Optimized QCD two-loop correction to exclusive double J/ψ production at B factories

Wen-Long Sang Southwest University, ChongQing, China

In collaboration with Feng Feng, Yu Jia, Zhewen Mo, Jichen Pan, Jiayue Zhang, based on arXiv:2306.11538

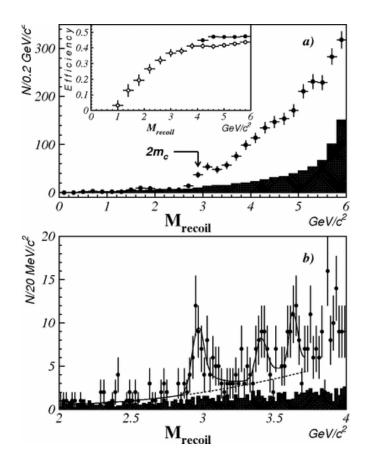
XVIth edition of Quark Confinement and the Hadron Spectrum 19 August -- 24 August, 2024 @ Cairns Convention Centre, Cairns, Queensland, Australia.

含弘光大 维征闲来 特立西南 學行天下

Outline:

1. Background

2. Outline of calculation


3. Discussion

4. Summary

- > Exclusive double charmonium production at e^+e^- collider is among the simplest hard exclusive reactions in perturbative QCD, which can be used to testify the factorization
- Significant attention has been devoted to the study of double charmonium production at B factories at beginning of this century.
- ▷ Considerable effort has been paid to reduce the discrepancy between experimental measurements and theoretical predictions for the exclusive double charmonium production; A notable example is for $e^+e^- \rightarrow J/\psi + \eta_c$.

 $e^+e^- \to J/\psi + \eta_c$

On experiment side:

$$\begin{aligned} \sigma(e^+e^- \to J/\psi + \eta_c) \times \mathcal{B}_{>4} &= 33^{+7}_{-6} \pm 9 \text{ fb} \quad @\text{BELLE}(2002), \\ \sigma(e^+e^- \to J/\psi + \eta_c) \times \mathcal{B}_{>2} &= 25.6 \pm 2.8 \pm 3.4 \text{ fb} \quad @\text{BELLE}(2004), \\ \sigma(e^+e^- \to J/\psi + \eta_c) \times \mathcal{B}_{>2} &= 17.6 \pm 2.8^{+1.5}_{-2.1} \text{ fb} \quad @\text{BABAR}(2005), \end{aligned}$$

where $\mathcal{B}_{>2}$ signifies that branching fraction of η_c decay into the final states with more than 2 charged tracks

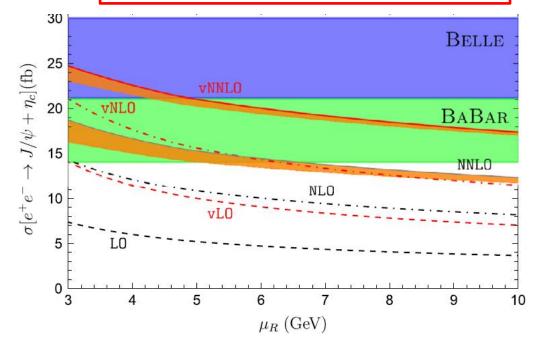
1. Background $e^+e^- \rightarrow J/\psi + \eta_c$

There is an abundance of theoretical work on this process, based on various approaches. Below are several studies conduced within the framework of **NRQCD**

Braaten, Lee, PRD(2003) Liu, He, Chao, PLB(2003) Zhang, Gao, Chao, PRL(2006) ---- NLO QCD corrections Bodwin, Kang, Lee, PRD(2006) ---- NLO relativisitc corrections Bodwin, Kang, Kim, Lee, Yu, hep-ph/0611002 He, Fan, Chao, PRD(2007) Bodwin, Lee, Yu, PRD(2008) Gong, Wang, PRD(2008) ---- NLO QCD corrections Dong, Feng, Jia, PRD(2012) ---- Mixed QCD and relativistic corrections $O(\alpha_s v^2)$ Li, Wang, CPC(2014)

1. Background $e^+e^- \rightarrow J/\psi + \eta_c$

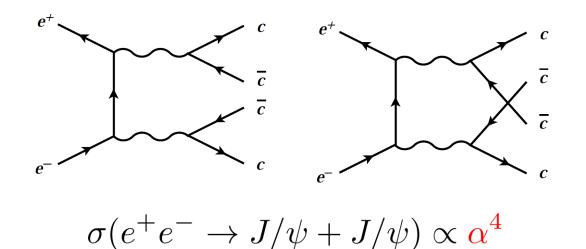
Feng, Jia, Mo, SWL, Zhang, arXiv: 1901.08447 (PLB 2024)

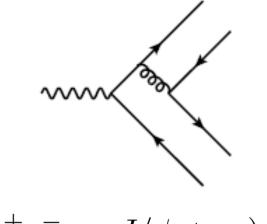

Table 2

Individual contributions to the predicted $\sigma[e^+e^- \rightarrow J/\psi + \eta_c]$ (in units of fb) at $\sqrt{s} = 10.58$ GeV. We take $\mu_R = \sqrt{s/2}$, and $\mu_A = 1$ GeV. The first error is obtained by varying *m* from = 1.3 to 1.7 GeV, and the second error is deduced by varying μ_R from 2m to \sqrt{s} .

LO	vLO	NLO	vNLO	NNLO	VNNLO	Belle	BABAR
$5.05^{+0.92}_{-0.99}{}^{+2.31}_{-1.49}$	$9.70^{+2.73}_{-2.79}{}^{+4.45}_{-2.85}$	$10.60^{+2.87}_{-2.61}{}^{+3.74}_{-2.61}$	$15.25^{+4.69+5.87}_{-4.41-3.96}$	$15.09^{+5.03}_{-4.16}^{+3.68}_{-4.16}$	$20.74^{+8.84}_{-7.37}{}^{+8.84}_{-3.59}$	$25.6^{+2.8+3.4}_{-2.8-3.4}$	$17.6^{+2.8+1.5}_{-2.8-2.1}$

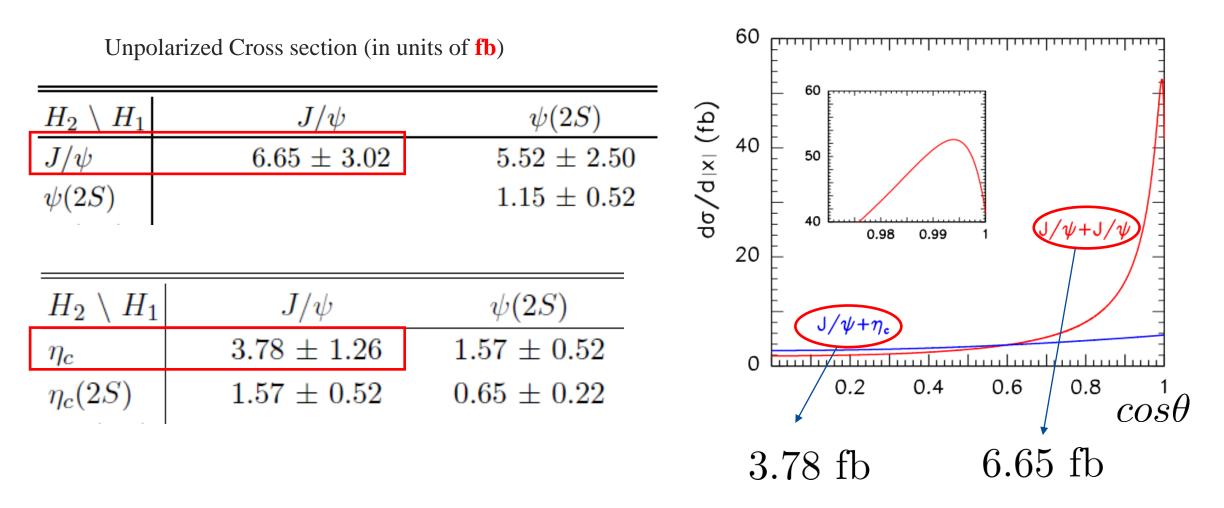
Despite of considerable uncertainty, the theoretical prediction is consistent with the experimental data.

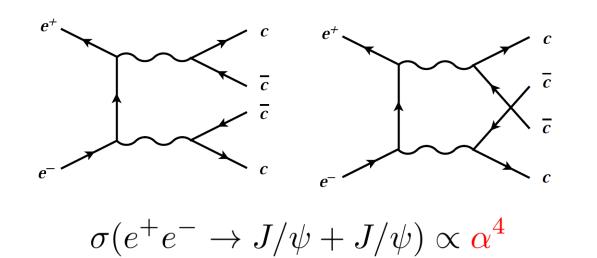

Note: The two-loop corrections were confirmed by Huang, Gong, Wang, JHEP(2023)

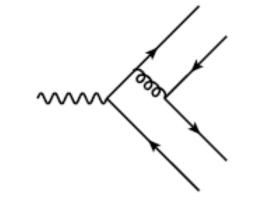


Let us turn to another important double charmonia production at B factory, i.e., $e^+e^- \rightarrow J/\psi + J/\psi$

1) Such process has to proceed via e^+e^- annihilating into two virtual photons


2) By naive expectation, the production rate is more suppressed due to occurrence of the extra QED coupling constants




 $\sigma(e^+e^- \to J/\psi + \eta_c) \propto \alpha^2 \alpha_s^2$

Bodwin, Lee and Braaten PRL2003; Bodwin, Lee and Braaten PRD, 2003 (E 2005)

Note the tree-level prediction for $\sigma(J/\psi + J/\psi)$ is even bigger than $\sigma(J/\psi + \eta_c)$

$$\sigma(e^+e^- \to J/\psi + \eta_c) \propto \alpha^2 \alpha_s^2$$

How to explain?

1) Enhanced by photon fragmentation (from photon propagators) $(s/m_{J/\psi}^2)^4$

2) Enhanced by the propagator of the electron at small azimuthal angle θ

PRD(RC) (2004), BELLE K. Abe et al. PRD 2008

Unfortunately, double J/ ψ production has not yet been observed at B factories

TABLE I. Summary of the signal yields (N), charmonium masses (M), significances, and cross sections ($\sigma_{\text{Born}} \times \mathcal{B}_{>2}[(c\bar{c})_{\text{res}}]$) for $e^+e^- \rightarrow J/\psi(c\bar{c})_{\text{res}}$; $\mathcal{B}_{>2}$ denotes the branching fraction for final states with more than two charged tracks.

TABLE III. Summary of the signal yields (N), significances, and cross sections $(\sigma_{\text{Born}} \times \mathcal{B}_{>0}[(c\bar{c})_{\text{res}}])$ for $e^+e^- \rightarrow \psi(2S) \times (c\bar{c})_{\text{res}}$; $\mathcal{B}_{>0}$ denotes the branching fraction for final states containing charged tracks.

$(c\bar{c})_{\rm res}$	N	$M \left[\text{GeV}/c^2 \right]$	Signif.	$\sigma_{\operatorname{Born}} imes \mathcal{B}_{>2}$ [fb]	$(c\bar{c})_{\rm res}$	N	Signif.	$\sigma_{ ext{Born}} imes \mathcal{B}_{>0}$ [fb]
η_c	235 ± 26	2.972 ± 0.007	10.7	$25.6 \pm 2.8 \pm 3.4$	η_c	36.7 ± 10.4	4.2	$16.3 \pm 4.6 \pm 3.9$
J/ψ	-14 ± 20	fixed		<9.1 at 90% CL	J/ψ	6.9 ± 8.9	• • •	<16.9 at 90% CL
χ_{c0}	89 ± 24	3.407 ± 0.011	3.8	$6.4 \pm 1.7 \pm 1.0$	χ_{c0}	35.4 ± 10.7	3.5	$12.5 \pm 3.8 \pm 3.1$
$\chi_{c1} + \chi_{c2}$	$_{2}$ 10 ± 27	fixed	•••	<5.3 at 90% CL	$\chi_{c1} + \chi_{c2}$	6.6 ± 8.0		<8.6 at 90% CL
$\eta_c(2S)$	164 ± 30	3.630 ± 0.008	6.0	$16.5 \pm 3.0 \pm 2.4$	$\eta_c(2S)$	36.0 ± 11.4	3.4	$16.0 \pm 5.1 \pm 3.8$
$\psi(2S)$	-26 ± 29	fixed	•••	<13.3 at 90% CL	$\psi(2S)$	-8.3 ± 8.5		<5.2 at 90% CL

Belle finds no evidence for $e^+e^- \rightarrow J/\psi + J/\psi$

Why have the experiment found the signal for $J/\psi + \eta_c$, but not for $J/\psi + J/\psi$

We have known that both the radiative and relativistic corrections can **significantly** enhance the LO cross section for $J/\psi + \eta_c$

Table 2

Individual contributions to the predicted $\sigma[e^+e^- \rightarrow J/\psi + \eta_c]$ (in units of fb) at $\sqrt{s} = 10.58$ GeV. We take $\mu_R = \sqrt{s/2}$, and $\mu_A = 1$ GeV. The first error is obtained by varying *m* from = 1.3 to 1.7 GeV, and the second error is deduced by varying μ_R from 2m to \sqrt{s} .

LO		vLO	NLO	vNLO	NNLO	VNNLO	Belle	BABAR
5.05	0.92+2.31 0.99-1.49	$9.70^{+2.73}_{-2.79}{}^{+4.45}_{-2.85}$	$10.60^{+2.87}_{-2.61}{}^{+3.74}_{-2.61}$	$15.25^{+4.69+5.87}_{-4.41-3.96}$	$15.09^{+5.03}_{-4.16}^{+3.68}_{-2.87}$	$20.74_{-7.37-3.59}^{+8.84+4.00}$	$25.6^{+2.8+3.4}_{-2.8-3.4}$	$17.6^{+2.8+1.5}_{-2.8-2.1}$

How about the corrections for the process $J/\psi + J/\psi$?

$e^+e^- \rightarrow J/\psi + J/\psi$

Current Research Progress

2002:	Bodwin, Lee, Braaten	NRQCD LO	8.7 fb
2003:	Bodwin, Lee, Braaten	NRQCD LO	6.65 fb
2006:	Davier, Peskin, Snyder	VMD	2.38 fb
2006:	Bodwin, Braaten, Lee, Yu	fragmentation+nonfragmentation	1.69±0.35 fb
2008:	Gong, Wang	NRQCD NLO in α _s	-3.4—2.3 fb
2013:	Fan, Lee, Yu	NRQCD NLO in α_s and v^2	1—1.5 fb

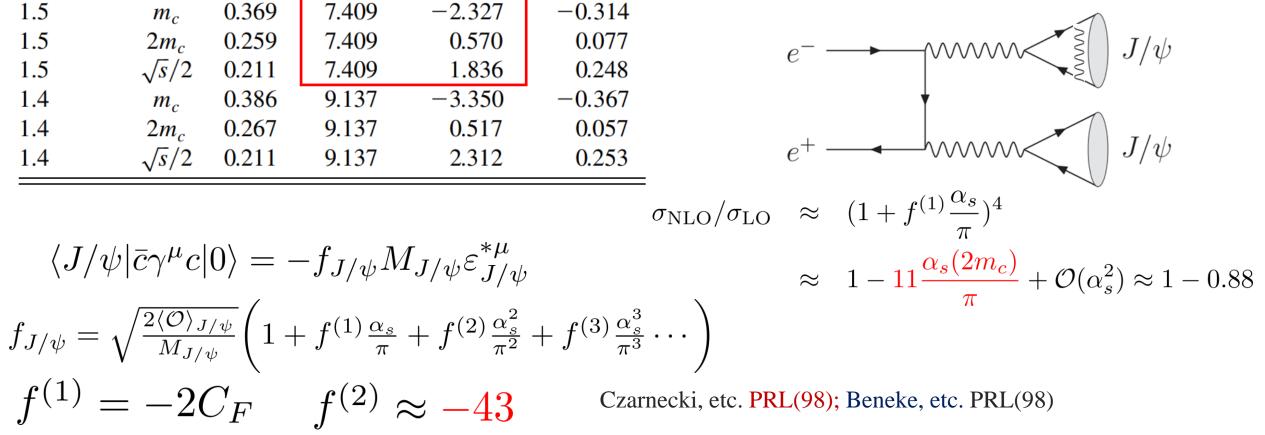
The order- α_s correction is negative and significant!

- 1) Negative total cross section in some range of renormalization scale
- 2) How about the **perturbative convergence**? NNLO correction?

To provide useful guidance for experimentalists to search for this channel, it is crucial to present the **precise theoretical prediction**

Gong, Wang PRL(2008)

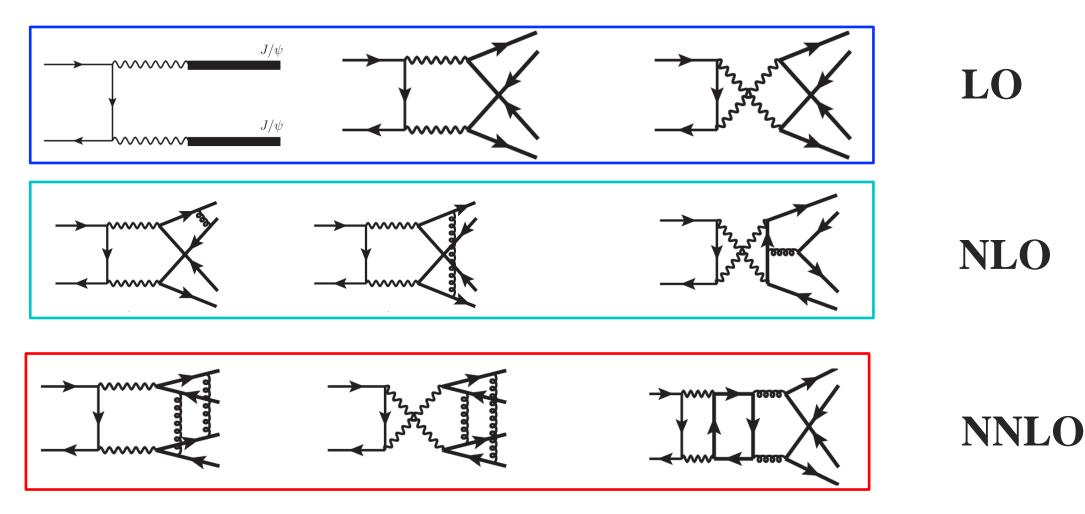
n _c 0.369	7.409	-2.327	0.214
		=2.321	-0.314
$m_c = 0.259$	7.409	0.570	0.077
$\bar{s}/2$ 0.211	7.409	1.836	0.248
$n_c = 0.386$	9.137	-3.350	-0.367
$m_c = 0.267$	9.137	0.517	0.057
5/2 0.211	9.137	2.312	0.253
	5/2 0.211 n_c 0.386 m_c 0.267	5/2 0.211 7.409 n_c 0.386 9.137 m_c 0.267 9.137	5/2 0.211 7.409 1.836 n_c 0.386 9.137 -3.350 m_c 0.267 9.137 0.517


 $f^{(3)} \approx -1736$

 $\langle J/\psi | \bar{c} \gamma^{\mu} c | 0 \rangle = -f_{J/\psi} M_{J/\psi} \varepsilon_{J/\psi}^{*\mu}$

 $f^{(1)} = -2C_F \quad f^{(2)} \approx -43$

$$e^+e^- \rightarrow J/\psi + J/\psi$$


The main contribution comes from the fragmentation diagrams.

13 Marquard, etc. PRD(2014); Feng, etc. arXiv:2207.14259

$e^+e^- \rightarrow J/\psi + J/\psi$

Some typical Feynman diagrams, up to two loop, are illustrated below

By employing the NRQCD factorization, we have

Short-Distance coefficient (SDC)

$$\frac{d\sigma}{d\cos\theta} = \frac{1}{2s} \frac{\beta}{16\pi} \frac{e^8 e_c^4}{4} \mathcal{F} \frac{|\langle \mathcal{O} \rangle_{J/\psi}|^2}{m_c^2} + \mathcal{O}(v^2)$$

where $\beta = \sqrt{1 - 4M_{J/\psi}^2/s}$ represents the velocity of the outgoing J/ψ

The NRQCD matrix element is defined via

$$\langle \mathcal{O} \rangle_{J/\psi} \equiv |\langle J/\psi(\lambda)|\psi^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}(\lambda)\chi|0\rangle|^{2}$$

We can expand the SDC in powers of α_s

$$\mathcal{F} = \mathcal{F}^{(0)} \left[1 + \frac{\alpha_s}{\pi} f^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \left(f^{(1)} \frac{\beta_0}{4} \ln \frac{\mu_R^2}{m_c^2} + 4\gamma_{J/\psi} \ln \frac{\mu_\Lambda^2}{m_c^2} + f^{(2)} \right) \right]$$

 μ_R : renormalization scale β_0 : one-loop coefficient of the QCD β function

The occurrence of the $\beta_0 \ln \mu_R$ term is constrained by the renormalization group invariance

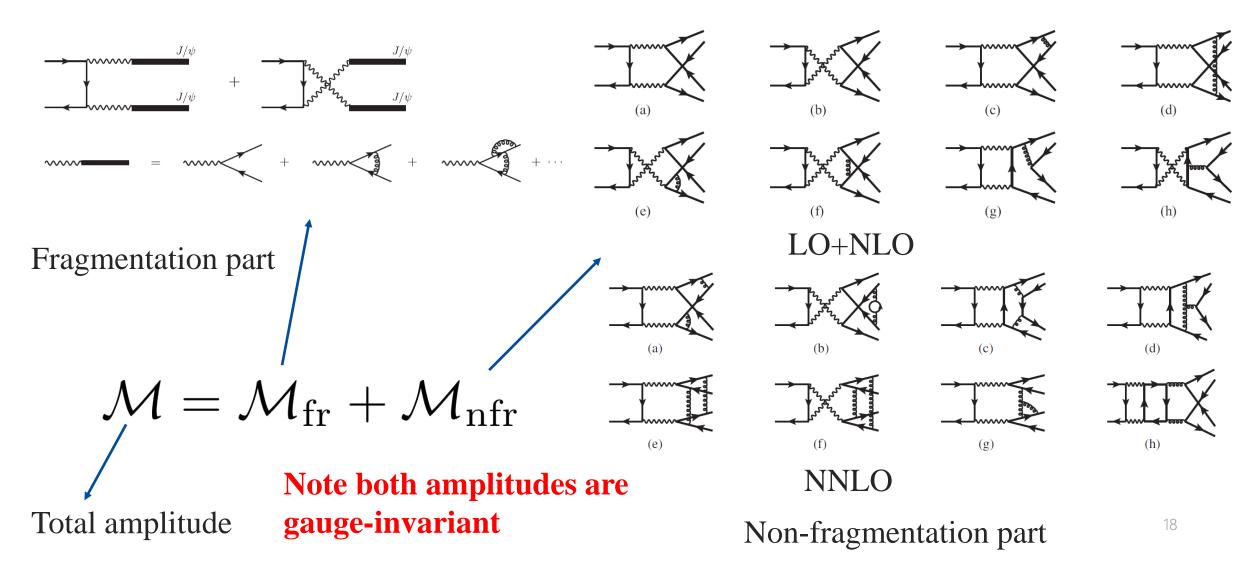
 μ_{Λ} : factorization scale, the explicit expression is constrained by the NRQCD factorization

Where $\gamma_{J/\psi}$ is the **anomalous dimension of the NRQCD vector current (first arises at two loop!)**

At two-loop $\gamma_{J/\psi} = -\frac{\pi^2}{12}C_F(2C_F + 3C_A)$

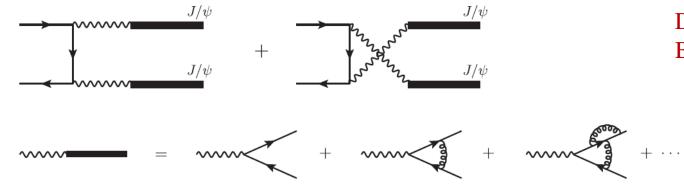
Czarnecki, Melnikov, PRL(1998) Beneke, Signer, Smirnov, PRL(1998)

The μ_{Λ} dependence in the SDC can be canceled by that in the NRQCD matrix element


$$\mathcal{F} = \mathcal{F}^{(0)} \left[1 + \frac{\alpha_s}{\pi} f^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \left(f^{(1)} \frac{\beta_0}{4} \ln \frac{\mu_R^2}{m_c^2} + 4\gamma_{J/\psi} \ln \frac{\mu_\Lambda^2}{m_c^2} + f^{(2)} \right) \right]$$

For convenience, we refer to this fixed-order perturbative expansion as the **traditional NRQCD factorization approach**.

As previously mentioned and as will be evident in the subsequent discussion, the twoloop corrections $f^{(2)}$ are anticipated to be both negative and substantial.


> It will cause the perturbative expansion break down. How can we address this issue?

We split the Feynman diagrams into the fragmentation and non-fragmentation pieces

 $e^+e^- \rightarrow J/\psi + J/\psi$

Special treatment for the fragmentation part

Davier, Peskin, Snyder, hep-ph/0606155; Bodwin, Lee, Braaten and Yu, PRD(2006)

The $\gamma^* \to J/\psi$ can be expressed in term of the decay constant (also refer to **VMD**)

Through this treatment, it implied that we have resummed an infinite towers of perturbative and relativistic corrections to all orders.

The differential cross section reads:

$$\frac{d\sigma}{d\cos\theta} = \frac{1}{2s} \frac{\beta}{16\pi} \frac{1}{4} \sum_{\text{spin}} |\mathcal{M}_{\text{fr}} + \mathcal{M}_{\text{nfr}}|^2.$$
So we get
$$\frac{d\sigma}{d\cos\theta} = \frac{1}{2s} \frac{\beta}{16\pi} \frac{e^8 e_c^4}{4} \left[\mathcal{C}_{\text{fr}} f_{J/\psi}^4 + \mathcal{C}_{\text{int}} f_{J/\psi}^2 \frac{\langle \mathcal{O} \rangle_{J/\psi}}{m_c} + \mathcal{C}_{\text{nfr}} \left(\frac{\langle \mathcal{O} \rangle_{J/\psi}}{m_c} \right)^2 \right]$$
Fragmentation interference Non-fragmentation

In our work, we refer to this treatment as the optimized NRQCD approach

$$C_{\rm fr} = \frac{8\left(\left(t^2 + u^2\right)\left(tu - M_{J/\psi}^4\right) + 4stuM_{J/\psi}^2\right)}{t^2 u^2 M_{J/\psi}^4}$$

Davier, Peskin, Snyder, hep-ph/0606155; Bodwin, Lee, Braaten and Yu, PRD(2006)

According to NRQCD, the other two SDCs can be parameterized in LO in v but through α_s^2 as

$$\mathcal{C}_{\text{int}} = \mathcal{C}_{\text{int}}^{(0)} \left[1 + \frac{\alpha_s}{\pi} \hat{c}_{\text{int}}^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{\beta_0}{4} \ln \frac{\mu_R^2}{m_c^2} \hat{c}_{\text{int}}^{(1)} + 2\gamma_{J/\psi} \ln \frac{\mu_\Lambda^2}{m_c^2} + \hat{c}_{\text{int}}^{(2)}\right) + \cdots \right] \\ \mathcal{C}_{\text{nfr}} = \mathcal{C}_{\text{nfr}}^{(0)} \left[1 + \frac{\alpha_s}{\pi} \hat{c}_{\text{nfr}}^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{\beta_0}{4} \ln \frac{\mu_R^2}{m_c^2} \hat{c}_{\text{nfr}}^{(1)} + 4\gamma_{J/\psi} \ln \frac{\mu_\Lambda^2}{m_c^2} + \hat{c}_{\text{nfr}}^{(2)}\right) + \cdots \right]$$

After integrating over $\cos \theta$ from 0 to 1, we obtain the cross section of fragmentation part, and the LO cross section of the other two parts.

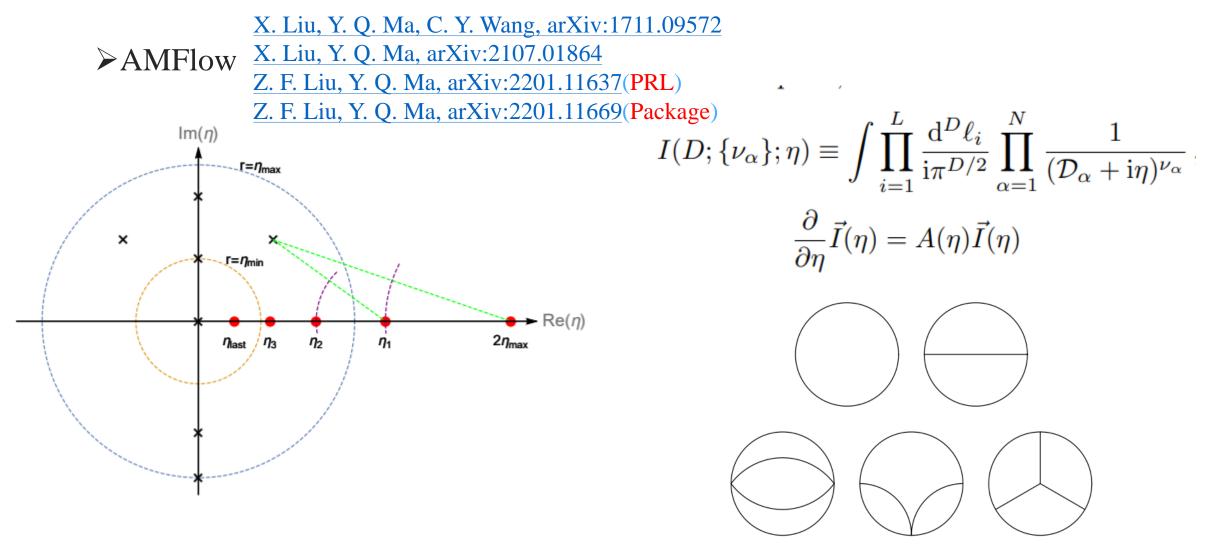
$$\begin{split} \sigma_{\rm fr} &= \frac{32\pi^3 e_c^4 \alpha^4 f_{J/\psi}^4}{M_{J/\psi}^4} \frac{1}{s} \left[\frac{4 + (1 - \beta^2)^2}{1 + \beta^2} \ln\left(\frac{1 + \beta}{1 - \beta}\right) - 2\beta \right] \\ \sigma_{\rm int}^{(0)} &= -\frac{16\pi^3 e_c^4 \alpha^4 f_{J/\psi}^2 \langle \mathcal{O} \rangle_{J/\psi}}{3m_c^3 s^2} \left[(5 - \beta^2)(1 - \beta^2)^2 \ln\left(\frac{1 + \beta}{1 - \beta}\right) + 22\beta - \frac{40}{3}\beta^3 + 2\beta^5 \right], \\ \sigma_{\rm nfr}^{(0)} &= \frac{2048\pi^3 \alpha^4 e_c^4 |\langle \mathcal{O} \rangle_{J/\psi}|^2}{45m_c^2 s^3} \beta \left(10 - \frac{20}{3}\beta^2 + \beta^4 \right) \end{split}$$

In contrast with the fragmentation part that asymptotically scales as 1/s, the interference part of the cross section exhibits a $1/s^2$ asymptotic decrease, while the non-fragmentation part exhibits a $1/s^3$ scaling.

Caused by the photon fragmentation

$$\mathcal{C}_{\text{int}} = \mathcal{C}_{\text{int}}^{(0)} \left[1 + \frac{\alpha_s}{\pi} \hat{c}_{\text{int}}^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{\beta_0}{4} \ln \frac{\mu_R^2}{m_c^2} \hat{c}_{\text{int}}^{(1)} + 2\gamma_{J/\psi} \ln \frac{\mu_\Lambda^2}{m_c^2} + \hat{c}_{\text{int}}^{(2)}\right) + \cdots \right] \\ \mathcal{C}_{\text{nfr}} = \mathcal{C}_{\text{nfr}}^{(0)} \left[1 + \frac{\alpha_s}{\pi} \hat{c}_{\text{nfr}}^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{\beta_0}{4} \ln \frac{\mu_R^2}{m_c^2} \hat{c}_{\text{nfr}}^{(1)} + 4\gamma_{J/\psi} \ln \frac{\mu_\Lambda^2}{m_c^2} + \hat{c}_{\text{nfr}}^{(2)}\right) + \cdots \right]$$

Our task remains to compute $\hat{c}_{\rm int}^{(1)}$, $\hat{c}_{\rm nfr}^{(1)}$ from one loop corrections, and $\hat{c}_{\rm int}^{(2)}$, $\hat{c}_{\rm nfr}^{(2)}$ from two loop corrections.


Since multiple external legs are involved in the Feynman diagrams, the two loop computations turn out to be quite challenging.

➤We adopt the Feynman gauge for our computation and utilize the dimensional regularization to regularize both UV and IR divergences.

We neglect the **relative momentum** in each $c\overline{c}$ pair prior to carrying out the loop integration, which amounts to directly extracting the NRQCD SDCs from the hard loop region

"Method of region": Beneke, Smirnov, hep-ph/9711391

➢After integration-by-parts (IBP) reduction, we end up with about 2400 twoloop master integrals (MIs), which are numerically computed by the package "AMFLow" (auxiliary mass flow)

 $\sqrt{s} = 10.58 \text{ GeV}$ and $m_c = 1.5 \text{ GeV}$

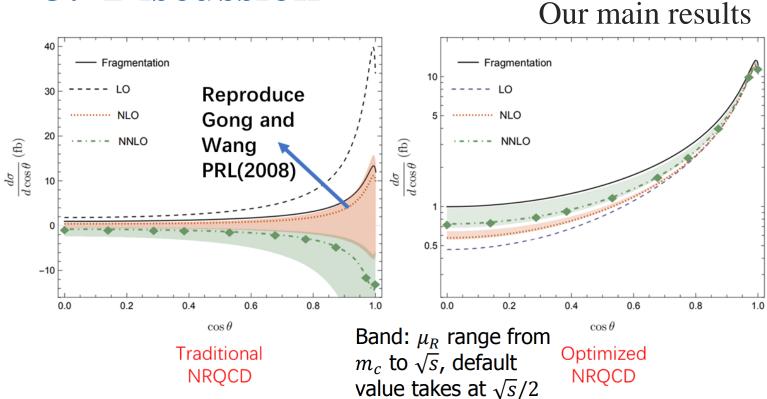
Our main results	$\cos heta$	$\mathcal{C}_{\mathrm{fr}} \ (\mathrm{GeV}^{-4})$	$\mathcal{C}^{(0)}_{\mathrm{int}}\ (\mathrm{GeV}^{-4})$	$\hat{c}_{ m int}^{(1)}$	$\hat{c}_{ m int}^{(2)}$	$\mathcal{C}_{ m nfr}^{(0)}\ ({ m GeV}^{-4})$	$\hat{c}_{ m nfr}^{(1)}$	$\hat{c}^{(2)}_{ m nfr}$
	0.999	4.163	-0.334	-3.62	-71.75	0.006	-7.42	-143.174 + 42.974 = -100.20
	0.970	3.646	-0.242	-1.34	-76.57	0.007	-6.33	-146.117 + 37.424 = -108.69
	0.872	1.573	-0.193	-0.73	-80.64	0.008	-5.07	-152.144 + 25.321 = -126.82
	0.775	0.988	-0.176	-1.27	-81.77	0.010	-5.11	-155.633 + 19.124 = -136.51
	0.677	0.722	-0.164	-1.85	-82.00	0.011	-5.49	-157.716 + 15.969 = -141.75
	0.531	0.522	-0.152	-2.58	-81.67	0.012	-6.15	-159.349 + 14.092 = -145.26
	0.384	0.422	-0.143	-3.12	-81.08	0.012	-6.73	-160.032 + 13.777 = -146.26
	0.287	0.383	-0.139	-3.38	-80.71	0.012	-7.03	-160.222 + 13.898 = -146.32
	0.140	0.350	-0.135	-3.63	-80.31	0.012	-7.32	-160.324 + 14.160 = -146.16
	0	0.340	-0.133	-3.70	-80.17	0.012	-7.41	-160.341 + 14.271 = -146.07

Table 1: Numerical values of various SDCs through $\mathcal{O}(\alpha_s^2)$ for ten different values of $\cos \theta$.

3. Discussion

Main input parameters

 $\sqrt{s} = 10.58 \text{ GeV}$ $M_{J/\psi} = 3.0969 \text{ GeV},$ $m_c = 1.5 \text{ GeV}$


Note, we have taken $M_{J/\psi} = 2m_c$ in computing the inteference and non-fragmentation contributions.

 $f_{J/\psi} = 403 \text{ MeV}$ Determined by the decay width of $J/\psi \to e^+e^-$

$$\langle \mathcal{O} \rangle_{J/\psi} (\mu_{\Lambda} = 1 \text{ GeV}) \approx \frac{3}{2\pi} R_{J/\psi}^2(0) \approx 0.387 \text{GeV}^3,$$

we choose to use $R_{J/\psi}^2(0) = 0.81 \,\text{GeV}^3$ from Buchmüller-Tye (BT) potential model

Eichten and Quigg, PRD(1995)

Differential cross sections for $e+e-\rightarrow J/\psi+J/\psi$ against $\cos\theta$ at various perturbative accuracy from traditional NRQCD and our improved NRQCD approach.

- Both NLO and NNLO corrections are positive!
- Exhibit **decent convergence** behavior!

• When J/ ψ production plane is nearly collinear to e+e-($\theta \rightarrow 0$),

fragmentation contribution dominates!

 As θ deviates from 0, corrections from non-fragmentation amplitude start to play non-negligible role!

3. Discussion

σ (fb)	Fragmentation	LO	NLO	NNLO
Optimized NRQCD	2.52	1.85	$1.93^{+0.05}_{-0.01}$	$2.13^{+0.30}_{-0.06}$
Traditional NRQCD	2.02	6.12	$1.56^{+0.73}_{-2.95}$	$-2.38^{+1.27}_{-5.35}$

Integrated cross section of $e+e-\rightarrow J/\psi+J/\psi$ at various perturbative accuracy. The uncertainties are estimated by varying μ_R from m_c to \sqrt{s}

- > To date the Belle and the Belle2 experiments have accumulated about 1500 fb⁻¹ data, so we expect about $3105 \sim 3645$ exclusive double J/ ψ events.
- Taking into account $Br(J/\psi \rightarrow l^+l^-)=12\%$, about 45~52 four-lepton events from double J/ψ can be produced.
- > Assuming 40% reconstruction efficiency, we expect about $18 \sim 21$ signal events may be reconstructed.
- ➤ With the designed 50 ab⁻¹ integrated luminosity at Belle2, it seems that the observation prospects of exclusive double J/ψ production is promising in the foreseeable future.
 ²⁹

3. Discussion

See Wang's talk in "Paralle C3b1"

After our work, a study on the same topic was conducted by Wang's group, employing a different approach

HEP

N

N

N

P

-

UT

UT

X.-D. Huang, B. Gong, R.-C. Niu, H.-M. Yu, J.-X. Wang, JHEP 2024 $\sigma_{NNLO} = 1.76^{+2.42}_{-1.66}$ fb

Next-to-next-to-leading-order QCD corrections to double J/ψ production at the *B* factories

Xu-Dong Huang⁽²⁾, ^{a,b} Bin Gong, ^{a,b} Rui-Chang Niu, ^{a,b} Huai-Min Yu^c and Jian-Xiong Wang^{a,b} ^aInstitute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China ^bUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China ^cSchool of Physics, Peking University, Beijing 100871, P.R. China *E-mail:* huangxd@ihep.ac.cn, twain@ihep.ac.cn, niuruichang@ihep.ac.cn, yuhm@stu.pku.edu.cn, jxwang@ihep.ac.cn

ABSTRACT: In this paper, we study the next-to-next-to-leading-order (NNLO) QCD corrections for the process $e^+e^- \rightarrow J/\psi + J/\psi$ at the *B* factories. By including the NNLO corrections, the cross section turns negative due to the poor convergence of perturbative expansion. Consequently, to obtain a reasonable estimation for the cross section, the square of the amplitude up to NNLO is used. In addition, the contributions from the bottom quark and the light-by-light part, which are usually neglected, are also included. The final cross section is obtained as $1.76^{+2.42}_{-1.66}$ fb at a center-of-mass energy of $\sqrt{s} = 10.58$ GeV. Our result for total cross section and differential cross section could be compared with precise experimental measurement in future at the *B* factories.

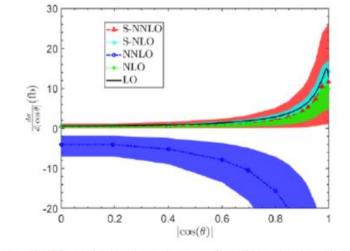


Figure 3. The differential cross section of $e^+e^- \rightarrow J/\psi + J/\psi$ as function of $|\cos\theta|$ at various perturbative order, and the bands are obtained by varying the renormalization scale μ_R within the range of $[2m_c, \sqrt{s}]$.

$\sigma(fb)$	LO	NLO	NNLO	S-NLO	S-NNLO
$\mu_R = 2m_c$	2.29	0.61	-21.10	1.83	0.12
$\mu_R = \sqrt{s}/2$	2.29	1.54	-11.97	2.37	1.76
$\mu_R = \sqrt{s}$	2.29	2.25	-5.27	2.84	4.17

4. Summary

- > NNLO prediction for double J/ ψ production at B factories in traditional NRQCD approach exhibits poor perturbative convergence, leading to unphysical negative cross section.
- In the optimized NRQCD approach, we split the amplitude into photon fragmentation and non-fragmentation pieces. Both NLO and NNLO corrections are positive and exhibit a reasonable convergence pattern.
- The NNLO prediction for the total cross section is 2.13^{+0.30}_{-0.06} fb at CM energy 10.58 GeV in the optimized approach. With the projected integrated luminosity of 50 ab⁻¹, the prospect to observe this exclusive process at Belle 2 experiment appears to be bright.

Thank you for your attention!

Backup slide

3. Discussion

Different values for the matrix element are taken in literature

$$\begin{split} \langle \mathcal{O} \rangle_{J/\psi}(\mu_{\Lambda} = 1 \text{ GeV}) &\approx \frac{3}{2\pi} R_{J/\psi}^{2}(0) \approx 0.387 \text{GeV}^{3}, \\ \langle \mathcal{O} \rangle_{J/\psi} = 0.335 \pm 0.024 \text{ GeV}^{3}, \\ \langle \mathcal{O} \rangle_{J/\psi} = 0.482 \pm 0.049 \text{ GeV}^{3}, \\ \langle \mathcal{O} \rangle_{J/\psi} = 0.457 \text{ GeV}^{3}, \\ \langle \mathcal{O} \rangle_{J/\psi} = 0.440^{+0.067}_{-0.055} \text{ GeV}^{3}, \\ \langle \mathcal{O} \rangle_{J/\psi} = 0.436^{+0.065}_{-0.054} \text{ GeV}^{3}, \end{split}$$

Bodwin, Lee, Braaten, PRL(2003) Bodwin, Braaten, Lee, Yu, PRD(2006) Gong, Wang, PRL(2008)

Fan, Lee, Yu, PRD(20013)