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The inverse problem challenge - a mismatch in information

At this conference many talks addressing different QCD physics, but facing a similar
core issue: An inverse problem.

In fact, inverse problems are common across science, in general:

◦ A mismatch between available and desired information

◦ Need of a robust map / transformation from one into the other

◦ Inverse problem: This transformation is (numerically) ill-posed or ill-conditioned

Examples outside and inside of particle physics:

available information desired information

seismic waves geological tomogram

electromagnetic waves medical images

Euclidean matrix elements time-like observables
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Particle physics observables - inverse problems and lattice data

The following can be extracted from a Euclidean expectation value by solving an
inverse problem at T = 0:

◦ N → N′ scattering amplitude at any s = E 2
cm (ππ → ππ, Nπ → Nππ,...)

◦ N + j → N′ transitions at any s (K → ππ, D → ππ,KK , γ → ππ,...)

◦ Non-local matrix elements (R-ratio, hadronic tensor, DD mixing)
 see e.g. [Liu ’94], [Hansen, Meyer, Robaina ’17], [Bulava, Hansen ’19], [ETMC ’23]

◦ Inclusive processes (Vus , deep inelastic scattering, heavy semileptonic decays)
 see e.g. [QCDSF ’17], [Gambino et al ’20], [Alexandrou et al ’24]

◦ Parton distribution functions (PDFs, GPDs, TMDs)
 see e.g. [Ji ’13], [Ji et al ’23], [HadStruc ’24]

At finite temperature solving an inverse problem of this type gives access to transport
coefficients, production rates and thermal broadening:

◦ Bulk and shear viscosities  see e.g. [Meyer ’07], [Altenkort, AF et al ’23]

◦ Electrical conductivity and heavy quark diffusion
 see e.g. [Kaczmarek, Shu ’22], [Brandt, AF et al ’16]

◦ Dilepton and photon production rates  see e.g. [Cè et al ’20], [Ali, AF et al ’24]
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Dilepton and photon production rates - identifying the problem

Probes of the quark gluon plasma

◦ Dileptons and photons are produced at all stages of
Heavy-Ion Collisions.
◦ Weak coupling to QGP constituents
→ they decouple after production
→ probes of the full thermal medium evolution

[PHENIX ’10]

Sketch of different photon sources

 [Fleuret ’09],[2206.1467]

Thermal QCD goals

◦ thermal dileptons: understand
contribution for mee ∼ 0.5 GeV

◦ thermal photons: understand
dominant contribution for
pT ∈ [1 : 2] GeV

,

Anthony Francis, afrancis@nycu.edu.tw 4/22



Dilepton and photon production rates - identifying the problem II

The photon emissivity is related to thermal vector-vector current spectral functions

ρµν(K) =

∫
d4xe iK·x 1

Z

∑
n

e−En/T 〈n |[jµ(x), jν(0)]| n〉

◦ Rate of dilepton production per unit volume plasma:  [McLerran, Toimela ’85]

dΓ`+`− (K) = α2 d4K
6π3K2

−ρµµ(K)

eβK0 − 1

(
K2 ≡ ω2 − k2

)
◦ Rate of photon production per unit volume plasma:

dΓγ(k) = α
d3k

4π2k

−ρµµ(k, k)

eβk − 1
.

◦ Electrical conductivity of the quark gluon plasma:  see e.g. [1104.3708]

σel = e2
Nf∑

f =1

Q2
f lim

k→0+

ρi
i (k, 0)

k

 from Meyer, Lattice@CERN ’24
,
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Dilepton and photon production rates - identifying the problem III

We are interested in three properties of the vector spectral function:

◦ conductivity: σel ∼ ρi
i (0, 0) note: ρ0

0(0, 0) = const. =: χq

◦ dilepton rate: dΓ`+`− (K) ∼ −ρµµ(K) ρµµ(ω, k = 0)

◦ photon rate: dΓγ(k) ∼ −ρµµ(k, ~k) ρµµ(ω = k, k 6= 0)

The most interesting are in the low-energy, non-perturbative regime of QCD.

 Where can we trust perturbative calculations?

 Access through lattice QCD?

On the lattice and at T > 0:

◦ We work in the imaginary-time path-integral representation of QFT
(Matsubara formalism).

◦ Only Imaginary-time vector correlators are accessible (jµ =
∑

f Qf ψ̄f γ
µψf ):

Gµν (x0, k) =

∫
d3xe−ik·x 〈jµ(x)jν(0)〉T =

∫
d3xe−ik·x Tr

{
e−βH

Z(β)
jµ(x)jν(0)

}
,

◦ Their spectral representation is:  inverse problem(!)

Gµν (x0, k) =

∫ ∞
0

dω

2π
ρµν(ω, k)︸ ︷︷ ︸ cosh [ω (β/2− x0)]

sinh(βω/2)
, β = 1/T .
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Inverse problem vs. analytic continuation - a net of connections

From the Euclidean correlator calculated in lattice QCD we want to extract the spf
⇒ Problem can be seen as a simultaneous Wick rotation and Fourier transform.

Also, formally:

ρ(ω) = L−1 {GE (τ)} =
1

2πi

∫ γ+i∞

γ−i∞
eωτGE (τ)dτ and ρ(ω) =

1

π
Im (GM (−ω))

,
⇒ Problem is related to having only real data where complex information is required.
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The role of the kernel - different physics, different problems

The specific problem sets the kernel entering the inverse
problem

GE(τ) =

∫ ∞
0

dω ρ(ω)κ(ω, τ)

(a) Zero-temperature quantities: κ(ω, τ) = e−ωτ

 Need to perform the inverse Laplace transform.

(b) qPDFs: κ(ν, x) = cos(νx) Θ(1− x)
 Need to perform Fourier transform.

(c) Nonzero-temperature: κ(ω, τ) = cosh(ω(β/2−τ))
sinh(ωβ/2)

Focusing on the T > 0 case and target spectral
information at low energies:

◦ Laplace transform in limit limT→0 κ(ω, τ) = e−ωτ

◦ Often T = 1/Nτ short in lattice calculations
 could indicate a benefit of anisotropic
calculations

◦ low-ω contributions suppressed at short τ

◦ low-ω contributions compete with kernel T -effects
at τ = Nτ/2

(a)

(b)

(c)
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Nature of the inverse problem - setting expectations

Jacques Hadamard established three conditions
for a well-posed problem

1. Existence

2. Uniqueness

3. Stability (solutions behavior changes
continuously with the initial conditions)

The problems we consider fail in the sense of 3 and
are thus ill-posed.

This is a problem due to discrete sampling plus finite precision and a
method-independent statement.

Side remarks:

- Our problem can be shown to be ill-conditioned in principle [Cuniberti et al ’01].
- A solution could be constructed from a finite number of Laguerre polynomials.
- But: It is not clear how many points at what precision are required.
- Qualitatively it was shown the precision must be drastically improved [Meyer ’11]
- With often exponential signal-to-noise ratios this is difficult to achieve.
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Nature of the inverse problem - illustrative example

◦ One approach to extracting ρ(ω) is to fit it to an Ansatz.

◦ Example: Motivated photon production rate Ansatz with 3 parameters a, b, ω0,
and minimized:

χfit =

[
G(τ, p)−

∫
dω ρfit (ω, a, b, ω0)

cosh(ω(β/2− τ))

sinh(ωβ/2)

]

Figure from [1710.07050]

◦ no clear global minimum in χ2-landscape
◦ each point on the map represents one ”acceptable” pair of parameters
→ one spf solution each that describes the Euclidean data.
◦ often features are washed out after combining solutions into result.
◦ brute force accuracy increase to arrive at a more constrained result?
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Nature of the inverse problem - general approach

All methods to perform a spectral reconstruction can be understood as a master
function

F [G,CG ] =
(
ρρρ,Cρ

)
where

◦ G = discrete samples of G(τ)
◦ CG = covariance of G
◦ ρρρ = discrete estimator of ρ(ω)
◦ Cρ = covariance of ρρρ

→ We want to understand the properties and limitations of the master function F
→ Crucial to be data focused: The best F will depend in detail on G , number of

slices, properties of C , etc.

General difficulties

◦ For ρρρi = ρ(ωi )∣∣F [G + δG,CG + δCG ]−F [G,CG ]
∣∣ and thus

∣∣Cρ∣∣
explode.
◦ For cases where |Cρ| is under control, relation between ρ(ω)⇔ ρρρ may be

obscured.
,
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Approaching the inverse problem - three basic strategies

Strategy I: Accept the premise and focus on information in the data

Challenges

◦ Optimal bases for spare modeling / correla-
tion structures for Gaussian processes?
◦ Constraints (positivity, sum rules)?

Methods - (non)linear

◦ Sparse modeling
◦ Neural Networks
◦ Gaussian processes

Strategy II: Accept the premise and try to supply as much extra information as possible

Challenges

◦ Effectively encode more specific information
in priors/ Ansätze?
◦ Control over prior bias and systematics?

Methods - (non)linear

◦ χ2-fits
◦ Maximum entropy methods
◦ Stochastic inference / opti-

mization

Strategy III: Reject the premise and focus on smeared spf’s or Euclidean quantities

Challenges

◦ Identify the physics observables that ...
- can benefit from smeared spf input.
- simplify / avoid inverse problems altogether.

Methods - linear

◦ Backus-Gilbert / Hansen-
Lupo-Tantalo methods
◦ Gaussian processes

Each method has its own problem-dependent pros and cons.
Unlikely there is a single best solution.
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Results

Roadmap:

1. dilepton rates / electrical conductivity: brief overview of community status

2. photon rates: new research shown [2403.11647]

Our lattice setup (HotQCD ensembles)

◦ nf = 0 quenched QCD, a−1 = 9.4, 11.3, 14.1 GeV, Wilson-Clover

◦ nf = 2 + 1 full QCD, a−1 = 7.04 GeV, Wilson-Clover on HISQ sea.

◦ mπ = 320 MeV, ms = 5 ·m`

,
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Lattice data uncertainties and systematics

◦ Statistical uncertainty: δG(τ) limits resolution

◦ T-extent: Inverse becomes solvable when δG(τ) = 0 and Nτ =∞
◦ Finite volume: Spectral support is limited to lattice momenta

◦ Quark masses: Spectral properties can be very different based on quark mass,
need to be in relevant regime

◦ Discretization effects: Cut-off region in spf can be too close to separate the scale
(bottomonium)

These effects can be and are being enhanced or distorted when performing the inverse.

Ideally the data should be:

◦ extrapolated to the continuum X

◦ extrapolated to infinite volume

◦ at the correct quark masses X

◦ have very large time extents (X)

◦ have very small statistical errors (X)
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Dilepton rate and electrical conductivity

• Dilepton rates available in quenched and full
QCD from multiple groups (last update 2019).

• Methods used:

◦ χ2-fits with additional constraints
◦ MEM
◦ BG method with Tikhonov regulator

• Fits: Transport (+ BW) + Asymptotic
⇒ Data well described by Ansatz
⇒ Difficult to distinguish Transport and BW

• MEM prior: Positivity + default model

Consistent picture emerging.

Dilepton rate in quenched QCD

[1604.06712]

Electrical conductivity

[2008.12326]
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Photon production rate from the lattice - a better estimator
 see [Cè et al ’20], [Ali, AF et al ’24], [Meyer, Lattice@CERN ’24]

Back to:

ρµν(K) =

∫
d4xe iK·x 1

Z

∑
n

e−En/T 〈n |[jµ(x), jν(0)]| n〉

at T > 0, there are two independent components (longitudinal and transverse):

ρL(ω, k) ≡
(

k̂ i k̂ jρij − ρ00
)
, and ρT (ω, k) ≡

1

2

(
δij − k̂ i k̂ j

)
ρij ,

where
(

k ≡ |k|, k̂ i = ki/k
)

◦ Due to current conservation: ω2ρ00(ω, k) = k i k jρij (ω, k)
◦ ρL vanishes at light like kinematics, K2 = 0

→ We can rewrite the photon rate when introducing the estimator:

ρ(ω, k, λ) = 2ρT + λρL
λ=1
= −ρµµ

→ For any value of λ we have

dΓγ(k) = α
d3k

4π2k

ρ(k, k, λ)

eβk − 1

→ Choose λ such that the reconstruction becomes particularly easy.
,
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Lattice photon production rate - estimator and perturbative result
 [Ali, AF et al ’24]

We choose λ = 2 such that the spf we want to reconstruct becomes:

ρH (ω, ~k) = 2
{
ρT (ω, ~k)− ρL(ω, ~k)

}
→ At T = 0 this estimator is ρH (ω, ~k) = 0 . (due to restoration of Lorentz symmetry)

→ Purely thermal effects contribute.

→ Aysmptotically ρH (ω, ~k) ∼ 1/ω4 for ω � k (πT ) .

→ Sum rule
∫∞

0 dωωρH (ω) = 0 is a possible extra constraint.

Can be worked out in perturbation theory at NLO + LPMLO.  [1910.09567]

LPM LO means that near the light cone LPM resummation is performed at leading order.
,
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Euclidean correlators - NLO+LPM vs. lattice data

Quenched results

◦ Continuum limit with
Nτ = 20, 24, 30

◦ non-pert. tuned WCF

◦ General behavior reproduced,
apart from lowest k/T

Full QCD results

→ Single lattice spacing

→ Differences more visible

→ Improvement after continuum
limit?
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Spectral reconstruction - a 3-pronged approach

Strategy

We employ all three basic strategies:

◦ χ2-fits (strategy II)

◦ Backus-Gilbert method (strategy III)

◦ Gaussian processes (strategy I)

This makes visible and enables the study
of:

⇒ Different systematics in all
approaches.

⇒ Maximal view of possible outcomes.

⇒ Aim for robust, conservative final
result.

Gaussian process regression

◦ Gaussian kernel (related to NN)

◦ Simultaneous reconstruction in (ω, k)

◦ Continuity only constraint

→ Use mildest possible constraints

χ2-fits

Two sets of Ansätze

(a) Polynomial fit to reproduce IR and
UV results (OPE)

(b) Padé fit with sum rule incorporated
(OPE and AdS/CFT)

→ Include as much extra info as possible

BGM

We stabilize/improve the reconstruction by
rescaling the spf by asymptotic behavior

ρBG
H (ω, ~k)

f (ω, ~k)
=
∑

i

qi (ω, ~k)GH

(
τi , ~k

)
Rescaling function:

f (ω, ~k) =
(ω0

ω

)4
tanh

(
ω

ω0

)5

→ Work with a smeared spf
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Spectral reconstruction - χ2-fits

(a) Polynomial fits

(b) Padé fits
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Spectral reconstruction - BGM and GPR

Backus-Gilbert method

Gaussian processes
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Photon rate from the lattice - final results

Plotted:

Deff(k) ≡
ρH (ω = k, k)

2χqk

Connection to full photon rate:

dΓγ(k)

d3k
=

α

4π2k

ρ(k, k, λ = 2)

eβk − 1

=
αnb(k)χq

π2
(

Nf∑
i=1

Q2
i ) Deff (k)

Cè et al [2205.02821]

compatible results, see further material
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Summary - inverse problem for thermal spfs from the lattice

I. Inverse problem for thermal spectral functions

◦ Presented in general terms the inverse problem to obtain (thermal) spectral
functions from lattice correlators
◦ Broadly highlighted applications and connection to dilepton / photon rates
◦ Gave general approach strategies and their challenges

II. Dilepton rates and electrical conductivity

◦ Collected a brief overview (last update 2019). Consistent picture emerging.

III. Photon rate

◦ Showed the improved estimator for photon rate
◦ Applied all basic strategies to inverse problem to arrive at new result

IV. Future questions

◦ Finding improved estimator has made the study of the photon rate (and heavy
quark diffusion) tractable. Are there more observables like this?
◦ In the T = 0 community there is a lot of work on using smeared spf’s and

clarifying the role of the finite volume. Possibilities also at T > 0?
◦ Gaussian processes related to NN. Connections between BG-type methods worked

out. New methods that combine the best of all strategies possible?

,

Anthony Francis, afrancis@nycu.edu.tw 22/22



Thank you for your attention.
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Further material
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Photon rate from the lattice - Deff T comparison

Cè et al [2205.02821]
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