Spectroscopic study of heavier quark baryons using hadron beam at J-PARC

K. Shirotori for the J-PARC MARQ collaboration

Research Center for Nuclear Physics (RCNP) Osaka University

The XVIth Quark Confinement and the Hadron Spectrum Conference

22nd Aug. 2024

Contents

Introduction

- Hadron spectroscopy using hadron beam
- Charmed baryon spectroscopy
 - Investigation of internal structure: Diquark correlation
- Systematic measurement of heavier quark baryons
 - Diqaurk correlation, Spin-dependent forces, Internal quark motion

• Summary

Introduction

How quarks build hadrons ?

***** Dynamics of non-trivial QCD vacuum in low energy regime

- Investigation of effective degrees of freedom and their interactions
- ⇒ **Spectroscopy experiment** for investigating excited states by hadron beam

J-PARC & Hadron Experimental Facility

World's highest level intensity proton beam \Rightarrow Beam power 82 kW

High-p beam line for 2^{ndary} beam: $\pi 20$

***** High-p: 2^{ndary} beams can be provided from the primary proton beam.

- High intensity: >10⁷ /spill for π^{\pm} , p (>10⁵ /spill for K⁻, \overline{p}) up to 20 GeV/c
- High momentum-resolution beam: $\Delta p/p = 0.1\%(\sigma)$

Baryon structure in the low-energy regime

***** How quarks build hadrons ?

- Dynamics of non-trivial QCD vacuum ⇒ Dynamics of Effective DoF
 - Effective degrees of freedom: Diquark correlation
 - Origin of spin-dependent force: Spontaneous breaking of chiral symmetry, U_A(1) anomaly
 - Quark motions in "quark core" with "cloud": Confinement

*Instanton: A topological object of gluon that mediates the $U_A(1)$ breaking interaction proposed by Kobayashi, Maskawa, and 't Hoot

Charmed baryon spectroscopy

Charmed baryon spectroscopy: J-PARC E50

"Excitation mode": λ and ρ modes reflected by Diquark correlation

***** Dynamical information: Production rates and absolute decay branching ratios

• Missing mass method: $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction at 20 GeV/c

Production rates by hadronic reaction

- $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction @ 20 GeV/c
 - Production cross section(0°): Overlap of wave function $\rightarrow |R \sim \langle \varphi_f | \sqrt{2\sigma_-} \exp(i\vec{q}_{eff}\vec{r}) | \varphi_i \rangle$
 - \Rightarrow Reflection from λ/ρ excitation modes
 - Inclusion of one- and two-quark processes ($\sigma_A:\sigma_{\Sigma} = 2:1$)
 - Large production rate of highly excited states

One-quark process

* λ -mode states w/ finite *L* are populated.

* Comparable ρ-mode states are expected.

Two-quark process

S.H. Kim, A. Hosaka, H.C. Kim, H. Noumi, K. Shirotori PTEP 103D01 (2014).

 $I_L \sim (q_{eff}/\alpha)^L \exp(-q_{eff}^2/\alpha^2)$

Mom. Trans.: $q_{eff} \sim 1.4 \text{ GeV/c}$ α~0.4 GeV ([Baryon size]⁻¹)

Production rates by hadronic reaction

- $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction @ 20 GeV/c
 - Production cross section(0°): Overlap of wave function $\rightarrow |R \sim \langle \varphi_f | \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) | \varphi_i \rangle$
 - \Rightarrow Reflection from λ/ρ excitation modes
 - Inclusion of one- and two-quark processes ($\sigma_{\Lambda}:\sigma_{\Sigma}=2:1$)
 - Large production rate of highly excited states •

 $I_L \sim (q_{eff}/\alpha)^L \exp(-q_{eff}^2/\alpha^2)$

MARQ spectrometer

Expected mass spectrum: $\pi^- p \rightarrow D^{*-} Y_c^{*+}$

- **Production rates** $\Rightarrow \lambda/\rho$ mode assignment
 - Production rate of LS doublet = L : L+1
 - λ mode enhanced + Small production rate of ρ mode (0.2 nb w/ Γ =100 MeV)
 - Angular distribution (*t*-dependence: $d\sigma/dt$) contains structure information.

HQ doublet

Level structure of the *q*-*q* + Q system

- Non-rel. QM: $H = H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$
- λ - ρ mixing

(cal. By T. Yoshida et al., Phys. Rev. D92, 114029(2015)

* Diquark correlation: $\lambda \& \rho$ * Theoretical calculation (Λ_c/Λ_b states)

Level structure of the q-q + Q system

- Non-rel. QM: $H = H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$
- λ - ρ mixing

(cal. By T. Yoshida et al., Phys. Rev. D92, 114029(2015)

***** Diquark correlation: $\lambda \& \rho$ ***** Experimental data (Λ_c/Λ_b states)

Level structure of the q-q + Q system

- Non-rel. QM: $H = H_0 + V_{conf} + V_{SS} + V_{LS} + V_T$
- λ - ρ mixing

(cal. By T. Yoshida et al., Phys. Rev. D92, 114029(2015)

* Diquark correlation: $\lambda \& \rho$ * Experimental data (Λ_c/Λ_b states)

Excited energy of highly excited states

- Excitation energy ⇔ Quark confinement potential
 - Quark-diquark model: $V(r) = -\frac{4}{3}\frac{\alpha}{r} + kr + V_0$
 - D. Jido and M. Sakashita, PTEP2016(16)083D02
- $\Rightarrow k \text{ for } \Lambda_c \& \Lambda_b \text{ should be half of } c\bar{c} \text{ case.} \\ * k = 0.9 \text{ GeV/fm} \Rightarrow k = 0.5 \text{ GeV/fm}$
 - Relativistic correction can be solved ?
 - Including internal color structure of diquark
 - H. Nagahiro, private communication
 - Diquark mass dependence ?
 - Potential is deformed at highly excited states ?
 - Weak string tension: $q\overline{q}$ bubble in string ?
- ***** Trying to solve string tension puzzle

***** Production rate tells us "Sticking probability".

- Wave function information of quark and diquark
- Key: Large production rate of highly excited states by hadron beam reaction

Systematic measurements of heavier flavor baryons

Heavy flavors for revealing diquark correlation

***** Systematic studies for baryon systems with heavier flavors: *c* & *s*

- Charmed baryon (E50): Disentangle *ud* diquark correlation
- Ξ baryon (E97): *us/ds* diquark correlation ⇒ Flavor dependence
- Ω baryon (P85): Only axial-vector diquark correlation ⇒ Reference system

Ω baryon: Single flavor system

- $\Omega(sss)$ baryon
- 1. Simple excited state property due to flavor symmetric system
- **2.** Free from π cloud: Discriminate " π " contribution
 - No *u* and *d* quarks which strongly couple to π meson.
- ⇒ Direct access to properties of "Quark core" region

Studies of Ξ/Ω baryons: J-PARC E97/P85

- Investigate spin-dependent forces and quark motion
 - In terms of One Gluon Exchange(OGE), Instanton Induced Interaction(III) and Pion cloud

- Systematics of LS force
- $\Omega(2012)^{-}(3/2^{-}?) \Leftrightarrow \Omega^{*-}(1/2^{-}?)$
 - 2B LS force canceled
 - 3B confinement force spilites states.

- Systematics of Roper-like resonances
 - Small excitation energy and wide width
- Mass & width of Ω w/o π cloud
 - Width: Quark core size ?

Roper-like resonances: 2S state

- Systematics of Roper-like states
 - Small excitation energy and wide width
 - Mass universality ?
 - What does determine its width ?
- Decay width of 2S state

Roper-like resonances: 2S state

- Systematics of Roper-like states
 - Small excitation energy and wide width
 - Mass universality ?
 - What does determine its width ?
- Decay width of 2S state

Expected mass spectra: K⁻ p reactions

- Reaction: K⁻ p → K⁺Ξ^{*-}/K⁻ p → K^{*0}Ξ^{*0}
 Beam: 5–8 GeV/c
- Missing mass: K⁺ / K^{*0}
 - Mass resolution: $\Delta M \sim 7 \text{ MeV}(\sigma)$

- Reaction: $\mathbf{K}^- \mathbf{p} \rightarrow \Omega^{*-} \mathbf{K}^{*0} \mathbf{K}^+$
 - Beam: 7–10 GeV/c
- Missing mass: K^{*0} & K⁺
 - Mass resolution: $\Delta M \sim 5 \text{ MeV}(\sigma)$

* Only a few established states in PDG

 \Rightarrow Systematic studies: Identify λ/ρ modes, SS/LS forces and internal quark motion

From F. Sakuma

Baryon spectroscopy at J-PARC

- $\pi 20: \pi$ beam (unseparated beam)
 - High intensity: >10⁷ /spill for π^- up to 20 GeV/c
- K10: K⁻ & \overline{p} beam (K/ $\pi \sim 1/2$, $\overline{p}/\pi \sim 2/1$)
 - High intensity: >10⁶ /spill up to 10 GeV/c
- ***** Systematic *c* and *s*-baryon spectroscopy:

Dynamics of non-trivial QCD vacuum in baryon structure

• Diquark correlation

- *ud* diquark: Λ_c / Σ_c
- *us/ds* diquark: Ξ
- Only axial-vector diquark: Ω
- Origin of spin-dependent forces
 - Excited state data of $\Lambda_c/\Sigma_c, \Xi, \Omega$ systems

* Systematic measurements of "total cross sections" and "branching ratios" will provide the internal structure of the excited baryons.

Summary

Summary

- How quarks build hadrons ?
 - Dynamics of non-trivial QCD vacuum in baryon structure
- Charmed baryon spectroscopy
 - Disentangle diquark correlation by production rate measurement
 - String tension puzzle in highly excited states ⇒ Production rate
 - High-intensity & High-momentum hadron beam: J-PARC $\pi 20$ beam line
 - Construction of multi-purpose spectrometer: MARQ
- Spectroscopy of heavier flavors for understanding "Baryon system"
 - Systematic spectroscopy of Λ_c / Σ_c , Ξ , Ω baryons
 - Disentangle diquark correlation and origin of spin-dependent forces
 - Role of Ω : Free from π cloud \Rightarrow Investigation of internal quark motion
- \Rightarrow Systematic studies at $\pi 20$ and K10 beam lines at J-PARC

*****J-PARC hadron experimental facility provides unique opportunity for hadron spectroscopy experiments.

Backup slides

Heavy quark doublet in highly excited states

• $\Lambda_{\rm c}(2880)$

- J^P = 5/2⁺ measured by Belle (PRL98, 262001(2007))
 - If D-wave Λ_c^* state \Leftrightarrow HQ doublet partner ?
- $\Lambda_c(2880)(5/2^+)$ is likely to be $\lambda \rho$ mode ($\lambda = 1, \rho = 1$).
 - Brown muck J = 3
 - H. Nagahiro et al., Phys. Rev. D 95, 014023 (2017)
- Λ_c(2940)
 - J^P is not determined.
 - LHCb data: 3/2⁻? (1/2 and 7/2 cannot be excluded)
 - $D^0 p$ amplitude in $\Lambda^0_{\ b} \rightarrow D^0 p \pi^-$ (arXiv:1701.07873v2)
 - If partner is $\Lambda_c(2880)(5/2^+)$, $J^P = 7/2^+$
 - H. Nagahiro et al., Phys. Rev. D 95, 014023 (2017)

***** Where are HQ doublet states ? ($\lambda = 2 \mod e$)

- Brown much J=2
- Properties of highly excited states can be tested by production.

- Ω baryon: Suppression of diquark correlation \Rightarrow "Reference"
 - Suppression of spin-dependent forces and pion cloud
 - ⇒ Investigation of origin of spin-dependent forces and quark motion

*Ξ(1800)⁰(1/2⁻): Assumed for simulation

Size measurement of $\boldsymbol{\Omega}$ baryon 2S state

***** Measurement of 2S state width(Γ)

 $\Rightarrow \Gamma \sim \langle p_q^2 \rangle$

- Internal quark momentum: $\langle p_q^2
 angle$
 - J. Arifi et al., PRD105, 094006 (2023)
 - J. Arifi et al., PRD103, 094003 (2021)
- $\Rightarrow \left< r_q^2 \right> \sim 1/ \left< p_q^2 \right>$
- \Rightarrow Size of "quark core": $\langle r_q^2 \rangle$
 - Essential of free from π cloud

***** Effects of K cloud need to be investigated.

- Minor contribution ?: $M_K/M_{\pi} = 3.5 \Rightarrow$ Range of Yukawa coupling ~0.4 fm
- Branching ratio of $\Omega^{*-} {\rightarrow} K + \Xi$: Coupling of K and Ω
- (Future study) ΩN bound state: Strength of K meson exchange