

中國科學院為能物記為完備 Institute of High Energy Physics Chinese Academy of Sciences

Study of X(2370) at BESIII

Peng ZHANG (张鹏) | zhangpeng97@ihep.ac.cn

Institute of High Energy Physics, CAS, Beijing, China

On behalf of the BESIII Collaboration

The XVIth Quark Confinement and the Hadron Spectrum Conference (QCHSC2024)

Aug 21, 2024, Cairns, Australia

Forms of hadrons

- The basic theory for strong interactions is quantum chromodynamics (QCD). Hadrons are the bound states of QCD
- > Hadrons consist of 2 or 3 quarks in conventional quark model
 - Mesons (quark-antiquark states)
 - Baryons (3-quark states)
- ➢ New forms of hadrons allowed by QCD:
 - **Multi-quark**: quark number >= 4
 - **Hybrid state**: the mixture of quark and gluon
 - **Glueball**: composed of gluons (gg, ggg, gggg)

Glueball

- The self interaction of gluons —— gauge bosons of strong interactions, is unique property of QCD.
- Glueball formed by self-interacted gluons.
- Many candidates but have not been established yet!
- Direct test of QCD
- Theoretical predictions on glueball masses from lattice QCD and QCD-inspired models mostly consistent
 - Light-mass glueball with ordinary $J^{PC}: 0^{++}, 2^{++}, 0^{-+}$

J/ψ radiative decays

- > Gluon rich environment
- > **Isospin filter**: final states dominated by I=0 processes
- > Spin-parity filter: C parity must be +, so $J^{PC} = 0^{-+}, 0^{++}, 1^{++}, 2^{-+}, 2^{++} \dots$
- Clean environment in electron-positron collision
 - very different from proton-antiproton collision

Glueball Production in J/ψ radiative decays

- Glueball: strongly produced in gluon-rich processes
- \succ Rich production in J/ ψ radiative decays
 - Glueball production rate in J/ψ radiative decays could be higher than normal hadrons

 \Rightarrow J/ ψ radiative decays are believed to be an ideal place to search for glueballs.

Glueball Decays

- Via gluons (gluon is flavor-blind) —— flavor symmetric decays
- > No rigorous predictions on glueballs' decay patterns and their branching fractions
- The decay patterns of glueballs may resemble those of the Charmonium family, as they also decay through gluons [PLB 380 189(1996), Commu. Theor. Phys. 24.373(1995)].
 - e.g.: The 0⁻⁺ glueball could have similar decays of η_c

- > Different energy scales between the charmonium and glueballs
 - Different decay branching ratios
 - η_c has larger phase space region than a 0⁻⁺ glueball with lower mass

Glueball Search

Many experiments searched for glueballs over the past 4 decades.

- Many historical glueball candidates, but also some difficulties/controversies.
 - Scalar Glueball candidate (0^{++}) : $f_0(1710)$
 - Tensor Glueball candidate (2^{++}) : $f_2(2340)$
 - Pseudoscalar Glueball candidate (0⁻⁺): $\eta(1405)$

Scalar glueball candidate

- Expected production rate of scalar glueball in J/ψ radiative decays
 - $B[J/\psi \to \gamma G_{0^{-+}}] = 3.8(8) \times 10^{-3} @ LQCD$
- → Observed $B[J/\psi \rightarrow \gamma f_0(1710)]$ is x10 larger than $f_0(1500)$ @ BESIII
- ➤ The high production rate of $J/ψ → γf_0(1710)$ and the suppression of $f_0(1710) → ηη'$ supports that
 - $f_0(1710)$ has a large overlap with glueball [PRD 106 072012(2022)]

still await undisputed confirmations

$\mathcal{B}(J/\psi ightarrow$	$\mathcal{B}(J/\psi ightarrow$	${\cal B}(J/\psi o \gamma ext{ scalar} glueball)$
$\gamma f_0(1500))$ (10 ⁻³)	$\gamma f_0(1710))$ (10 ⁻³)	$(LQCD calculation)$ (10^{-3})
~0.29	~2.2	3.8 (8)

Natl. Sci. Rev. 8, no.11, nwab198 (2021)

Tensor glueball candidate

- Expected production rate of tensor glueball
 - $B[J/\psi \rightarrow \gamma G_{2^{++}}] = 1.1 \times 10^{-2} @ LQCD [PRL 111 (2013) 091601]$
- > Observed $f_2(2340)$ @ BESIII:
 - $B[J/\psi \to \gamma f_2(2340) \to \gamma \Phi \Phi] = 1.91 \pm 0.14^{+0.72}_{-0.73} \times 10^{-4}$
- Difficulty: no clear mass peak of these f₂ mesons can be directly observed in J/ψ radiative decays due to large overlaps among various wide resonances.

It is desired to study more decay modes

Resonance	M (MeV/ c^2)	$\Gamma ({\rm MeV}/c^2)$	B.F. (×10 ⁻⁴)	Sig.
$\eta(2225)$	2216^{+4+21}_{-5-11}	185^{+12+43}_{-14-17}	$(2.40\pm0.10^{+2.47}_{-0.18})$	28 <i>o</i>
$\eta(2100)$	2050^{+30+75}_{-24-26}	$250^{+36+181}_{-30-164}$	$(3.30\pm0.09^{+0.18}_{-3.04})$	22σ
X(2500)	$2470^{+15+101}_{-19-23}$	230_{-35-33}^{+64+56}	$(0.17\pm 0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$	2101	224	$(0.43\pm 0.04^{+0.24}_{-0.03})$	24σ
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$	9.5 <i>σ</i>
$f_2(2300)$	2297	149	$(0.44 + 0.07^{+0.09})$	6.4 <i>σ</i>
$f_2(2340)$	2339	319	$(1.91\pm0.14^{+0.72}_{-0.73})$	11 σ
0 ⁻⁺ PHSP			$(2.74 \pm 0.15^{+0.10}_{-1.48})$	6.8σ

Pseudoscalar glueball candidate

- Pseudoscalar meson spectrum
 - Only η and η' (& radial excitations) from quark model
 - A promising window to search for extra states
- Expected mass @LQCD: 2.3~2.6 GeV
 - The first glueball candidate: $\iota(1440)$ (split into $\eta(1405)$ and $\eta(1475)$), whose mass is incompatible with LQCD
 - Little experimental information above 2 GeV
- > Where is Pseudoscalar glueball?
 - The 0⁻⁺ glueball could have similar decays of η_c
 - 3 pseudoscalar final state is a good place to search for

5 typical $\eta_c \rightarrow 3P$ decay modes in PDG — 5 "Golden" modes in 0^{-+} glueball searches

		Decays involving hadronic resonances
Γ ₁ Γ ₂	$\eta'(958) \pi \pi \eta'(958) K \overline{K}$	(1.87±0.26) % (1.61±0.25) %

	Decays into stable hadrons
$K\overline{K}\pi$	(7.0 \pm 0.4) %
$K\overline{K}\eta$	(1.32±0.15) %
$\eta \pi^+ \pi^-$	(1.7 ± 0.5)%
	$\begin{array}{c} \kappa \overline{\kappa} \pi \\ \kappa \overline{\kappa} \eta \\ \eta \pi^+ \pi^- \end{array}$

BESIII data collections

World largest J/ψ data sample : ~10 billion.

- Well defined initial and final states
- Low background

Provide a good opportunity to search for glueball!

BEPCII and BESIII The Experimental facility

Study of X(2370) at BESIII

X(2370)

> First observation by BESIII of the X(2370) in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

	M(MeV/c ²)	Γ(MeV)	Sig.
X(1835)	$1836.5 \pm 3.0^{+5.6}_{-2.1}$	$190.1 \pm 9.0^{+38}_{-36}$	>20o
X(2120)	$2122.4 \pm 6.7 ^{+4.7}_{-2.7}$	$83 \pm 16^{+31}_{-11}$	7.2σ
X(2370)	$2376.3 \pm 8.7^{+3.2}_{-4.3}$	$83 \pm 17^{+44}_{-6}$	6.4σ

 \succ Confirmed by BESIII in $J/\psi \rightarrow \gamma K \overline{K} \eta'$ (new mode), $\gamma \pi^+ \pi^- \eta'$

X(2370) — good candidate of 0^{-+} glueball

- ➢ Its mass is consistent with LQCD prediction on the lightest 0⁻⁺ glueball
- > Observed in the best place to search for the 0^{-+} glueball:
 - Produced in the gluon-rich J/ψ radiative decays
 - Flavor symmetric decay modes of $\pi^+\pi^-\eta'$ and $K\overline{K}\eta'$ favorite decay modes of 0^{-+} glueball

→ Determination of its spin-parity is crucial

Spin-Parity determination of the X(2370) **in** $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta'$

Journal: Phys. Rev. Lett. 132 (2024) 181901

Advantages of this channel:

- > ~10B clean J/ψ events
- Almost no background:
 - Possible dominant background processes of $J/\psi \to \pi^0 K_S^0 K_S^0 \eta'$ and $J/\psi \to K_S^0 K_S^0 \eta'$ are forbidden by exchange symmetry and C-parity conservation.
- > High efficiency and precise resolution of charged particles and photons:
 - good reconstruction for K_S^0 and η
 - good reconstruction for η' for two dominant decay modes of $\eta' \to \gamma \pi^+ \pi^-$ and $\eta' \to \pi^+ \pi^- \eta$

Selection for $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta', \eta' \rightarrow \pi^+ \pi^- \eta$

Signal selection:

- At least 3 charged pairs + 3 photons
- Constraint kinematic fit with energy-momentum conservation
- K_s^0 reconstruction: $\left| M_{\pi^+\pi^-} M_{K_s^0} \right| < 9 \text{ MeV/c}^2$
- η' reconstruction: $|M_{\pi^+\pi^-\eta} M_{\eta'}| < 10 \text{ MeV/c}^2$

> Background veto:

•
$$\pi^{0}$$
 veto: $|M_{\gamma\gamma} - M_{\pi^{0}}| > 20 \text{ MeV/c}^{2}$

www.www

000000000000000

000000000000

g

С

С

J/ψ

mm

Selection for $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta', \eta' \rightarrow \gamma \pi^+ \pi^-$

Signal selection:

- At least 3 charged pairs + 2 photons
- Constraint kinematic fit with energy-momentum conservation
- K_s^0 reconstruction: $\left| M_{\pi^+\pi^-} M_{K_s^0} \right| < 9 \text{ MeV/c}^2$
- η' reconstruction: $|M_{\gamma\pi^+\pi^-} M_{\eta'}| < 15 \text{ MeV/c}^2$

Background veto:

•
$$\pi^{0}/\eta$$
 veto: $|M_{\gamma\gamma} - M_{\pi^{0}}| > 20 \text{ MeV/c}^{2}, |M_{\gamma\gamma} - M_{\eta}| > 30 \text{ MeV/c}^{2}$

hunner

С

 $\overline{\boldsymbol{C}}$

 J/ψ

g

0000000000

000000000

g

Y JY

Background estimation

- > Negligible mis-combination for K_S^0 reconstruction (<0.1%)
- > No background from $J/\psi \rightarrow \pi^0 K_S^0 K_S^0 \eta'$: further validation directly from data
- > Little background from non- η' processes: estimated directly from η' mass sideband region:
 - No peaking background
 - Non- η' background fraction: 1.8% for $\eta' \to \pi^+ \pi^- \eta$; 6.8% for $\eta' \to \gamma \pi^+ \pi^-$

Spin-Parity determination benefits from low background level

Mass spectra after final selection

PRL 132 (2024) 181901

Similar structures in $\eta' \rightarrow \pi^+\pi^-\eta$ and $\eta' \rightarrow \gamma \pi^+\pi^$ modes

- Evident $f_0(980)$ in $K_S^0 K_S^0$ mass threshold
- A clear connection between the $f_0(980)$ and X(2370)

 $f_0(980)$ in selection with $M_{K_S^0K_S^0} < 1.1 \text{ GeV}/c^2$

- Clear signal of the X(2370) and η_c
- Reduce PWA complexities from additional intermediate processes

Partial wave analysis (PWA)

- PWA is a key tool to hadron spectroscopy
 - Input: four-momenta of the final-state particles
 - Measure the resonances' **spin-parity**, resonance parameters, production and decay properties, ...
- > PWA of $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta'$ is performed using **covariant tensor formalism**^[1]. The signal amplitudes are parametrized as quasi-sequential two-body decays:
 - $J/\psi \to \gamma X, X \to Y\eta', Y \to K_S^0 K_S^0 \text{ or } X \to ZK_S^0, Z \to K_S^0\eta'$
 - ✓ K_S^0 and η' constructed with daughter particles as they are unstable states
 - Differential cross section is observable: $\omega(\xi, \alpha) = \frac{d\sigma}{d\Phi} = \left|\sum_{j} A_{j}\right|^{2}$

> An unbinned maximum likelihood fit is performed on the data.

[1] Zou & Bugg, Eur. Phys. J. A 16, 537–547 (2003)

???

PWA Fit

S

- > Best fit can well describe the data including resonances (>5 σ): X(1835), X(2370), X(2800), η_c
 - Spin-parity of the X(2370) is determined to be 0^{-+} with significance larger than 9.8 σ w.r.t. other J^{PC} assumptions
 - *X*(2800): a broad structure for the effective contributions from possible high mass resonances

	\square				
state	J^{PC}	Decay mode	Mass (MeV/ c^2)	Width (MeV)	Significance
X(2370)	0^-+	$f_0(980)\eta'$	2395^{+11}_{-11}	188^{+18}_{-17}	14.9σ
X(1835)	0^-+	$f_0(980)\eta'$	1844	192	22.0σ
X(2800)	0^-+	$f_0(980)\eta'$	2799^{+52}_{-48}	660^{+180}_{-116}	16.4σ
η_c	0^-+	$f_0(980)\eta'$	2983.9	32.0	$> 20.0\sigma$
рнер	0-+	$\eta'(K^0_S K^0_S)_{S-wave}$			9.0σ
11151	U	$\eta'(K^0_S K^0_S)_{D-wave}$			16.3σ
	V				

PWA Validations

> Intermediate process: significance <3 σ and impact is ignored

- J^{PC} and decay modes for each components: $f_0(1500)\eta', f_2(1270)\eta', K^*(1410)K_S^0, K_0^*(1430)K_S^0, K_2^*(1430)K_S^0, K^*(1680)K_S^0, (K_S^0K_S^0)_S\eta', (K_S^0K_S^0)_D\eta', (K_S^0\eta')_PK_S^0, (K_S^0\eta')_DK_S^0$
- Additional resonance checks: significance <5σ</p>
 - No evidence of the X(2120) in the $K_S^0 K_S^0$ mass threshold region for $J/\psi \to \gamma K_S^0 K_S^0 \eta'$ only
 - The significance of $X(2600) \rightarrow f_0(980)\eta'$ is 4.2 σ
 - Impact from the X(2120) and X(2600) is considered as systematic uncertainty
- > The X(2800) with a mass of 2799 MeV and width of 660 MeV:
 - Used to described effective contributions from high mass region
 - Strongly reply on the description of η_c lineshape: different variations are included into the systematic uncertainty
 - Statistical uncertainties of the *X*(2800) mass and width are included in the systematic uncertainties on the *X*(2370) measurements

Results

X(2370) measurements: PRL 132 (2024) 181901	LQCD prediction on lightest pseudoscalar glueball:
$I^{PC} = 0^{-+}$ with significance > 9.8 σ	$\succ J^{PC} = 0^{-+}$
$M = 2395^{+11}_{-11}(stat.)^{+26}_{-94}(syst.) \text{ MeV}/c^2$	▶ $M = 2395 \pm 14 \text{ MeV}/c^2$
$\Gamma = 188^{+18}_{-17}(stat.)^{+124}_{-33}(syst.) \text{ MeV}$	
► $B[J/\psi \to \gamma X(2370)] \cdot B[X(2370) \to f_0(980)\eta'] \cdot B[f_0(980)$	\succ B[J/ψ → γG _{0⁻⁺}] = (2.31 ± 0.80) × 10 ⁻⁴
$\rightarrow K_s^0 K_s^0] = 1.31_{-0.22}^{+0.22} (stat.)_{-0.84}^{+2.85} (syst.) \times 10^{-5}$	<u>PRD 100 (2019) 054511</u>

The measurements agree with the predictions on lightest pseudoscalar glueball

- The spin-parity of the X(2370) is determined to be 0^{-+} for the first time
- Mass is consistent with LQCD predictions
- The estimation on $B[J/\psi \rightarrow \gamma X(2370)]$ and prediction on $B[J/\psi \rightarrow \gamma G_{0^{-+}}]$ are at the same level

X(2370) seen in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

- Journal: Phys. Rev. Lett. 115 (2015) 091803
- \succ In the 2D scatter plot of $M(K_s^0 K_s^0)$ vs. $M(K_s^0 K_s^0 \eta)$, **qualitatively**, we can clearly observe same decay patterns between the X(2370) and η_c if phase space allows

Observation and Spin-Parity Determination of the X(1835) in $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta$

With 1.31B J/ ψ events

- In the upper $M(K_s^0 K_s^0)$ mass band of 1.5-1.7 GeV range, • clear signals of both X(2370) and η_c .
- In the lower $M(K_s^0 K_s^0)$ mass band of $f_0(980)$, no X(2370), nor η_c .

 \succ The similarity between the X(2370) and η_c decay modes supports the glueball interpretation of the X(2370)

Observation of new decay modes of X(2370)Summary of decay modes of X(2370)

 $[1] f_0(980) \to K_S^0 K_S^0$ $[2] a_0^0(980) \to \pi^0 \eta$

New decay modes

• $X(2370) \rightarrow K_S^0 K_S^0 \pi^0$, * $\eta \pi^0 \pi^0$, $a_0^0 (980) \pi^0$ firstly observed, all accompanied with η_c

Decay mode	Significance	Ref
$\pi^+\pi^-\eta'$	6.4 <i>σ</i>	<u>RPL 106 (2011) 072002</u>
$K_S^0 K_S^0 \eta$	seen	<u>PRL 115 (2015) 091803</u>
$K \overline{K} \eta'$	8.3σ	<u>EPJC 80, 746 (2020)</u>
$f_0(980)\eta'$ [1]	11.7 <i>σ</i>	<u>PRL 132 (2024) 181901</u>
$K_S^0 K_S^0 \pi^0$	$\gg 5\sigma$	
$\pi^0\pi^0\eta$	$\gg 5\sigma$	ICHEP2024 BESIII Preliminary
$a_0^0(980)\pi^{0}$ [2]	$\gg 5\sigma$	DESHITICULINITY
γφ	No evidence	arXiv:2401.00918
ηηη'	No evidence	PRD 103 (2021) 1, 012009

- > X(2370) has been observed in above typical $\eta_c \rightarrow 3P$ decay modes. (Good similarities with η_c)
- → Upper limits of $B[X(2370) \rightarrow \gamma \phi]$ and $B[X(2370) \rightarrow \eta \eta \eta']$ are well consistent with the predictions of 0⁻⁺ glueball.

Summary

- Glueballs are important predictions from QCD:
 - Unique particles formed by gluons (force carriers) due to self-interactions of gluons
- > The X(2370) is observed in the gluon-rich J/ ψ radiative decay:
 - J^{PC} determined to be 0^{-+}
 - Measurements and predictions on mass and production rate are consistent within uncertainties
 - flavor symmetric decay modes meet expectation
- ——The X(2370) is a glueball-like particle

Looking forward to further experimental + theoretical efforts, which are essential to improve our understanding of this particle.

Thanks!

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

Beijing Electron Positron Collider (BEPCII)

World unique e^+e^- accelerator in charm physics energy region

Glueball Decays

The decay modes of glueballs may resemble those of the Charmonium family decays, as both can only decay via gluons.

 $\pi^+\pi^-K^+K^-$.^[12] For a glueball, say, a $J^{PC} = 2^{++}$ glueball, which is made of two gluons, its decay proceeds via the two-gluon hadronization, which is similar to the second step of the χ_{c2} decay. The difference between the 2^{++} glueball and χ_{c2} in their decays is that the two gluons are hadronized at different energy scales, and consequently in the two cases the branching ratio for a given final state can be different. At the higher energy scale like the χ_{c2}

From Kuang-Ta Chao 1995 Commu. Theor. Phys. 24.373

ple equally to all flavors. Since there has been no glueball confirmed by experiments, the best way looking into the flavor symmetry should be to study the decay processes which proceed through a two gluon intermediate state [10]. Fortunately, a lot of experiments have already studied such processes as the decays of charmonium family. One example is, the two it is worth noticing that there are not any other particles showing such properties [12] as ξ except for the particles with pure OZI suppressed decay modes such as J/ψ , χ_{c0} , χ_{c2} , etc. The flavor-symmetric couplings

The knowledge [12] about the hadronic decays of J/ψ , η_c , χ_{c0} and χ_{c2} which proceed through pure gluon intermediate state suggests that the glueballs

From Tao Huang, Kuang-Ta Chao et al. PLB 380 (1996) 189-192

Lattice QCD predictions for glueball masses and BR:

 \succ 0⁺⁺ ground state: 1.5-1.7 GeV/c²; *B*[*J*/ψ → γ*G*₀⁺⁺] = (3.8 ± 0.9) × 10⁻³.

 \succ 2⁺⁺ ground state: 2.3-2.4 GeV/c²; *B*[*J*/ψ → γ*G*₂++] = (1.1 ± 0.2) × 10⁻².

 \succ 0⁻⁺ ground state: 2.3-2.6 GeV/c²; *B*[*J*/ψ → γ*G*₀⁺⁺] = (2.31 ± 0.80) × 10⁻⁴.

TABLE	I. Bra	anching	g ratios	for	the	decay	of	the	pseud	dosca	lar
glueball	\tilde{G} into	three p	oseudos	scala	r m	esons.					

Quantity	Case (i): $M_{\tilde{G}} = 2.6 \text{ GeV}$	Case (ii): $M_{\tilde{G}} = 2.37 \text{ GeV}$
$\Gamma_{ ilde{G} o KK\eta}/\Gamma_{ ilde{G}}^{ ext{tot}}$	0.049	0.043
$\Gamma_{\tilde{G} \to KK\eta'} / \Gamma_{\tilde{G}}^{\text{tot}}$	0.019	0.011
$\Gamma_{ ilde{G} o \eta \eta \eta} / \Gamma_{ ilde{G}}^{ m tot}$	0.016	0.013
$\Gamma_{ ilde{G} o \eta \eta \eta'} / \Gamma_{ ilde{G}}^{ m tot}$	0.0017	0.00082
$\Gamma_{ ilde{G} o \eta \eta' \eta'} / \Gamma_{ ilde{G}}^{ m tot}$	0.00013	0
$\Gamma_{\tilde{G} \to KK\pi} / \Gamma_{\tilde{G}}^{\text{tot}}$	0.47	0.47
$\Gamma_{ ilde{G} ightarrow\eta\pi\pi}/\Gamma_{ ilde{G}}^{ m tot}$	0.16	0.17
$\Gamma_{\tilde{G} ightarrow \eta' \pi \pi} / \Gamma_{\tilde{G}}^{ m tot}$	0.095	0.090

Pseudoscalar glueball candidate

$\succ \eta(1405) \, / \, \eta(1475)$ puzzle

- $\iota(1440)$, split into $\eta(1405)$ and $\eta(1475)$, first discovered by MARK II in 1980s. Lots of studies at MARK II, MARK III, DM2 and BES.
- Believed as the first glueball candidate due to its large production rate in J $/\psi$ radiative decays and lack of reliable LQCD predictions in 1980s
- No longer to be believed as 0⁻⁺ glueball candidate due to its large differen mass from LQCD prediction.

Institute of High Energy Physics Chinese Academy of Sciences

- \succ Recent BESIII's study in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \pi^0$
 - Consistency between MI and MD results
 - Dominated by 0 -+
 - Two BWs around 1.4 GeV is needed

From the amplitude analysis,

- $\eta(1405)$ is observed, while $\eta(1475)$ can not be excluded •
- $X(1835) \rightarrow \gamma \phi$ suggests its assignment of η' excitation •
- $\eta_c \rightarrow \gamma \phi$ are observed. The very first radiative decay mode of η_c
- Observation of $f_2(1950)$ and $f_0(2200) \rightarrow \gamma \phi$ unfavored their glueball interpretations[PRD 108, 014023, arXiv: 2404.01564]
- No evidence of $X(2370)/\eta_1(1855)$, well consistent with the predictions for glueball/hybrid [PRD 107, 114020, NPA 1037, 122683]

PWA of $J/\psi \rightarrow \gamma \gamma \phi$

> No evidence for the $\eta(1295)$, $\eta(1475)$, $\eta(1855)$, and X(2370) in the $\gamma\phi$ system.

Confirmation of the X(2370) **in** $J/\psi \rightarrow \gamma K \overline{K} \eta'$

 $> J/\psi \rightarrow \gamma K \overline{K} \eta'$ channel was analyzed with ~1.31B J/ψ events

Eur. Phys. J. C 80, 746 (2020)

Observation: X(2370) new decay mode of $K\overline{K}\eta'$

X(2370) seen in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

> Mass spectra

With 1.31B J/ψ events

PRL 115 (2015) 091803

Observation and Spin-Parity Determination of the X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

X(2370) observed in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta'$

- ► The X(2370) was first observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ channel and confirmed in $J/\psi \rightarrow \gamma K \overline{K} \eta'$ channel. The J^{PC} of X(2370) is determined to be 0^{-+} in $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta'$ channel.
- The mass, spin-parity, production and decay properties of the X(2370) are consistent with the features of the lightest pseudoscalar glueball.

Systematic uncertainty

Sources	ΔM (MeV/ c^2)	ΔΓ (MeV)	$\Delta {\cal B} / {\cal B} (\%)$
Event selection			±4.8
Background estimation	+2	$^{+4}_{-4}$	$^{+3.7}_{-5.1}$
$f_0(980)$ parametrization	-6	+7	± 5.3
X(1835) parametrization	$^{+15}_{-12}$	$^{+24}_{-11}$	$^{+20.2}_{-8.3}$
η_c parametrization	-13	-8	-14.5
Breit-Wigner formula	-1	+6	-8.3
Broad 0 ⁻⁺ structure	-88	$^{+111}_{-21}$	+211.8 -56.5
Additional resonances	$^{+22}_{-25}$	$^{+48}_{-21}$	$^{+41.9}_{-20.8}$
Total	$^{+26}_{-94}$	$^{+124}_{-33}$	+217.0 -63.7

Interpretation

	X(2370)	η_c	Interpertation on the X(2370)
$f_0(980)\eta'$	\checkmark	\checkmark	Disfavors $q\overline{q}$ meson with pure $u\overline{u}/d\overline{d}$ component
f ₀ (980)η	Suppressed	Suppressed	Disfavors $q\overline{q}$ meson with pure $s\overline{s}$ component
$f_0(1500)\eta$			Disfavors $q\overline{q}$ meson with pure $s\overline{s}$ component

> The X(2370) decay properties observed: disfavor the interpretation of $q\overline{q}$ meson

- Observed decay modes (η_c dominant decays) and suppressed decay modes are consistent between the X(2370) and η_c
- A good agreement with the glueball interpretation

> The X(2370) production properties observed:

- richly produced in J/ψ radiative decays as the glueball expectation
- In the mass region larger than 2 GeV, the only particle X(2370) for the 0⁻⁺ glueball candidate in η_c radiative decays and two golden decay modes $\pi\pi\eta'$ and $K\bar{K}\eta'$

> Mass, spin-parity: consistent with 0⁻⁺ glueball prediction

Golden Decay Modes in 0⁻⁺ Glueball Searches

- Typically, PPP (3 pseudoscalar mesons, such as ππη, ππη', KKπ) modes are believed as golden decay modes in 0⁻⁺ glueball searches.
 - S wave decays for 0⁻⁺ mesons, no suppression factor, dominant decay modes
 - PPP modes are strongly suppressed in 0⁺⁺, 2⁺⁺ mesons decays spin-parity filter
- PP (2 pseudoscalar mesons) modes are mostly forbidden for 0⁻⁺ mesons
- VV modes (2 vector mesons, such as ωω, φφ, ρρ, K*K*)
 - P wave decays for 0⁻⁺ mesons suppressed decays, especially near mass threshold
 - All J^{PC} mesons allowed, not a spin-parity filter
- Baryon modes
 - All J^{PC} mesons allowed, not a spin-parity filter

Table 8: Possible waves for the decay of $Y \to K_s^0 K_s^0$ and $Z \to K_s^0 \eta'$.

Possible intermediate states

Decays	$f_0 \to K^0_s K^0_s$	$f_2 \to K^0_s K^0_s$	$K^* \to K^0_s \eta'$	$K_0^* \to K_s^0 \eta'$	$K_2^* \to K_s^0 \eta'$
L	0	2	1	0	2

Table 6: Possible waves for the decay of $J/\psi \rightarrow \gamma X$. *L* is the quantum number of the orbital angular momentum.

Decays	$J/\psi \to \gamma 0^{-+}$	$J/\psi \to \gamma 1^{++}$	$J/\psi \to \gamma 2^{-+}$	$J/\psi \to \gamma 2^{++}$
L	1	0,2	1,3	0,2

Table 7: Possible waves for the decay of $X \to Y\eta'$ or $X \to ZK_s^0$ with different J^{PC} of X. Label "--" means that this decay is forbidden.

L Decays	$X \to f_0 \eta'$	$X \to f_2 \eta'$	$X \to K^* K_s^0$	$X \to K_0^* K_s^0$	$X \to K_2^* K_s^0$
0-+	0	2	1	0	2
1++	1	1,3	0,2	1	1,3
2-+	2	0		2	0
2++		1,3			1,3

