Precision Studies of the Neutron Spin Structure using a **Polarized Helium-3 Target at Jefferson Lab**

- Wolfgang Korsch
- (University of Kentucky)
- On behalf of the Jefferson Lab E12-06-110 and E12-06-121 Collaborations
 - The XVIth Quark Confinement and the Hadron Spectrum Conference
 - Cairns, Australia
 - August 22, 2024

UNIVERSITY OF KENTUCKY

The Structure of the Nucleon

small Q2 non-perturbative QCD

large Q2 perturbative QCD

Figure credit: BNL

- Motivation for inclusive physics program using polarized ³He
- Neutron spin-structure functions
- Extraction of Q^2 dependence of twist-3 contribution to $g_2^{3He}(g_2^n)$ • Measurement of the virtual photon $A_1^{3He}(x)$ ($A_1^n(x)$)
- Summary and Outlook

Overview

Unpolarized structure functions: > 50 years of studies $\frac{d^2\sigma}{dE'd\Omega}(\uparrow\uparrow\uparrow\downarrow\downarrow\uparrow\uparrow) = \frac{8\alpha^2}{O^4} \left[\frac{2}{M} F_1(x,Q^2) \cdot \sin^2\left(\frac{\partial^2\sigma}{\partial\Omega dE'}\right) + \frac{\alpha^2}{2} \left[\frac{2}{M} F_1(x,Q^2) \sin^2\left(\frac{\partial^2\sigma}{\partial\Omega dE'}\right) + \frac{\alpha^2}{2} \left[\frac{\partial^2\sigma}{\partial\Omega dE'}\right] + \frac{\alpha^2}{2} \left[\frac$

F₂: momentum distribution of quarks (IMF)

Polarized structure functions:

 $< 4 \frac{d^2 \sigma}{d_F y e a}$ sof studie

$$\frac{d^2\sigma}{dE'd\Omega}(\uparrow \Uparrow - \downarrow \Uparrow) = \frac{4\alpha^2 E'}{\nu E Q^2} \left[(E + \frac{d^2\sigma}{dE' \sigma \Omega} ((\theta))^{\uparrow} \cdot) \right]$$

 $\frac{d^2\sigma}{dE'd\Omega}(\uparrow \Rightarrow -\downarrow \Rightarrow) = \frac{4\alpha^2 E'^2}{\nu EO^2} sin(\theta) \left[g_1(x, Q^2) + \frac{2ME}{\nu} \cdot g_2(x, Q^2) \right]$

Inclusive (DIS) Electron Scattering

$$\underbrace{4 \alpha^2 \mathbf{E'}}_{\mathbf{M} \mathbf{Q}^2 \mathbf{v} \mathbf{E}} [(\mathbf{E} + \mathbf{E'} \cos \theta) \mathbf{g}_1(\mathbf{x}, \mathbf{Q}^2) - \frac{\mathbf{Q}^2}{\mathbf{v}} \mathbf{g}_2(\mathbf{x}, \mathbf{Q}^2)] = \Delta \sigma_{\parallel}$$

 $=\frac{4\alpha^{2}\sin\theta \mathbf{E}'^{2}}{(\mathcal{M}Q^{2})^{2}\mathbf{E}} 2\mathcal{M}^{2}(\mathbf{x}, \mathbf{Q}^{2}) + 2\mathbf{E}\mathcal{Q}(\mathbf{x}, \mathbf{Q}^{2})] = \Delta\sigma_{\perp}$

g1: polarized momentum distribution of quarks (IMF) g₂: quark-gluon correlations

Extraction of Spin Structure Functions

Electron scattering asymmetries:

$$A_{\parallel} = \frac{\sigma^{\uparrow\uparrow} - \sigma^{\downarrow\uparrow}}{\sigma^{\uparrow\uparrow} + \sigma^{\downarrow\uparrow}} \qquad A_{\perp} = \frac{\sigma^{\uparrow\Rightarrow} - \sigma^{\downarrow\Rightarrow}}{\sigma^{\uparrow\Rightarrow} + \sigma^{\downarrow\Rightarrow}} \qquad \stackrel{\uparrow, \psi, \Rightarrow, \Leftarrow}{\text{target particles}} = \text{spin dire}$$

$$g_{1} = \frac{MQ^{2}}{4\alpha^{2}} \frac{2y}{(1 - y)(2 - y)} \frac{d^{2}\sigma_{0}}{d\Omega dE'} [A_{\parallel} + tan(\frac{\theta}{2})A_{\perp}]$$

$$g_{2} = \frac{MQ^{2}}{4\alpha^{2}} \frac{2y}{(1 - y)(2 - y)} \frac{d^{2}\sigma_{0}}{d\Omega dE'} [-A_{\parallel} + \frac{1 + (1 - y)cos(\theta)}{(1 - y)sin(\theta)}A_{\perp}]$$

Virtual photon asymmetries:

$$A_1 = \frac{A_{\parallel}}{D(1+\eta\xi)} - \frac{\eta A_{\perp}}{d(1+\eta\xi)}$$

= spin direction of beam $\uparrow \downarrow$ particles (electrons)

ection of

$$A_2 = \frac{\xi A_{\parallel}}{D(1+\eta\xi)} + \frac{A_{\perp}}{d(1+\eta\xi)}$$

 $\eta, \xi, d, D \rightarrow kin.$ factors

Transition from Non-perturbative to Perturbative QCD

Theory

The Inclusive Nucleon Spin-Structure Function g₂

- No simple interpretation in quark parton model
- Related to the transverse spin structure
- Can cleanly remove twist-2 contribution \rightarrow probe quark-gluon correlations

e function
$$g_T(x, Q^2) = g_1(x, Q^2) + g_2(x, Q^2)$$

The Inclusive Nucleon Spin-Structure Function g₂

"transversity"

"quark-gluon correlation"

g₂, d₂, and Color Forces Operator product expansion: $\Gamma_1(Q^2) = \int_0^1 g_1(x, Q^2) dx$

 $\mu_2 \rightarrow$ determined by combination of singlet, triplet, and octet axial charges

$$a_{2}(Q^{2}) = \int_{0}^{1} x^{2} g_{1}(x, Q^{2}) dx \qquad t$$

$$d_{2}(Q^{2}) = 3 \int_{0}^{1} x^{2} [2g_{1}(x, Q^{2}) + 3g_{2}(x, Q^{2})] dx = 3 \int_{0}^{1} x^{2} \bar{g}_{2}(x, Q^{2}) dx \qquad t$$

$$f_{2}(Q^{2}) = 9Q^{2} \left(\int_{0}^{1} (x, Q^{2}) dx - \int_{0}^{2} a_{2}(Q^{2}) dx - \int_{0}^{2} a_{2}(Q^{2}) dx \right) = 0$$

$$f_2(Q^2) = \frac{9Q^2}{4M^2} \left(\int_0^1 g_1(x, Q^2) dx - \mu_2 \right) - \frac{a_2(Q^2)}{4} - d_2(Q^2)$$
t

Transverse forces exerted on struck quark due to remaining two quarks:

$$F_E = -\frac{M^2}{4}\chi_E = -\frac{M^2(4d_2 + 2f_2)}{3}$$
$$F_B = -\frac{M^2}{2}\chi_B = -\frac{M^2(4d_2 - f_2)}{2}$$

First result

M. Burkardt, Phys. Rev. D 88, 114502 (2013) E. Stein et al., Phys. Lett. B 353, 107 (1995) X. Ji, arXiv-ph/9510362 (1995)

$$dx = \mu_2 + \frac{\mu_4}{Q^2} + \frac{\mu_6}{Q^4} + \dots = \mu_2 + \frac{M^2}{9Q^2}(a_2 + 4d_2 + 4f_2) + O\left(\frac{\mu_6}{Q^4}\right)$$

wist-2

twist-3

twist-4

 $\langle PS | \psi^{\dagger} g \mathbf{B}_{\mathbf{c}} \psi | PS \rangle = \chi_B M^2 \mathbf{S}$ $\langle PS | \psi^{\dagger} \alpha \times g \mathbf{E}_{c} \psi | PS \rangle = \chi_{E} M^{2} \mathbf{S}$

3	
\mathbf{U}	

Q² (GeV²)	F _E n (MeV/fm)	F _B n (MeV/fm)
3.21	-26.17±1.32 _{stat} ±29.35 _{sys}	44.99±2.43 _{stat} ±29.43 _{sys}
4.43	-29.12±1.38 _{stat} ±29.34 _{sys}	30.69±2.55 _{stat} ±29.40 _{sys}

M. Posik et al., Phys. Rev. Lett. 113, 022002 (2014)

World Data and Predictions: d₂ⁿ(Q²)

Note: Often data for

 $g_1(x, Q^2)$ and $g_2(x, Q^2)$

have to be interpolated in Q^2 !!

(systematic effect?)

Measure g₁ⁿ, g₂ⁿ over Large Range in x

Hall C at JLab

*Experiments: E12-06-110: A*₁^{*n*} *E12-06-121: d*₂^{*n*}

Parameter	SHMS	HMS
ΔΩ	2-4 msr	>6 ms
∆р/р	-15% →+25%	±10%
δρ/ρ	0.1%-0.15%	<0.2%

Polarized Helium-3 Target

Method: Hybrid Spin Exchange Optical Pumping

FOM=(Target Polarization)²xBeam Current

Extraction of Unpolarized Cross Sections

M. Roy, PhD thesis, University of Kentucky (2022)

x²-Weighted g₂^{3He} Data

E12-06-121: Preliminary

- No radiative corrections applied
- Statistical uncertainties only

World data for $Q^2 \sim 3$, 5 GeV² + E97-103 data

Dashed curves: (NNPDFpol)

$$g_{2,^{3}He}^{WW} = P_{n}g_{2,n}^{WW} + 2P_{p}g_{2,p}^{WW}$$

 $P_{n} = 0.86$ $P_{p} = -0.028$

Analysis: J. Chen, William & Mary, (2024)

World Data and Predictions: d₂ⁿ(Q²)

Virtual Photon Asymmetry A₁ at Large x_{Bj}

$$A_{1}(x,Q^{2}) = \frac{1}{F_{1}(x,Q^{2})} \Big[g_{1}(x,Q^{2}) - \frac{4M^{2}x^{2}}{Q^{2}} g_{2}(x,W^{2}) \Big]$$

large Q^{2}
$$A_{1}^{n}(x) \approx \frac{4[\Delta d(x) + \Delta \bar{d}(x)] + \Delta u(x) + \Delta \bar{u}(x) + \Delta s(x) + \Delta \bar{s}(x)}{4[d(x) + \bar{d}(x)] + u(x) + \bar{u}(x) + s(x) + \bar{s}(x)}$$

$$\rightarrow A_1^n(x,Q^2) \approx \frac{g_1^n(x,Q^2)}{F_1^n(x,Q^2)} \approx \frac{4\Delta d + \Delta u}{4d + u}$$

pQCD (using HHC)
$$\lim_{x \to 1} A_1^n = \frac{\Delta u}{u} = \frac{\Delta d}{d} = 1$$

(sea quark contributions ignored)

17

Virtual Photon Asymmetry A₁ⁿ at Large x_{Bj}

- proton: use previously measured data

J.J. Ethier, W. Melnitchouk, Phys. Rev. C 88, 054001 (2013)

Preliminary A₁^{3He} Data (with DIS Cut)

M. Chen, PhD thesis, University of Virginia (2023)

Preliminary A₁^{3He} Data (with DIS Cut)

M. Chen, PhD thesis, University of Virginia (2023)

Preliminary A₁^{3He} Data without DIS Cut

M. Chen, PhD thesis, University of Virginia (2023)

Flavor Decomposition

$$\frac{\Delta u + \Delta \bar{u}}{u + \bar{u}} = \frac{4}{15} \frac{g_1^p}{F_1^p} (4 + R^{du}) - \frac{1}{15} \frac{g_1^n}{F_1^n} (1 + 4R^{du})$$

$$\frac{\Delta u + \Delta \bar{u}}{u + \bar{u}} = \frac{4}{15} \frac{g_1^p}{F_1^p} (4 + R^{du}) - \frac{1}{15} \frac{g_1^n}{F_1^n} (1 + 4R^{du})$$

$$\frac{A^{du} = \frac{d + \bar{d}}{u + \bar{u}}}{B^{SE} (contact)}$$

$$\frac{\Delta d + \Delta \bar{d}}{d + \bar{d}} = \frac{4}{15} \frac{g_1^n}{F_1^n} (4 + \frac{1}{R^{du}}) - \frac{1}{15} \frac{g_1^p}{F_1^p} (1 + 4\frac{1}{R^{du}})$$

D. Flay et al., Phys. Rev. D 94, 052003 (2016)

Flavor Decomposition Including E12-06-110

E12-06-110 data included

Summary and Outlook

- Measured successfully d₂^{3He}(x) (d₂ⁿ(x)) at three different Q2, keeping Q2 constant over a large range in x (~0.4 < x < ~0.9).
- Extended measurements of virtual photon asymmetry A₁^{3He}(x) (A₁ⁿ(x)) from x ~ 0.6 to x~0.9
- d_{2^n} and A_{1^n} experiments in final stages of analyses
 - radiative corrections
 - extraction of neutron properties from ³He (nuclear corrections)
 - systematic uncertainties
- Final results are expected soon

Thank you for your attention!

D. Androic, W. Armstrong, T. Averett, X. Bai, J. Bane, S. Barcus, J. Benesch, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, G. Cates, J-P. Chen, J. Chen, M. Chen, C. Cotton, M-M. Dalton, A. Deur, B. Dhital, B. Duran, S.C. Dusa, I. Fernando, E. Fuchey, B. Gamage, H. Gao, D. Gaskell, T.N. Gautam, N. Gauthier, C.A. Gayoso, O. Hansen, F. Hauenstein, W. Henry, G. Huber, C. Jantzi, S. Jia, K. Jin, M. Jones, S. Joosten, A. Karki, B. Karki, S. Katugampola, S. Kay, C. Keppel, E. King, P. King, W. Korsch, V. Kumar, R. Li, S. Li, W. Li, D. Mack, S. Malace, P. Markowitz, J. Matter, M. McCaughan, Z-E. Meziani, R. Michaels, A. Mkrtchyan, H. Mkrtchyan, C. Morean, V. Nelyubin, G. Niculescu, M. Niculescu, M. Nycz, C. Peng, S. Premathilake, A. Puckett, A. Rathnayake, M. Rehfuss, P. Reimer, G. Riley, Y. Roblin, J. Roche, M. Roy, M. Satnik, B. Sawatzky, S. Seeds, S. Sirca, G. Smith, N. Sparveris, H. Szumila-Vance, A. Tadepalli, V. Tadevosyan, Y. Tian, A. Usman, H. Voskanyan, S. Wood, B. Yale, C. Yero, A. Yoon, J. Zhang, Z. Zhao, X. Zheng, J. Zhou

* This work is partially supported by the U.S. Department of Energy Office of Nuclear Physics under Contract No. DEFG02-99ER41101.

<u>Spokespersons</u>

B. Sawatzky, JLab

T. Averett, W&M

X. Zheng, UVA

W. Korsch, UKY

Z.-E. Meziani, ANL

Junhao Chen

<u>JLab staff and postdocs</u>

J. P. Chen, JLab

A. Tadepalli, JLab

W. Henry, JLab

J. Zhang, UVA

Mingyu Chen

Murchhana Roy

Melanie Rehfuss

Backup Slides

Sign of the Asymmetries

Elastic Asymmetries

SHMS Elastic Runs

Figure credit: A. Tadepalli

