, 0, Infinity}]

Integrate[Normal[%], {y, 0, Infinity}]

Integrate[Normal[%] //. {d :> 4 - 2 ep}, {z, 0, 1}]

Integrate[Normal[%%] //. {d :> 4 - 2 ep}, {z, 1, Infinity}]

The result is
Z

ddk

(2⇡)d
1
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This exactly cancels the mixed double pole 1/(✏UV✏IR) in the real correction, hence the UV

poles are free of IR divergences.

We will show later that all other diagrams do not produce double poles, and hence cannot

contribute to leading threshold logarithms.

3. Resummation of threshold logarithms
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We note that the one-loop correction diagrams that contribute to the threshold double loga-

rithm are topologically factorized. This lets us easily exponentiate the threshold logarithms
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Soft function for 3PJ[8]

• Similarly, we obtain the 3PJ[8] soft function by nonrelativistic expansion and 
projecting onto spin and color states.


• The 3PJ[8] soft function involves field-strength insertions onto the timelike 
Wilson lines. The leading order result is 


• From the identity  
 
we reproduce the 1/(1−z)+ term in the 3PJ[8] fragmentation function.

15

3

produce double logarithmic contributions and can be ne-
glected in this work.

The results in Eqs. (6), (8), and (11) reproduce the
leading singularities of the FFs at z = 1, which are con-
tained in the soft functions. We can verify this at LO by
computing the SN at leading nonvanishing order:
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and S
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it is easy to show that the D
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g!QQ̄(N )
(z) reproduce the

singular distributions in the LO FFs [11–13]. Note that
the anisotropic term S

TT
3P [1] at leading order does not pro-

duce singular distributions because it contains an explicit
factor of ✏.

Radiative corrections to soft functions.—We now com-
pute the double logarithms in the soft functions at NLO,
which come from contributions involving double poles in
✏. We first consider S3S[8]

1
(z). By explicit calculation

we can show that in Feynman gauge, the double loga-
rithms come from NLO diagrams where an additional
gluon is exchanged between the timelike and lightlike
Wilson lines. The result is
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where CA = Nc, and we neglect any contributions that
do not produce double logarithms. The contribution in
the first line comes from the real diagram where the gluon
crosses the cut, while the remaining terms come from the
virtual diagram. By using the identity in Eq. (15), we ob-
tain the expression for the double logarithmic correction
to S3S[8]

1
at NLO given by
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This reproduces the double logarithmic term [log(1 �

z)/(1� z)]+ in the 3
S
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1
FF at NLO [14–16].

Similarly to the 3
S
[8]

1
case, double logarithmic correc-

tions to the 3
P

[8] and 3
P

[1] soft functions arise only from
planar diagrams where an additional gluon is exchanged
between the timelike Wilson line �p(�, 0) and the light-
like Wilson line. The result is
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where we neglect any contribution that do not produce
any double logarithmic corrections. Again, by using
Eq. (15) we can check that the double logarithmic term
[log2(1�z)/(1�z)]+ agrees with the explicit NLO calcu-
lation of the FFs in Ref. [17]. Similarly to the LO case,
the anisotropic contribution S

TT
3P [1] does not produce dou-

ble logarithmic singularities at NLO because it contains
an explicit factor of ✏.
Resummation.—It is straightforward to resum the dou-

ble logarithmic corrections to all orders in perturbation
theory, by using the fact that they arise from planar di-
agrams that can be exponentiated in Mellin space [21]:
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By expanding Eq. (19) in powers of ↵s we reproduce the
double logarithmic corrections at NLO. The resummed
expressions for the FFs can be obtained in the same way.
At NLO accuracy, the resummed FFs can be written as
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where the last term in the parenthesis subtracts the dou-
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NLO accuracy to avoid double counting. Note that be-
cause the factor exp[JN

N ] vanishes as N ! 1 faster than
any power of N , the inverse Mellin transform yields reg-
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gluon factorization formalism in Ref. [4] at double loga-
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where CA = Nc, and we neglect any contributions that
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[log2(1�z)/(1�z)]+ agrees with the explicit NLO calcu-
lation of the FFs in Ref. [17]. Similarly to the LO case,
the anisotropic contribution S

TT
3P [1] does not produce dou-

ble logarithmic singularities at NLO because it contains
an explicit factor of ✏.
Resummation.—It is straightforward to resum the dou-

ble logarithmic corrections to all orders in perturbation
theory, by using the fact that they arise from planar di-
agrams that can be exponentiated in Mellin space [21]:
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By expanding Eq. (19) in powers of ↵s we reproduce the
double logarithmic corrections at NLO. The resummed
expressions for the FFs can be obtained in the same way.
At NLO accuracy, the resummed FFs can be written as
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where the last term in the parenthesis subtracts the dou-
ble logarithmic correction term in the D̃
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(N) at

NLO accuracy to avoid double counting. Note that be-
cause the factor exp[JN

N ] vanishes as N ! 1 faster than
any power of N , the inverse Mellin transform yields reg-
ular functions in z that vanish at z = 1. The resummed
expression for 3

S
[8]

1
agrees with the calculation in the soft

gluon factorization formalism in Ref. [4] at double loga-

rithmic level. The resummed results for 3
P

[8]

J and 3
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[1]

J
are new.

In the last line we used trcolor({T b, T c
}T d) = TFdbcd and TF = 1/2. Note that dbcdpµGb

µ⌫(p�)

is a rank-2 tensor in the adjoint representation of SU(Nc), and is a Lorentz vector that

is orthogonal to p. By using this result we obtain the fragmentation function in the soft

approximation
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C. 3P
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J channel

Finally, we consider the 3P [1]

J state. The calculation is similar to the 3P [8] state, except

that the color-octet projector
q
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F T a0 replaced by the color-singlet projector
p
N�1

c . We
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Field-strength tensors
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Resummation for 3PJ[8]

• The double logarithmic corrections come from planar 
real and virtual diagrams.


• From the identity  
 
we obtain the same                                      term in the 3PJ[8] fragmentation function.


• Again the double logarithm is trivially exponentiated:

16

3

produce double logarithmic contributions and can be ne-
glected in this work.

The results in Eqs. (6), (8), and (11) reproduce the
leading singularities of the FFs at z = 1, which are con-
tained in the soft functions. We can verify this at LO by
computing the SN at leading nonvanishing order:

S
LO

3S[8]
1

(z) =
2⇡(N2

c � 1)

P+
�(1� z), (14a)

S
LO
3P [8](z) = �

(d� 2)4BF (N2
c � 1)�(1 + ✏)

2⇡1�✏m2P+(1� z)1+2✏
, (14b)

S
LO
3P [1](z) = �

(d� 2)(N2
c � 1)�(1 + ✏)

2⇡1�✏m2P+(1� z)1+2✏
, (14c)

S
TT,LO
3P [1] (z) =

(N2
c � 1)✏(1� ✏)(1� 2✏)�(1 + ✏)

3(3� 2✏)⇡1�✏m2P+(1� z)1+2✏
, (14d)

where BF = (N2
c � 4)/(4Nc). Note that S

LO
3P [8] , S

LO
3P [1] ,

and S
TT,LO
3P [1] come from diagrams where a single gluon

is exchanged between the two field-strength tensors. By
using the identity

1

(1� z)1+n✏
= �

1

n✏IR
�(1� z) +


1

(1� z)1+n✏

�

+

, (15)

it is easy to show that the D
soft

g!QQ̄(N )
(z) reproduce the

singular distributions in the LO FFs [11–13]. Note that
the anisotropic term S

TT
3P [1] at leading order does not pro-

duce singular distributions because it contains an explicit
factor of ✏.

Radiative corrections to soft functions.—We now com-
pute the double logarithms in the soft functions at NLO,
which come from contributions involving double poles in
✏. We first consider S3S[8]

1
(z). By explicit calculation

we can show that in Feynman gauge, the double loga-
rithms come from NLO diagrams where an additional
gluon is exchanged between the timelike and lightlike
Wilson lines. The result is

S
NLO

3S[8]
1

(z) =
2↵sCA(N2
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P+(1� z)1+2✏

✓
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�(1� z)
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⇥

✓
1

✏UV

�
1

✏IR

◆
+ · · · , (16)

where CA = Nc, and we neglect any contributions that
do not produce double logarithms. The contribution in
the first line comes from the real diagram where the gluon
crosses the cut, while the remaining terms come from the
virtual diagram. By using the identity in Eq. (15), we ob-
tain the expression for the double logarithmic correction
to S3S[8]

1
at NLO given by

S
NLO

3S[8]
1

(z) =
2⇡(N2

c � 1)

P+
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⇢
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�

+

+ · · ·

�
. (17)

This reproduces the double logarithmic term [log(1 �

z)/(1� z)]+ in the 3
S
[8]

1
FF at NLO [14–16].

Similarly to the 3
S
[8]

1
case, double logarithmic correc-

tions to the 3
P

[8] and 3
P

[1] soft functions arise only from
planar diagrams where an additional gluon is exchanged
between the timelike Wilson line �p(�, 0) and the light-
like Wilson line. The result is

S
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2⇡m2[P+(1� z)]1+4✏
+ · · · , (18b)

where we neglect any contribution that do not produce
any double logarithmic corrections. Again, by using
Eq. (15) we can check that the double logarithmic term
[log2(1�z)/(1�z)]+ agrees with the explicit NLO calcu-
lation of the FFs in Ref. [17]. Similarly to the LO case,
the anisotropic contribution S

TT
3P [1] does not produce dou-

ble logarithmic singularities at NLO because it contains
an explicit factor of ✏.
Resummation.—It is straightforward to resum the dou-

ble logarithmic corrections to all orders in perturbation
theory, by using the fact that they arise from planar di-
agrams that can be exponentiated in Mellin space [21]:
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resum
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N (N), (19)

where J
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N is given at leading double logarithmic level by
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N
3P [1] =

4

3
J
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. (20b)

By expanding Eq. (19) in powers of ↵s we reproduce the
double logarithmic corrections at NLO. The resummed
expressions for the FFs can be obtained in the same way.
At NLO accuracy, the resummed FFs can be written as
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where the last term in the parenthesis subtracts the dou-
ble logarithmic correction term in the D̃

FO

g!QQ̄(N )
(N) at

NLO accuracy to avoid double counting. Note that be-
cause the factor exp[JN

N ] vanishes as N ! 1 faster than
any power of N , the inverse Mellin transform yields reg-
ular functions in z that vanish at z = 1. The resummed
expression for 3

S
[8]

1
agrees with the calculation in the soft

gluon factorization formalism in Ref. [4] at double loga-

rithmic level. The resummed results for 3
P

[8]

J and 3
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[1]

J
are new.

3

produce double logarithmic contributions and can be ne-
glected in this work.

The results in Eqs. (6), (8), and (11) reproduce the
leading singularities of the FFs at z = 1, which are con-
tained in the soft functions. We can verify this at LO by
computing the SN at leading nonvanishing order:

S
LO

3S[8]
1

(z) =
2⇡(N2

c � 1)

P+
�(1� z), (14a)

S
LO
3P [8](z) = �

(d� 2)4BF (N2
c � 1)�(1 + ✏)

2⇡1�✏m2P+(1� z)1+2✏
, (14b)

S
LO
3P [1](z) = �

(d� 2)(N2
c � 1)�(1 + ✏)

2⇡1�✏m2P+(1� z)1+2✏
, (14c)

S
TT,LO
3P [1] (z) =

(N2
c � 1)✏(1� ✏)(1� 2✏)�(1 + ✏)

3(3� 2✏)⇡1�✏m2P+(1� z)1+2✏
, (14d)

where BF = (N2
c � 4)/(4Nc). Note that S

LO
3P [8] , S

LO
3P [1] ,

and S
TT,LO
3P [1] come from diagrams where a single gluon

is exchanged between the two field-strength tensors. By
using the identity

1

(1� z)1+n✏
= �

1

n✏IR
�(1� z) +


1

(1� z)1+n✏

�

+

, (15)

it is easy to show that the D
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singular distributions in the LO FFs [11–13]. Note that
the anisotropic term S
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3P [1] at leading order does not pro-

duce singular distributions because it contains an explicit
factor of ✏.

Radiative corrections to soft functions.—We now com-
pute the double logarithms in the soft functions at NLO,
which come from contributions involving double poles in
✏. We first consider S3S[8]
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(z). By explicit calculation

we can show that in Feynman gauge, the double loga-
rithms come from NLO diagrams where an additional
gluon is exchanged between the timelike and lightlike
Wilson lines. The result is
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where CA = Nc, and we neglect any contributions that
do not produce double logarithms. The contribution in
the first line comes from the real diagram where the gluon
crosses the cut, while the remaining terms come from the
virtual diagram. By using the identity in Eq. (15), we ob-
tain the expression for the double logarithmic correction
to S3S[8]

1
at NLO given by
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This reproduces the double logarithmic term [log(1 �
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where we neglect any contribution that do not produce
any double logarithmic corrections. Again, by using
Eq. (15) we can check that the double logarithmic term
[log2(1�z)/(1�z)]+ agrees with the explicit NLO calcu-
lation of the FFs in Ref. [17]. Similarly to the LO case,
the anisotropic contribution S

TT
3P [1] does not produce dou-

ble logarithmic singularities at NLO because it contains
an explicit factor of ✏.
Resummation.—It is straightforward to resum the dou-

ble logarithmic corrections to all orders in perturbation
theory, by using the fact that they arise from planar di-
agrams that can be exponentiated in Mellin space [21]:
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By expanding Eq. (19) in powers of ↵s we reproduce the
double logarithmic corrections at NLO. The resummed
expressions for the FFs can be obtained in the same way.
At NLO accuracy, the resummed FFs can be written as
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where the last term in the parenthesis subtracts the dou-
ble logarithmic correction term in the D̃

FO

g!QQ̄(N )
(N) at

NLO accuracy to avoid double counting. Note that be-
cause the factor exp[JN

N ] vanishes as N ! 1 faster than
any power of N , the inverse Mellin transform yields reg-
ular functions in z that vanish at z = 1. The resummed
expression for 3

S
[8]

1
agrees with the calculation in the soft

gluon factorization formalism in Ref. [4] at double loga-

rithmic level. The resummed results for 3
P

[8]

J and 3
P

[1]

J
are new.

2

a nonzero constant as N ! 1, while D̃
LO

g!QQ̄(3P [8]
J )

(N)

and D̃
LO

g!QQ̄(3P [1]
J )

(N) diverge like logN , which imply

that the fragmentation functions for these states involve
singular distributions such as delta functions and plus
distributions [11–13]. Moreover, these singularities are
exacerbated by radiative corrections; the NLO correc-
tions involve double logarithms in N that are propor-
tional to ↵s log

2
N times the leading-order result, which

correspond to the plus distributions [log(1� z)/(1� z)]+
for 3

S
[8]

1
and [log2(1�z)/(1�z)]+ for 3

P
[8]

J and 3
P

[1]

J [14–
17]. Because these logarithmic corrections are associated
with singularities at the boundary z = 1, we refer to
them as threshold logarithms. Resummation of thresh-
old logarithms is necessary because they can jeopardize
the convergence of perturbation theory.

Soft approximation.—In order to resum the singulari-
ties in the FFs, we obtain an expression for the FFs valid
near z = 1 by using the Grammer-Yennie approximation
for soft gluon attachments to the Q and Q̄ produced from
the fragmenting gluon [5, 7, 18]. We obtain

D
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g!QQ̄(z) = 2M(�gµ⌫)Cfrag
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�ba
n ]|0i, (4)

where M =
p
P 2, Cfrag = z

d�3
K

+
/[2⇡(N2

c � 1)(d � 2)],
d = 4 � 2✏ is the number of spacetime dimensions,
Nc is the number of colors, n is a lightlike vector de-
fined through K

+ = n · K, |0i is the QCD vacuum,
�k ⌘ �k(1, 0) = P exp[�ig

R1
0

d� k · A
adj(k�)] is a

Wilson line in the adjoint representation defined along
a vector k, with P the path ordering, g the strong cou-
pling, and A the gauge field, T and T̄ are time and anti-
time orderings, respectively, and we use the shorthand
�
+
z ⌘ 2⇡�(n · p̂� (1� z)P+), where p̂ is an operator that
reads o↵ the momentum of the operator to the right. The
operator A

↵,a
soft

represents an arbitrary number of soft-
gluon attachments onto the Q and Q̄ lines in the soft
approximation, and is given by

A
↵,a
soft

= ū(p1)Wp1(1, 0)(�ig�
↵
T

a)W †
p2
(1, 0)v(p2), (5)

where p1 and p2 are the momenta of the Q and Q̄, re-

spectively, and Wk(t0, t) = P exp[�ig
R t0

t d� k · A(k�)] is
a Wilson line in the fundamental representation defined
along a vector k. Note that the operators on the right
and left of the �

+
z are always time ordered and anti-time

ordered, respectively. Hereafter we omit the time and
anti-time ordering symbols in expressions involving �

+
z .

In order to obtain expressions for specific N , we first
expand in powers of the relative momentum q ⌘ (p1 �

p2)/2 and then project onto specific color and angular

momentum states. In the 3
S
[8]

1
case, we set q = 0 in

Eq. (4) to obtain

D
soft

g!QQ̄(3S[8]
1 )

(z) =
Cfrag(d� 2)g2

4m3(d� 1)(N2
c � 1)

S3S[8]
1
(z), (6)

where S3S[8]
1
(z) is the soft function defined by

S3S[8]
1
(z) = h0|[�ca

p �ba
n ]†�+z �

cd
p �bd

n |0i, (7)

with p ⌘ (p1 + p2)/2 = P/2. The factor (d� 1)(N2
c � 1)

in the denominator comes from the normalization of the
LDME. For the 3

P
[8] case, we expand Eq. (4) in powers

of q and retain the contribution linear in q. The expan-
sion of the Wilson line in powers of q can be carried out
by using a straightforward generalization of Polyakov’s
identity [19], which was also used in Ref. [7]. We obtain

D
soft

g!QQ̄(3P [8]
J )

(z) = �
Cfrag(d� 2)g4S3P [8](z)

4m3(d� 1)2(N2
c � 1)

, (8)

where the soft function S3P [8](z) is given by

S3P [8](z) = h0|[Wyx
↵ ]†�+z W

yx
� |0ig↵� , (9)

with

W
yx
� =

Z 1

0

d���yc
p (1,�)pµGb

µ�(p�)d
bcd

⇥ �da
p (�, 0)�xa

n , (10)

where Gµ⌫ = @µA⌫ �@⌫Aµ+ ig[Aµ, A⌫ ] is the QCD field-

strength tensor. Finally, for the 3
P

[1]

J case, we have

D
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4N2
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3(d� 1)2
9

(2J + 1)

⇥
⇥
cJS3P [1](z) + c

TT
J S
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3P [1](z)

⇤
, (11)

where c0 = (d � 1)�2, c1 = (d � 2)/[2(d � 1)], c2 =
(d�2)(d+1)/[2(d�1)2], cTT

0
= [(d�1)(d�2)]�1, cTT

1
=

�[2(d � 2)]�1, cTT
2

= (d � 3)/[2(d � 1)(d � 2)], and the
soft functions are given by
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, (12a)
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3P [1](z) = h0|[W̄b
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†
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+

z W̄
b
� |0i
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p
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�
, (12b)

with

W̄
b
� =

Z 1

0

d��p
µ
G

d
µ�(p�)�

da
p (�, 0)�ba

n . (13)

We use the definitions of the color-singlet LDMEs in
Ref. [2], which di↵er from Refs. [17, 20] by a factor of
2Nc. The STT

3P [1](z) term comes from the anisotropic con-
tribution that arises from projecting onto specific J . As
we will see later, the anisotropic contribution will not
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Resummation for 3PJ[1]

• The soft function for 3PJ[1] is almost identical to the  
3PJ[8]  case, except for final-state color. 


• The resummation is carried out in the same way :


• There is an additional soft function arising from the anisotropic contribution that produces 
J-dependent single logarithms; this can be discarded at the double logarithmic level. 


• The 3PJ[1] soft function is essentially equivalent to the 𝜒cJ shape function. 
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following forms of higher dimensional matrix elements [18–20]:
1

d� 1
h�

†(� i
2

 !
D · �) P�Q0(l ·D)n †(� i

2

 !
D · �)�i, (2.3a)

h�
†
�
i
T
a
 �†ab

` (0)P�Q0(l ·D)n�bc
` (0) 

†
�
i
T
c
�i, (2.3b)

where the derivatives D act to the right and n is a positive integer. The operators involving
derivatives on the left of the projector P�Q0 can be obtained by using Hermitian conjugation
and the invariance of the vacuum. Note that matrix elements of this kind do not appear in
exclusive production due to conservation of energy and momentum. As have been shown
in refs. [21, 22], near the boundary of phase space, contributions from the above matrix
elements associated with a lightlike momentum l collinear to the quarkonium momentum
P become enhanced. These matrix elements can be obtained from moments of the “shape
functions” defined by

S
�Q0

3P
[1]
0

(l+) =
1

d� 1
h�

†(� i
2

 !
D · �) P�Q0�(l+ � iD+) 

†(� i
2

 !
D · �)�i, (2.4a)

S
�Q0

3S
[8]
1

(l+) = h�†
�
i
T
a
 �†ab

` (0)P�Q0�(l+ � iD+)�
bc
` (0) 

†
�
i
T
c
�i, (2.4b)

where �(x) is the Dirac delta function, and the + direction is defined along the quarko-
nium momentum P . We take the convention l± = l0 ± lz, where lz = P · l/|P | in the
frame where the quarkonium three-momentum P is nonzero. From the above definitions,
it is evident that they are formally normalized by

R1
0 dl+S

�Q0

3P
[1]
0

(l+) = hO�Q0(3P [1]
0 )i and

R1
0 dl+S

�Q0

3S
[8]
1

(l+) = hO�Q0(3S[8]
1 )i. The shape functions defined in eqs. (2.4) can be inter-

preted as the probabilities for a QQ̄ to evolve into a quarkonium after emitting soft particles
with total momentum l. The requirement that NRQCD factorization holds after inclusion
of the higher dimensional matrix elements in eqs. (2.3) constrains the shape functions to be
defined only for l+ > 0. This is because a negative l+, corresponding to the case where the
QQ̄ absorbs energy before evolving into a quarkonium, implies that the soft interactions
between the QQ̄ and the environment are not disentangled, and factorization is explicitly
broken [33].

While the lightlike direction ` of the gauge-completion Wilson line is arbitrarily chosen
in the definition of the color-octet matrix element, its origin is the direction of the heavy
quarkonium momentum in a boosted frame such as the hadron CM frame [30, 31], just
like the direction of the lightlike momentum l. Although the gauge-completion Wilson line
will not play a role in the phenomenological analysis of �QJ production at NLO accuracy,
because diagrams that involve the gauge-completion Wilson line begin to appear from two
loops [30–32, 34], for definiteness we will take the direction ` to be the same as l.

The factorization assumption leads to the following form of the factorization formula
for the shape function formalism

�[�QJ(P )] = (2J + 1)

Z 1

0
dl+


s3P

[1]
J
(P + l)S

�Q0

3P
[1]
0

(l+) + s3S
[8]
1
(P + l)S

�Q0

3S
[8]
1

(l+)

�
, (2.5)

where the sN (P + l) are the short-distance coefficients in the shape function formalism,
which must be functions of the QQ̄ momentum P + l. This follows from the fact that the

– 5 –
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Resummation
• The resummed formula for the fragmentation function is 

 
 
 
 
 
 
 
 
 
All double logarithms are accounted for by the resummed exponential. The subtraction 
term removes the double log in fixed-order NLO expression to avoid double counting.


• While the exponent diverges double logarithmically, the resummed exponential vanishes 
faster than any power of N, so that the resummed soft function has a convergent 
inverse Mellin transform.
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3

produce double logarithmic contributions and can be ne-
glected in this work.

The results in Eqs. (6), (8), and (11) reproduce the
leading singularities of the FFs at z = 1, which are con-
tained in the soft functions. We can verify this at LO by
computing the SN at leading nonvanishing order:

S
LO

3S[8]
1

(z) =
2⇡(N2

c � 1)

P+
�(1� z), (14a)

S
LO
3P [8](z) = �

(d� 2)4BF (N2
c � 1)�(1 + ✏)

2⇡1�✏m2P+(1� z)1+2✏
, (14b)

S
LO
3P [1](z) = �

(d� 2)(N2
c � 1)�(1 + ✏)

2⇡1�✏m2P+(1� z)1+2✏
, (14c)

S
TT,LO
3P [1] (z) =

(N2
c � 1)✏(1� ✏)(1� 2✏)�(1 + ✏)

3(3� 2✏)⇡1�✏m2P+(1� z)1+2✏
, (14d)

where BF = (N2
c � 4)/(4Nc). Note that S

LO
3P [8] , S

LO
3P [1] ,

and S
TT,LO
3P [1] come from diagrams where a single gluon

is exchanged between the two field-strength tensors. By
using the identity

1

(1� z)1+n✏
= �

1

n✏IR
�(1� z) +


1

(1� z)1+n✏

�

+

, (15)

it is easy to show that the D
soft

g!QQ̄(N )
(z) reproduce the

singular distributions in the LO FFs [11–13]. Note that
the anisotropic term S

TT
3P [1] at leading order does not pro-

duce singular distributions because it contains an explicit
factor of ✏.

Radiative corrections to soft functions.—We now com-
pute the double logarithms in the soft functions at NLO,
which come from contributions involving double poles in
✏. We first consider S3S[8]

1
(z). By explicit calculation

we can show that in Feynman gauge, the double loga-
rithms come from NLO diagrams where an additional
gluon is exchanged between the timelike and lightlike
Wilson lines. The result is

S
NLO

3S[8]
1

(z) =
2↵sCA(N2

c � 1)

P+(1� z)1+2✏

✓
1

✏UV

+O(✏0)

◆

�
↵sCA(N2

c � 1)

P+
�(1� z)

1

✏UV

⇥

✓
1

✏UV

�
1

✏IR

◆
+ · · · , (16)

where CA = Nc, and we neglect any contributions that
do not produce double logarithms. The contribution in
the first line comes from the real diagram where the gluon
crosses the cut, while the remaining terms come from the
virtual diagram. By using the identity in Eq. (15), we ob-
tain the expression for the double logarithmic correction
to S3S[8]

1
at NLO given by

S
NLO

3S[8]
1

(z) =
2⇡(N2

c � 1)

P+

↵sCA

⇡

⇢
��(1� z)

2✏2
UV

+
1

✏UV(1� z)+

+


�2 log(1� z)

1� z

�

+

+ · · ·

�
. (17)

This reproduces the double logarithmic term [log(1 �

z)/(1� z)]+ in the 3
S
[8]

1
FF at NLO [14–16].

Similarly to the 3
S
[8]

1
case, double logarithmic correc-

tions to the 3
P

[8] and 3
P

[1] soft functions arise only from
planar diagrams where an additional gluon is exchanged
between the timelike Wilson line �p(�, 0) and the light-
like Wilson line. The result is

S
NLO
3P [8](z) =

↵sCA

⇡

4BF (N2
c � 1)✏�2

UV

2⇡m2[P+(1� z)]1+4✏
+ · · · , (18a)

S
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3P [1](z) =

↵sCA

⇡

(N2
c � 1)✏�2

UV

2⇡m2[P+(1� z)]1+4✏
+ · · · , (18b)

where we neglect any contribution that do not produce
any double logarithmic corrections. Again, by using
Eq. (15) we can check that the double logarithmic term
[log2(1�z)/(1�z)]+ agrees with the explicit NLO calcu-
lation of the FFs in Ref. [17]. Similarly to the LO case,
the anisotropic contribution S

TT
3P [1] does not produce dou-

ble logarithmic singularities at NLO because it contains
an explicit factor of ✏.
Resummation.—It is straightforward to resum the dou-

ble logarithmic corrections to all orders in perturbation
theory, by using the fact that they arise from planar di-
agrams that can be exponentiated in Mellin space [21]:

S̃
resum

N (N) = exp
⇥
J
N
N
⇤
S̃
LO

N (N), (19)

where J
N
N is given at leading double logarithmic level by

J
N
3S[8]

1

=
↵sCA

⇡

Z
1

0

dz z
N�1


�2 log(1� z)

1� z

�

+

, (20a)

J
N
3P [8] = J

N
3P [1] =

4

3
J
N
3S[8]

1

. (20b)

By expanding Eq. (19) in powers of ↵s we reproduce the
double logarithmic corrections at NLO. The resummed
expressions for the FFs can be obtained in the same way.
At NLO accuracy, the resummed FFs can be written as

D̃
resum

g!QQ̄(N )
(N) = exp

⇥
J
N
N
⇤
⇥

✓
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FO

g!QQ̄(N )
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N D̃
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g!QQ̄(N )
(N)

◆
, (21)

where the last term in the parenthesis subtracts the dou-
ble logarithmic correction term in the D̃

FO

g!QQ̄(N )
(N) at

NLO accuracy to avoid double counting. Note that be-
cause the factor exp[JN

N ] vanishes as N ! 1 faster than
any power of N , the inverse Mellin transform yields reg-
ular functions in z that vanish at z = 1. The resummed
expression for 3

S
[8]

1
agrees with the calculation in the soft

gluon factorization formalism in Ref. [4] at double loga-

rithmic level. The resummed results for 3
P

[8]

J and 3
P

[1]

J
are new.
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produce double logarithmic contributions and can be ne-
glected in this work.

The results in Eqs. (6), (8), and (11) reproduce the
leading singularities of the FFs at z = 1, which are con-
tained in the soft functions. We can verify this at LO by
computing the SN at leading nonvanishing order:
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(z) =
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where BF = (N2
c � 4)/(4Nc). Note that S
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3P [8] , S
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and S
TT,LO
3P [1] come from diagrams where a single gluon

is exchanged between the two field-strength tensors. By
using the identity
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(1� z)1+n✏

�

+

, (15)

it is easy to show that the D
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g!QQ̄(N )
(z) reproduce the

singular distributions in the LO FFs [11–13]. Note that
the anisotropic term S

TT
3P [1] at leading order does not pro-

duce singular distributions because it contains an explicit
factor of ✏.

Radiative corrections to soft functions.—We now com-
pute the double logarithms in the soft functions at NLO,
which come from contributions involving double poles in
✏. We first consider S3S[8]

1
(z). By explicit calculation

we can show that in Feynman gauge, the double loga-
rithms come from NLO diagrams where an additional
gluon is exchanged between the timelike and lightlike
Wilson lines. The result is
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where CA = Nc, and we neglect any contributions that
do not produce double logarithms. The contribution in
the first line comes from the real diagram where the gluon
crosses the cut, while the remaining terms come from the
virtual diagram. By using the identity in Eq. (15), we ob-
tain the expression for the double logarithmic correction
to S3S[8]

1
at NLO given by
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This reproduces the double logarithmic term [log(1 �

z)/(1� z)]+ in the 3
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FF at NLO [14–16].

Similarly to the 3
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case, double logarithmic correc-

tions to the 3
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[8] and 3
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[1] soft functions arise only from
planar diagrams where an additional gluon is exchanged
between the timelike Wilson line �p(�, 0) and the light-
like Wilson line. The result is
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where we neglect any contribution that do not produce
any double logarithmic corrections. Again, by using
Eq. (15) we can check that the double logarithmic term
[log2(1�z)/(1�z)]+ agrees with the explicit NLO calcu-
lation of the FFs in Ref. [17]. Similarly to the LO case,
the anisotropic contribution S

TT
3P [1] does not produce dou-

ble logarithmic singularities at NLO because it contains
an explicit factor of ✏.
Resummation.—It is straightforward to resum the dou-

ble logarithmic corrections to all orders in perturbation
theory, by using the fact that they arise from planar di-
agrams that can be exponentiated in Mellin space [21]:
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By expanding Eq. (19) in powers of ↵s we reproduce the
double logarithmic corrections at NLO. The resummed
expressions for the FFs can be obtained in the same way.
At NLO accuracy, the resummed FFs can be written as
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where the last term in the parenthesis subtracts the dou-
ble logarithmic correction term in the D̃
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(N) at

NLO accuracy to avoid double counting. Note that be-
cause the factor exp[JN

N ] vanishes as N ! 1 faster than
any power of N , the inverse Mellin transform yields reg-
ular functions in z that vanish at z = 1. The resummed
expression for 3

S
[8]
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agrees with the calculation in the soft

gluon factorization formalism in Ref. [4] at double loga-

rithmic level. The resummed results for 3
P

[8]

J and 3
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J
are new.

3

produce double logarithmic contributions and can be ne-
glected in this work.

The results in Eqs. (6), (8), and (11) reproduce the
leading singularities of the FFs at z = 1, which are con-
tained in the soft functions. We can verify this at LO by
computing the SN at leading nonvanishing order:
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c � 4)/(4Nc). Note that S
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and S
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3P [1] come from diagrams where a single gluon
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using the identity
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it is easy to show that the D
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g!QQ̄(N )
(z) reproduce the

singular distributions in the LO FFs [11–13]. Note that
the anisotropic term S

TT
3P [1] at leading order does not pro-

duce singular distributions because it contains an explicit
factor of ✏.

Radiative corrections to soft functions.—We now com-
pute the double logarithms in the soft functions at NLO,
which come from contributions involving double poles in
✏. We first consider S3S[8]

1
(z). By explicit calculation

we can show that in Feynman gauge, the double loga-
rithms come from NLO diagrams where an additional
gluon is exchanged between the timelike and lightlike
Wilson lines. The result is
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where CA = Nc, and we neglect any contributions that
do not produce double logarithms. The contribution in
the first line comes from the real diagram where the gluon
crosses the cut, while the remaining terms come from the
virtual diagram. By using the identity in Eq. (15), we ob-
tain the expression for the double logarithmic correction
to S3S[8]

1
at NLO given by
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This reproduces the double logarithmic term [log(1 �

z)/(1� z)]+ in the 3
S
[8]

1
FF at NLO [14–16].

Similarly to the 3
S
[8]

1
case, double logarithmic correc-

tions to the 3
P

[8] and 3
P

[1] soft functions arise only from
planar diagrams where an additional gluon is exchanged
between the timelike Wilson line �p(�, 0) and the light-
like Wilson line. The result is
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↵sCA

⇡

4BF (N2
c � 1)✏�2

UV

2⇡m2[P+(1� z)]1+4✏
+ · · · , (18a)

S
NLO
3P [1](z) =

↵sCA

⇡

(N2
c � 1)✏�2

UV

2⇡m2[P+(1� z)]1+4✏
+ · · · , (18b)

where we neglect any contribution that do not produce
any double logarithmic corrections. Again, by using
Eq. (15) we can check that the double logarithmic term
[log2(1�z)/(1�z)]+ agrees with the explicit NLO calcu-
lation of the FFs in Ref. [17]. Similarly to the LO case,
the anisotropic contribution S

TT
3P [1] does not produce dou-

ble logarithmic singularities at NLO because it contains
an explicit factor of ✏.
Resummation.—It is straightforward to resum the dou-

ble logarithmic corrections to all orders in perturbation
theory, by using the fact that they arise from planar di-
agrams that can be exponentiated in Mellin space [21]:

S̃
resum

N (N) = exp
⇥
J
N
N
⇤
S̃
LO

N (N), (19)

where J
N
N is given at leading double logarithmic level by

J
N
3S[8]

1

=
↵sCA

⇡

Z
1

0

dz z
N�1


�2 log(1� z)

1� z

�

+

, (20a)

J
N
3P [8] = J

N
3P [1] =

4

3
J
N
3S[8]

1

. (20b)

By expanding Eq. (19) in powers of ↵s we reproduce the
double logarithmic corrections at NLO. The resummed
expressions for the FFs can be obtained in the same way.
At NLO accuracy, the resummed FFs can be written as

D̃
resum

g!QQ̄(N )
(N) = exp

⇥
J
N
N
⇤
⇥

✓
D̃

FO

g!QQ̄(N )
(N)

� J
N
N D̃

LO

g!QQ̄(N )
(N)

◆
, (21)

where the last term in the parenthesis subtracts the dou-
ble logarithmic correction term in the D̃

FO

g!QQ̄(N )
(N) at

NLO accuracy to avoid double counting. Note that be-
cause the factor exp[JN

N ] vanishes as N ! 1 faster than
any power of N , the inverse Mellin transform yields reg-
ular functions in z that vanish at z = 1. The resummed
expression for 3

S
[8]

1
agrees with the calculation in the soft

gluon factorization formalism in Ref. [4] at double loga-

rithmic level. The resummed results for 3
P

[8]

J and 3
P

[1]

J
are new.

Fixed-order NLO
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Fragmentation Functions
• The resummed fragmentation functions are 

now smooth functions that vanish at z = 1.


• The resummed fragmentation functions are 
semi-positive definite, which ensures 
positivity of cross sections.  
This essentially resolves the negative 
cross section problem. 

• The polarized fragmentation functions lead 
to the estimate  
for direct J/𝝍 and 𝝍(2S) polarization at 
pT=100 GeV at midrapidity. 
Shapes of transverse and longitudinal FFs 
suggest very slow rise of 𝜆𝜃 with pT.
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FIG. 1. Gluon FFs with resummed threshold double loga-
rithms times z3 for production of J/ (top) and �cJ (bottom)
for J = 1 and 2. Central values of FO results are also shown
for comparison. BrJ ⌘ Br�cJ!J/ +� is the branching frac-
tion for decays of �cJ into J/ + �.

Numerical results.— We now show the numerical re-
sults for the resummed FFs. We work with FFs
for production of quarkonium Q written in terms of
Di!QQ̄(N )(z) as

Dg!Q(z) =
X

N
Dg!QQ̄(N )(z)hO

Q(N )i, (22)

where the sum is over N = 3
S
[1]

1
, 3

S
[8]

1
, 1

S
[8]

0
, and 3

P
[8]

J

for Q = J/ or  (2S), and N = 3
P

[1]

J and 3
S
[8]

1
for

Q = �cJ . Note that we include the contributions from
3
S
[1]

1
and 1

S
[8]

0
, which do not contain singularities and

are not a↵ected by resummation at the current level
of accuracy [13, 20, 22, 23]. For consistency, we com-

pute the FO FFs to order ↵2
s, except for the 3

S
[1]

1
FF,

which we compute at leading nonvanishing order because
it begins at order ↵3

s [20, 22, 23]. Because we are in-
terested in the large pT region, we evolve the FFs to
the MS scale 50 GeV from the scale 3 GeV by using
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution
equation [24–27] at leading logarithmic accuracy. We
take the J/ LDMEs determined in Ref. [28] in the large
pT region, and we use the �cJ LDMEs from Ref. [29].
The LDMEs are renormalized in the MS scheme at the
scale m. In order to compensate for the fact that re-
summation enhances the relative size of the 3

P
[8] SDCs

compared to 3
S
[8] by about 10%, from which the 3

P
[8]

LDME was determined in Ref. [28], we reduce the cen-
tral value of the 3

P
[8] LDME by 10%. That is, we

use hO
J/ (3S[1]

1
)i = 1.18 ± 0.35 GeV3, hOJ/ (3S[8]

1
)i =

(1.40 ± 0.42) ⇥ 10�2 GeV3, hO
J/ (1S[8]

0
)i = (�0.63 ±

3.22) ⇥ 10�2 GeV3, hO
J/ (3P [8]

0
)i = (5.25 ± 1.86) ⇥

10�2 GeV5, hO�c0(3P [1]

0
)i = (8.16 ± 2.45) ⇥ 10�2 GeV5,

and hO
�c0(3S[8]

1
)i = (1.57±0.47)⇥10�3 GeV3. Note that

due to the universality relations obtained in Refs. [28, 30],
the  (2S) LDMEs can be obtained by uniformly rescal-
ing the J/ LDMEs, and so, the  (2S) FFs can also be
obtained in the same way. We display the gluon FFs for
transversely and longitudinally polarized J/ in Fig. 1.
We show the FFs multiplied by z

3, because when com-
puting pT -di↵erential cross sections using Eq. (2), the
�̂i behave approximately like z

3. For comparison, we
also show results for FO FFs; note that the FO FFs
involve singularities at z = 1 that cannot be displayed
like regular functions. We see that the resummed J/ 

FFs are smooth functions of z, and they are positive or
at least consistent with zero within uncertainties for all
0 < z < 1, which ensures the positivity of J/ produc-
tion rates. In contrast, the transversely polarized FF in
FO perturbation theory rapidly changes sign near z = 1.
The longitudinal J/ FF is una↵ected by resummation,
because it is free of singularities at the current level of
accuracy [14, 31]. The results for the resummed FFs lead
to an estimate of the polarization of J/ and  (2S) at
pT = 100 GeV given by �0.25 <

⇠ �✓
<
⇠ +0.15 in the

helicity frame at midrapidity, which is compatible with
previous estimates [28, 30] but smaller than recent CMS
measurements at large pT [32]. Similarly, we show the
FFs for �c1 and �c2 in Fig. 1, scaled by the branching
fractions into J/ + � we take from PDG [33]. Just like
the J/ case, the resummed �cJ FFs are smooth func-
tions of z that are positive for the whole range of z, unlike
the FO calculations which change sign rapidly near z = 1.

Finally, we compute the prompt J/ production rates
at the

p
s = 13 TeV LHC to compare with ATLAS mea-

surements in Ref. [1]. We use the method used in Ref. [34]
to compute the cross sections, except that we use the
resummed gluon FFs to compute the LP contribution.
We also include the contributions from light-quark FFs,
which are not a↵ected by resummation at the current
level of accuracy. We include feeddown contributions
from decays of �cJ and  (2S), with branching fractions
taken from PDG [33]. We include the NLP contribu-
tions we obtain from FO SDCs calculated by using the
FDCHQHP package [35]. We find that the NLP con-
tributions amount to about 10% at pT = 60 GeV, and
diminish to less than 1% for pT larger than 100 GeV.
We show the large-pT cross sections computed from the
resummed FFs in Fig. 2 compared to ATLAS data [1].
The resummed results are in fair agreement with data
in the large pT region. In contrast, the results from FO
SDCs shown in Fig. 2 fall below measured data and turn
negative at large pT . This shows that resummation of
threshold logarithms is absolutely necessary in order to

With DGLAP evolution from 3 GeV to 50 GeV
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Large-pT Cross Sections
• The resummed cross sections agree well with ATLAS 

data at large pT.


• Predictions for prompt J/𝝍 include feeddowns from 
𝝍(2S) and 𝝌cJ.


• Fragmentation (leading power) contributions are 
included to NLO accuracy with threshold 
resummation and DGLAP resummation. 
Next-to-leading power contributions are also 
included to NLO. 


• Results shown from MEs based on TUM set.  
 
Similar results for direct J/𝝍 are obtained from MEs 
based on J/𝝍 and 𝜼c data.
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Summary

21

• We resummed threshold logarithms that appear in J/𝝍, 𝝍(2S) and 𝝌cJ inclusive 
production cross sections at the leading double logarithmic level.  
This resolves the negative cross section problem in fixed-order calculations in NRQCD.


• Resummation leads to solid predictions of prompt J/𝝍 production rates that agree well 
with ATLAS data at very large pT.


• Resummation removes the singularities in the fragmentation functions near the boundary. 
Resummation may also be important for observables involving kinematical cuts near the 
boundary, such as photoproduction rates and fragmenting jet functions. 


• Theshold resummation may be extended to single logarithmic level, as well as to double-
parton (next-to-leading power) fragmentation contributions.  
Resummation for non-singular fragmentation functions will require next-to-leading 
logarithmic accuracy. 



Backup
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What happens at large pT
• DGLAP evolution makes the problem 

worse.


• Note that FFs still contain distributions 
singular at z=1 after DGLAP evolution.

23

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

250

300

350

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

J/𝝍 fragmentation function 
DGLAP leading logs resummed 

MEs from TUM set

pT=60 GeV pT=200 GeV pT=400 GeV

gluon production rates

-10

-5

0

5

10

-10

-5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0

-10

-5

0

5

10

𝜇F=60 GeV 𝜇F=200 GeV 𝜇F=400 GeV

See e.g. PRD 93, 034041 (2016)



Threshold Double Logarithms in Quarkonium Production                                        CONFINEMENT XVI                                                                                                                   Hee Sok Chung

What happens at large pT
• DGLAP evolution makes the problem 

worse.


• Note that FFs still contain distributions 
singular at z=1 after DGLAP evolution.
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Soft function for 3PJ[1]

• The 3PJ[1] soft function is 
 
 
 
which is essentially the 𝜒cJ shape function in NRQCD 
 
with the 𝜒cJ  wavefunction factored out.


• There is an additional soft function arising from the anisotropic contribution 
 
 
The anisotropic term is suppressed by 𝜖=(4−d)/2 compared to the isotropic term, so that it 
only has a single UV pole at NLO, and is IR finite consistently with NRQCD factorization.  
This does not produce double logs, but is necessary to reach single log accuracy.
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From these we can write

Dsoft(
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Note that
P

2

J=0
cJ = 1, and we have cJ = (2J + 1)/9 +O(✏) for the isotropic contribution.

Later we will show by explicit calculation that the anisotropic contribution STT
3P [1] does not

contribute to the leading threshold logarithms.

D. Leading-order fragmentation functions in the soft approximation

We can check our derivation by computing the Dsoft at leading order in ↵s and see if

we reproduce the known LO fragmentation functions at z ! 1. We first consider the 3S[8]

1
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have

1
p
Nc

trcolor
⇥
Wp1(1, 0)T aW †

p2(1, 0)
⇤
P�wave

=
�✏⇤⌫Lp

Nc(d� 1)
trcolor


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Z 1
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d�0 �0Wp(1,�0)Gµ⌫(p�
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0, 0)T aW †
p (1, 0)

�ig

Z 1

0

d�0 �0Wp(1, 0)W †
p (�

0, 0)Gµ⌫(p�
0)pµW †

p (1,�0)

�

=
ig✏⇤⌫Lp

Nc(d� 1)

Z 1

0
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+T aW †
p (�

0, 0)pµGb
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0)T bW †
p (1,�0)Wp(1, 0)

�
. (86)

The identities in Eqs. (62a) give

W †
p (1, 0)Wp(1,�0) = W †

p (�
0, 0)W †

p (1,�0)Wp(1,�0) = W †
p (�

0, 0), (87)

W †
p (1,�0)Wp(1, 0) = Wp(�

0, 0), (88)

which leads to

1
p
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From this we obtain
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following forms of higher dimensional matrix elements [18–20]:
1

d� 1
h�

†(� i
2

 !
D · �) P�Q0(l ·D)n †(� i

2

 !
D · �)�i, (2.3a)

h�
†
�
i
T
a
 �†ab

` (0)P�Q0(l ·D)n�bc
` (0) 

†
�
i
T
c
�i, (2.3b)

where the derivatives D act to the right and n is a positive integer. The operators involving
derivatives on the left of the projector P�Q0 can be obtained by using Hermitian conjugation
and the invariance of the vacuum. Note that matrix elements of this kind do not appear in
exclusive production due to conservation of energy and momentum. As have been shown
in refs. [21, 22], near the boundary of phase space, contributions from the above matrix
elements associated with a lightlike momentum l collinear to the quarkonium momentum
P become enhanced. These matrix elements can be obtained from moments of the “shape
functions” defined by

S
�Q0

3P
[1]
0

(l+) =
1

d� 1
h�

†(� i
2

 !
D · �) P�Q0�(l+ � iD+) 

†(� i
2

 !
D · �)�i, (2.4a)

S
�Q0

3S
[8]
1

(l+) = h�†
�
i
T
a
 �†ab

` (0)P�Q0�(l+ � iD+)�
bc
` (0) 

†
�
i
T
c
�i, (2.4b)

where �(x) is the Dirac delta function, and the + direction is defined along the quarko-
nium momentum P . We take the convention l± = l0 ± lz, where lz = P · l/|P | in the
frame where the quarkonium three-momentum P is nonzero. From the above definitions,
it is evident that they are formally normalized by

R1
0 dl+S

�Q0

3P
[1]
0

(l+) = hO�Q0(3P [1]
0 )i and

R1
0 dl+S

�Q0

3S
[8]
1

(l+) = hO�Q0(3S[8]
1 )i. The shape functions defined in eqs. (2.4) can be inter-

preted as the probabilities for a QQ̄ to evolve into a quarkonium after emitting soft particles
with total momentum l. The requirement that NRQCD factorization holds after inclusion
of the higher dimensional matrix elements in eqs. (2.3) constrains the shape functions to be
defined only for l+ > 0. This is because a negative l+, corresponding to the case where the
QQ̄ absorbs energy before evolving into a quarkonium, implies that the soft interactions
between the QQ̄ and the environment are not disentangled, and factorization is explicitly
broken [33].

While the lightlike direction ` of the gauge-completion Wilson line is arbitrarily chosen
in the definition of the color-octet matrix element, its origin is the direction of the heavy
quarkonium momentum in a boosted frame such as the hadron CM frame [30, 31], just
like the direction of the lightlike momentum l. Although the gauge-completion Wilson line
will not play a role in the phenomenological analysis of �QJ production at NLO accuracy,
because diagrams that involve the gauge-completion Wilson line begin to appear from two
loops [30–32, 34], for definiteness we will take the direction ` to be the same as l.

The factorization assumption leads to the following form of the factorization formula
for the shape function formalism

�[�QJ(P )] = (2J + 1)

Z 1

0
dl+


s3P

[1]
J
(P + l)S

�Q0

3P
[1]
0

(l+) + s3S
[8]
1
(P + l)S

�Q0

3S
[8]
1

(l+)

�
, (2.5)

where the sN (P + l) are the short-distance coefficients in the shape function formalism,
which must be functions of the QQ̄ momentum P + l. This follows from the fact that the
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• Feeddown fractions

Large-pT Cross Sections
• Feeddown contributions
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