D Springer

QCD data-driven holographic modeling

Koji Hashimoto (Kyoto U.)

"AI for an inverse problem: Physical model solving quantum gravity" Workshop at ICML 2024 w/ K.Matsuo, M. Murata, G.Ogiwara (Saitama Tech), D.Takeda (Kyoto) "Deriving dilaton potential in improved holographic QCD Mathematical Physics Studies from chiral condensate" 2209.04638 "Deriving dilaton potential in improved holographic QCD Akinori Tanaka from meson spectrum" 2108.08091 Akio Tomiya Koji Hashimoto w/K.Ohashi (Keio), T.Sumimoto (Osaka u) "Neural ODE and Holographic QCD" 2006.00712 **Deep Learning** w/H.Y.Hu, Y.Z.You (UCSD) and Physics "Deep Learning and AdS/QCD" 2005.02636 w/T. Akutagawa, T. Sumimoto (Osaka u) "Deep Boltzmann Machine and AdS/CFT" 1903.04951 "Deep Learning and Holographic QCD" 1809.10536 w/ S. Sugishita (Kentucky), A. Tanaka, A. Tomiya (RIKEN) "Deep Learning and AdS/CFT" 1802.08313 w/ S. Sugishita (Kentucky), A. Tanaka, A. Tomiya (RIKEN)

Bulk reconstruction by deep learning

6 pages

1. Why and how?

1809.10536, 1903.04951

2. Space emergent from data 4 pages

2005.02636 (1802.08313, 1809.10536, 2006.00712, 2409.????)

3. Gravity reconstructed ^{7 pages}

2108.08091, 2209.04638

? Quark confinement ⇔ Hadron spectrum

Comparison of solvers

Reconstruction method	No use of Einstein eq	Lattice input
Holographic renormalization [deHaro Solodukhin Skenderis 00]		
Entanglement, Complexity [Hammersley 07] [Bilson 08] [KH Watanabe 21]		
Correlators [Hammersley 06] [Hubeny Liu Rangamani 06]		
AdS/DL [KH Tanaka Tomiya Sugishita 18]		
Wilson loop [кн 20]	\checkmark	\checkmark

Cf. Matti Järvinen's talk on V-QCD

Emergent spacetime as a neural network

Anti de Sitter spacetime

Quantum gravity in (d+1)-dim.

'tHooft `93 Susskind `94 Maldacena `97

> Quantum mechanics in d-dim.

Emergent spacetime as a neural network

Anti de Sitter spacetime

Quantum gravity in (d+1)-dim.

'tHooft `93 Susskind `94 Maldacena `97

> Quantum mechanics in d-dim.

Emergent spacetime as a neural network

Quantum gravity in (d+1)-dim.

'tHooft `93 Susskind `94 Maldacena `97

> Quantum mechanics in d-dim.

Bulk reconstruction by deep learning

6 pages

1. Why and how?

1809.10536, 1903.04951

2. Space emergent from data 4 pages

2005.02636 (1802.08313, 1809.10536, 2006.00712, 2409.????)

3. Gravity reconstructed ^{7 pages}

2108.08091, 2209.04638

2. Space emergent from data

holographic QCD model for meson spectra

[Karch, Kaz, Son, Stephanov `06]

Vector meson spectra are eigenvalues $\omega^2 = m_n^2$ of normalizable solutions of the differential eq:

$$\frac{\partial}{\partial z} \left(e^{-B(z)} \frac{\partial}{\partial z} v_n(z) \right) + \omega^2 e^{-B(z)} v_n(z) = 0$$

2. Space emergent from data

[Karch, Kaz, Son, Stephanov `06]

Vector meson spectra are eigenvalues $\omega^2 = m_n^2$ of normalizable solutions of the differential eq:

holographic QCD model for meson spectra

$$\frac{\partial}{\partial z} \left(e^{-B(z)} \frac{\partial}{\partial z} v_n(z) \right) + \omega^2 e^{-B(z)} v_n(z) = 0$$

Model : Classical 5-d gauge theory in unknown dilaton gravity b.g.

$$S = \int d^4x dz \, e^{-\Phi} \sqrt{-g} \left(F_{MN}\right)^2$$

Dilaton $\Phi(z)$, metric $ds^2 = e^{2A(z)} \left(dz^2 + \eta_{\mu\nu} dx^{\mu} dx^{\nu} \right)$

AdS boundary $(z \sim 0)$: $B(z) \equiv \Phi(z) - A(z) \sim \log z$

Solve EoM for the gauge field $A_{\mu}(z, x^{\mu}) = v_n(z)\rho_{\mu}(x^{\mu})$

2. Space emergent from data

Bring the bulk EoM to neural network

3/4

Bulk EoM
$$\frac{\partial}{\partial z} \left(e^{-B(z)} \frac{\partial}{\partial z} v_n(z) \right) + m_n^2 e^{-B(z)} v_n(z) = 0$$

Discretization
Hamilton form $\begin{cases} v_n(z + \Delta z) = v_n(z) + \Delta z \pi_n(z) \\ \pi_n(z + \Delta z) = \pi_n(z) + \Delta z \left(\frac{B'(z)}{2} \pi_n(z) - \omega^2 v_n(z) \right) \end{cases}$

Neural-Network representation

2. Space emergent from data 4/4 Training with QCD data: hadron spectra Data : PDG data for rho meson mass $m_{\rho}^{(1)} = 0.77 \text{ GeV}, m_{\rho}^{(2)} = 1.45 \text{ GeV}$

Bulk reconstruction by deep learning

6 pages

1. Why and how?

1809.10536, 1903.04951

2. Space emergent from data 4 pages

2005.02636 (1802.08313, 1809.10536, 2006.00712, 2409.????)

3. Gravity reconstructed ^{7 pages}

2108.08091, 2209.04638

Two independent information of metric

Two independent information of metric

Deriving the dilaton potential (T=0)

It's a nice dilaton potential !

String frame metric has a bottom

Prediction of string breaking (T=0)

Deriving the dilaton potential (finite T)

Prediction of string breaking (finite T)

Bulk reconstruction by deep learning

6 pages

1. Why and how?

1809.10536, 1903.04951

2. Space emergent from data 4 pages

2005.02636 (1802.08313, 1809.10536, 2006.00712, 2409.????)

3. Gravity reconstructed ^{7 pages}

2108.08091, 2209.04638

Bulk reconstruction

Summary :

Deep learning enables us to find a gravity model dual to QCD, in a data-driven way

Physics :

Chiral sym. breaking has the same origin as confinement!

Challenge :

Can we pin down the unique gravity model consistent with various QCD data?

ALPhys 学術変革領域研究(A) 学習物理学の創成 Foundation of "Machine Learning Physics"

Overview

²⁰²⁴ Dec.10-12 Yukawa Institute, Kyoto University

The String Data International Conference Series is the first meeting in the world to combine data science and string theory. It is evolving not just as a unique field of string theory with machine learning, but with broader topics connecting theoretical physics and AI. The research

Machine Learning Physics

Discovering new laws, pioneering new materials

A Bulk from chiral condensate Simplest holographic model

Classical scalar field theory in unknown 5-dim. spacetime

$$S = \int d\eta d^4x \sqrt{\det g} \left[(\partial_\eta \phi)^2 - V(\phi) \right]$$

$$\begin{cases} 1802.08313 \\ 1809.10536 \end{cases}$$

$$\begin{cases} ds^2 = -f(\eta) dt^2 + d\eta^2 + g(\eta) (dx_1^2 + \dots + dx_{d-1}^2) \\ V[\phi] = -\frac{3}{L^2} \phi^2 + \frac{\lambda}{4} \phi^4 \end{cases}$$

Data:
$$(m_q, \langle \bar{q}q \rangle)$$
 AdS
boundary
 $(\phi|_{\eta=\infty}, \partial_\eta \phi|_{\eta=\infty}, \partial_\eta \phi|_{\eta=0})$

Bulk from chiral condensate **Relation to QCD data**

Boundary condition for the metric components

$$\begin{split} ds^2 &= -f(\eta)dt^2 + d\eta^2 + g(\eta)(dx_1^2 + \dots + dx_{d-1}^2) \\ \left\{ \begin{array}{l} \text{AdS boundary (} \eta \sim \infty \text{): } f \sim g \sim \exp[2\eta/L] \\ \text{Black hole horizon (} \eta \sim 0 \text{): } f \sim \eta^2, \ g \sim \text{const.} \end{array} \right. \end{split}$$

Solve eq. of motion to get response $\langle \bar{\psi}\psi \rangle_{m_a}$. [Klebanov, Witten `98] $\left[\begin{array}{ll} \mathsf{AdS} \ \mathsf{boundary} \ (\ \eta \sim \infty \) : \ \phi = m_q \, e^{-\eta} + \langle \bar{\psi} \psi \rangle \, e^{-3\eta} \\ \mathsf{Black} \ \mathsf{hole} \ \mathsf{horizon} \ (\ \eta \sim 0 \) : \ \partial_\eta \phi \ \big|_{\eta=0} = 0 \end{array} \right.$

A) Bulk from chiral condensate Equation of motion as a feedforward NN

Eq. of motion
$$\partial_{\eta}^{2}\phi + \underline{h(\eta)}\partial_{\eta}\phi - \frac{\delta V[\phi]}{\delta\phi} = 0$$

 $\int \int \mathbf{v}$ metric $h(\eta) \equiv \partial_{\eta} \left[\log \sqrt{f(\eta)g(\eta)^{d-1}} \right]$
Discretization
Hamilton form $\begin{cases} \phi(\eta + \Delta \eta) = \phi(\eta) + \Delta \eta \pi(\eta) \\ \pi(\eta + \Delta \eta) = \pi(\eta) + \Delta \eta \left(\underline{h(\eta)}\pi(\eta) - \frac{\delta V(\phi(\eta))}{\delta\phi(\eta)} \right) \end{cases}$

3/5

Feedfoward neural network for classification

A Bulk from chiral condensate Training with QCD data : quark condensate

Lattice QCD data at T=207[MeV]

 $\langle \bar{q}q \rangle$: Quark condensate

A Bulk from chiral condensate Training with QCD data : quark condensate

Trained values of potential : 1/L = 237(3)[MeV], $\lambda/L = 0.0127(6)$

A Review: bulk reconstruction

Wilson loop

 $\begin{array}{ccc} R & W \\ x^{0} & & & \\ & & \Delta \to \infty \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & x^{1} \end{array}$

$$W \equiv \operatorname{Ptr} \exp\left[i \int A_{\mu}(x) dx^{\mu}\right]$$

In confining phase,

$$\langle W \rangle \sim \exp[- E(R) \Delta]$$

Quark potential

A Review: bulk reconstruction

 η_0

AdS/CFT calculations of Wilson loop

Bulk metric in string frame

$$ds^{2} = f(\eta)(-dt^{2} + d\vec{x}^{2}) + d\eta^{2}$$

[Maldacena 98] [Rey Yee 98]

Nambu-Goto string solution

$$E(\eta_0) = \frac{1}{\pi \alpha'} \int_{\eta_0}^{\infty} d\eta \sqrt{f(\eta)} \sqrt{\frac{f(\eta)g(\eta)}{f(\eta)g(\eta) - f(\eta_0)g(\eta_0)}}$$

$$R(\eta_0) = 2 \int_{\eta_0}^{\infty} d\eta \, \frac{1}{\sqrt{g(\eta)}} \sqrt{\frac{f(\eta_0)g(\eta_0)}{f(\eta)g(\eta) - f(\eta_0)g(\eta_0)}}$$

Quark potential E(R)

A Review: bulk reconstruction Wilson loop bulk reconstruction formula

[KH 20]

5/5

$$E(R)$$
 $ds^{2} = f(\eta)(-dt^{2} + d\vec{x}^{2}) + d\eta^{2}$

Given a quark potential E(R), solve

$$f_0 = 2\pi \alpha' \frac{dE(R)}{dR}$$

to get R as a function of f_0 . Then substitute it to the following differential equation

$$\frac{d\eta(f)}{df} = \frac{1}{\pi}\sqrt{f}\frac{d}{df}\int_{\infty}^{f} df_0 \frac{R(f_0)}{\sqrt{f_0^2 - f^2}}$$

Integrate this to find $\eta = \eta(f)$. Finally, invert it to find a bulk metric $f(\eta)$.