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Duality, confinement, gravity

o (Electromagnetic) duality and confinement are often interrelated,
especially in supersymmetric Yang-Mills theories.
Seiberg & Witten (1994)

@ Patterns of duality invariance were observed in the late 1970s in
extended supergravity.
Ferrara, Scherk & Zumino (1977)
Cremmer & Julia (1979)
This triggered research into general aspects of duality invariance.



Impact of supergravity on theoretical physics

@ Realisation of Einstein's dream to unify gravity & electromagnetism
(1976, N = 2 supergravity).
@ New types of gauge theories (compared with Yang-Mills theories):
@ open gauge algebra; and/or
@ linearly dependent gauge generators (e.g., gauge p-forms in
d > p > 1 dimensions).

New quantisation methods (standard Faddeev-Popov approach is
not applicable), including the Batalin-Vilkovisky formalism.

New types of anomalies (e.g., superconformal anomalies).

Modern Kaluza-Klein theories.

Renaissance of electromagnetic duality (nonlinear self-duality).
o Gauge/gravity duality (AdS/CFT).

This talk is mainly devoted to deformations of U(1) duality-invariant
models for nonlinear electrodynamics and their six-dimensional
counterparts — interacting chiral form field theories, specifically:
New surprising results concerning these old subjects.
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Electromagnetic duality: Maxwell’s theory

@ Maxwell's electrodynamics is the simplest and oldest example of a
duality-invariant theory in four spacetime dimensions.

1 1, - =
LMachll(F) - _ZFabFab = E(Ez - 82) ) Fab = aaAb - abAa

@ The Bianchi identity and the equation of motion are
Fp=0, 0Fp=0

with Fap = % £.pcq F< the Hodge dual of F.

@ Since both differential equations have the same functional form, one
may consider so-called duality rotations

F+iF »e¥(F+iF) < E+iB—e¥(E+iB), ¢eR
e Lagrangian Lyraxwen(F) changes, but the energy-momentum tensor
ab 1 s\ 3¢ . =\ bd ac -bd 1 ab cd
7% = S(F+iF) " (F =iF) " nea = F*F*neg — 2™ F“Feg

is invariant under U(1) duality transformations.



Electromagnetic duality: Born-Infeld theory

@ In 1934, Born & Infeld put forward a particular model for
nonlinear electrodynamics

1 1
Lgi(F) = =4 1—\/—det(nap + gFap) { = — = F*Fap + O(F*)
g’ 4

as a new fundamental theory of the electromagnetic field (with g
the coupling constant).

@ In 1935, Schrodinger showed that the Born-Infeld theory possessed
invariance under generalised U(1) duality rotations.

@ Although the great expectations of Born and Infeld never came true,
the Born-Infeld action has re-appeared in the spotlight since the
1980's as a low-energy effective action in string theory.

Fradkin & Tseytlin (1985)
D-branes Polchinski (1995)



Born-Infeld action, duality and supersymmetry

There exist deep and mysterious connections between nonlinear duality
invariance and supersymmetry.

o Maxwell-Goldstone multiplet model for partial N =2 - N =1
supersymmetry breakdown in M*
[Bagger & Galperin, 1996; Rotek & Tseytlin, 1999]
@ is \V = 1 supersymmetric extension of Born-Infeld action
[Cecotti & Ferrara, 1987]
@ is invariant under U(1) supersymmetric duality rotations.
[Brace, Morariu & Zumino, 1999; SMK & Theisen, 2000]
o Maxwell-Goldstone multiplet model for partial ' =2 - N =1
SUSY breaking for curved maximally SUSY backgrounds:
(i) R x S3%; (ii) AdS3 x R; and (iii) pp-wave spacetime
[SMK & Tartaglino-Mazzucchelli, 2016]
with analogous properties.

There exist only five maximally supersymmetric backgrounds in d = 4:
[Festuccia & Seiberg, 2011]
(i) M*; (i) AdSs; (iii) R x S3; (iv) AdS3 x R; and (v) pp-wave spacetime.



Duality invariance and super

@ AdS/CFT correspondence provides the main evidence to believe in self-duality of

the low-energy effective action for the A =4 SU(N) SYM theory on its
Coulomb branch where the gauge group SU(N) is spontaneously broken to
SU(N — 1) x U(1).

It predicts the A" = 4 SYM effective action (in the large-N limit) is related to
the D3-brane action in AdSs x S°

S=T, /d4x (h’l — /= det(gmn + Fm,,)> ,
_ p—1/2 1/2 I I _ Q
gmnfh 77mn+h amX 8nX 3 h= (X/X’)2 5
where X!, I =1,--- 6, are transverse coordinates, T3 = (2mgs)~! and

Q=gs(N-1)/m.
The action S/ T3 possesses (deformed) conformal symmetry and is self-dual in

the sense that it enjoys invariance under electromagnetic U(1) duality rotations.

Self-duality of D3-brane action is a fundamental property related to the S-duality
of type IIB string theory.
Tseytlin (1996), Green & Gutperle (1996)



Electromagnetic duality: Nonlinear electrodynamics

@ General theory of duality invariance in four dimensions
Gaillard & Zumino (1981)
Gibbons & Rasheed (1995)
Gaillard & Zumino (1997)

@ General theory of duality invariance in higher dimensions
Gibbons & Rasheed (1995)
Araki &Tanii (1999)
Aschieri, Brace, Morariu & Zumino (2000)

@ General theory of duality invariance for N =1 and N/ =2
supersymmetric nonlinear electrodynamics
SMK & Theisen (2000)
Partial SUSY breaking often implies U(1) duality invariance.
@ Remarkable reformulation of duality-invariant nonlinear

electrodynamics (manifest duality-invariant self-interaction).
Ivanov & Zupnik (2001)



U(1) duality in nonlinear electrodynamics

@ Nonlinear electrodynamics (effective field theory)
1
L(Fap) = —ZF""bFab + O(F*")

@ Using the definition

~ 1 OL(F
Gab(F) = EEade GCd(F) =2 8’53[7) 5

the Bianchi identity (BI) and the equation of motion (EoM) read
0°Fp=0,  9°Gp=0.

@ The same functional form of Bl and EoM provides a rationale to
introduce a duality transformation

(G/ﬁ’P))_<i Z)(GFEF)>7 <i Z)GGL(2,R)

For G'(F’) one should require

G(F) = F + O(F®),

OL'(F")
OF’ab
Transformed Lagrangian, L'(F), always exists.

~

ab(F/) =2




U(1) duality in nonlinear electrodynamics

The above considerations become nontrivial if the model is required to be
duality invariant (self-dual)

L'(F)=L(F) .

The requirement of self-duality implies the following:

@ Only U(1) duality transformations can consistently be defined in the
nonlinear case.

G(F')\ [ cosp —sing G(F)
F’' o sing  cosp F
Maxwell’s theory also allows scale duality transformations which,

however, are forbidden if the energy-momentum tensor is required to
be duality invariant.

@ The Lagrangian is a solution of the self-duality equation

- - - AL(F
GP G+ FPFp=0,  Gu(F)=2 méab)
Bialynicki-Birula (1983) (remained unnoticed for many years)

Gibbons & Rasheed (1995) Gaillard & Zumino (1997)



Fundamental properties of U(1) duality-invariant models

@ Duality invariance of the energy-momentum tensor.
@ SL(2,R) duality invariance in the presence of dilaton and axion.

o Self-duality under Legendre transformation.



Duality invariance of the energy-momentum tensor

@ Given a duality-invariant parameter g in the self-dual theory,
OL(F,g)/0g is duality invariant.

5%L:%6L:%A%(G G) > ag(c G+F. F):o,

since F is g-independent. Gaillard & Zumino (1997)
@ In particular, the energy-momentum tensor T, is duality invariant.



compact duality: Coupling to dilaton and axion

@ Given a U(1) duality-invariant model, L(Fmn) = L(w, @), its compact duality
group U(1) is enhanced to the non-compact SL(2,R) group by coupling F to

dilaton ¢ and axion a by replacing

1
L(F) = L(F,7,7) = L(e™¥/2F) + JoFF.  r=atie™?

Gibbons & Rasheed (1996)
@ The duality group acts by transformations

G\ _[(a b G , _ar+b
F'') \c d F )’ T7C7—+d’

@ Maxwell's theory coupled to the dilaton and axion

Gaillard & Zumino (1997)

( b )GSL(2,R)

1 1 -
L(F,7.7) = =4 e #F™ Fn + L aF ™ Finy

is Weyl invariant (conformal in flat space), with T being Weyl inert.

T & T local couplings.

Non-minimal operator = generalised heat kernel techniques.



Non-compact duality and quantum theory

@ Let I'(7,7) be the effective action obtained by integrating out the
gauge field in the path integral.

@ Both Weyl and rigid SL(2,R) duality transformations are anomalous
at the quantum level. However, the logarithmically divergent part of
I'(r,7) is invariant under these transformations.

@ General structure of the logarithmic divergence of (7, T)

_ 1 2 2= mn 1 mn —
S = e [D D7 2(R™ ~ _g R)V,,,TV,,T]
1
+ [anTVmTV"T'V,,F 4 ﬁV’"TVm'FV"TV,ﬂ"]

where D27 := V™V, 7 + T i V"’TVmT and « and B are numerical parameters.
Osborn (2003)

o [d*x,/—g £is SL(2,R) invariant.
o [d*x,/—g £ is invariant under Weyl transformations
gmn(x) = e Wg(x),  T(x) = 7(x)

e Contribution to the Weyl anomaly: 6T (7,7) o [d*x/—go L



Self-duality under Legendre transformation

Legendre transformation for nonlinear electrodynamics L(F).

@ Associate with L(F) an equivalent auxiliary model defined by
1 ~
L(F’FD):L(F)—EF'FD, Fp®® = &°Ap® — 8°Ap?

in which F,, is an unconstrained two-form (auxiliary field).
e Eliminate F,; using its equation of motions G(F) = Fp to yield
Lp(Fp) == (L(F)le )|
PR/ 2 P p—rr)

o If L(F) solves the self-duality equation G - G + F - F =0, then

Self-dual electrodynamics



General structure of self-dual electrodynamics

@ Given a model for nonlinear electrodynamics, its Lagrangian L(Fap)
can be realised as a real function of one complex variable,

L(Fap) = L(w,®) , w=a+if,

with o = % F2*F,, and 8 = % F"”blEab the EM invariants.

L(w,@) = —% (w—HD) twd MNw,@) .

o Self-duality equation (SDE), G- G + F - F = 0, turns into

Im{ a(gw/\) e <a(gw/\)>2 } o

@ Assuming A(w, @) to be real analytic at w = 0 (existence of weak-field limit), the
general solution of SDE involves a real function of one real argument f(w)

_ P54 _
ANw,0) = E E Cp,g Ww” , Cpg =Cqp €ER

n=0 p+q=n

SDE uniquely fixes the level-n coefficients cp, 4 with p # g through those at
lower levels, while ¢, , remain undetermined.

Functional freedom: Real function of one real variable.



General structure of self-dual electrodynamics

e Omitting the requirement of A(w,®) being real analytic at w = 0,
new solutions of the self-duality equation become possible.

@ ModMax theory

Ly (w, @) = =2 (w + @) coshy + Vw sinhy
w=a+if, a=fFPF,, B=;F"F,,

with v > 0 a parameter.
Bandos, Lechner, Sorokin & Townsend arXiv:2007.09092

@ The corresponding A(w,®) is

_ sinh 1/1 1
/\MM(w,w) = \/(,Tz; — 5(; + 5)(COSh’Y — 1) s

@ Unique conformal solution of the self-duality equation.



Formulation with manifestly U(1) invariant interaction

o Self-duality equation G - G+ F-F =0is a nonlinear equation on
the Lagrangian L(F), and U(1) duality-invariant deformations of
L(F) are difficult to control.

@ In 2001, lvanov & Zupnik proposed a reformulation of nonlinear
electrodynamics with the property that U(1) duality invariance
becomes equivalent to manifest U(1) invariance of the interaction.

@ Nonlinear twisted self-duality constraint, which was put forward by
Bossard & Nicolai (2011) and by Carrasco, Kallosh & Roiban
(2012), proves to be a variant of the Ivanov-Zupnik formulation.



Formulation with manifestly U(1) invariant interaction

@ The Ivanov-Zupnik formulation involves an auxiliary (unconstrained)

antisymmetric tensor Vzp = — Vs, which is equivalently described by
a symmetric rank-2 spinor V.3 = V3, and its conjugate Vaﬁ" where
a,f=1,2.

o L(F.p) is replaced with a new Lagrangian

1 1
L(Fap, Vap) = ZFa”Fab +5 VPV — VP Fop 4 Ling(Vab) -

The original Lagrangian L(F,p) is obtained from L(F.p, Vap) by
integrating out the auxiliary variables.

@ The condition of U(1) duality invariance proves to be equivalent to
the requirement that the self-interaction

Line(Vab) = Line (v, 7) , v = VP Viap
1 ~ ~
vabzi(vabiivab), Vi=7FiVy, V=V, +V_
is invariant under linear U(1) transformations v — €'y, with ¢ € R,
Lill‘ﬂ(y7 l_/) - Lillt(()iwya Cihplj) - Lint(y7 l_/) - h(l/l_/) )

h an arbitrary real function of one real variable (functional freedom).



Conformal duality-invariant electrodynamics

@ ModMax theory

Lym(w, @) = —% cosh 7(0) +cTJ) + sinhyvwa |

w:a—’—iﬁa O‘:%Fab’caba B:%Fabﬁab’

with v > 0 a parameter.
Bandos, Lechner, Sorokin & Townsend arXiv:2007.09092

@ Derivation of ModMax using the lvanov-Zupnik approach
SMK arXiv:2106.07173
This unique conformal duality-invariant model corresponds to

Lint(ya 17) =K Vlja

with r a coupling constant. Integrating out the auxiliary variables
Vo and VaB leads to Lyiv(w, @) with

K

sinh~vy = W .



T T-like flows in four dimensions

T T deformations of QFTs in two dimensions:

Zamolodchikov (2004)
Smirnov & Zamolodchikov, arXiv:1608.05499
Cavaglia, Negro, Szécsényi & Tateo, arXiv:1608.05534 ......

Remarkably active research direction

In four dimensions, we are forced to work with effective field theories,
hence T T-like flows



T T-like deformations in four dimensions

Two examples of T T-like flows
@ Born-Infeld theory (A = g2)

Li(F) = l{1 — /-~ det(ns + VAFo) |

A
1 A A2
= A2 Y 2
)\{1 \/1+ 2F 16(FF) }
It holds that
aLBI _ 1 ab 1 a \2
an =TT = 5(T%F)

o ModMax theory

Lo = 3 Frcosh(x) + 31/ (F2)2 + (FF) sin(1)

It holds that (root T T)

L 1 1 1
0 MM _ \/TabTab _ Z(Taa)Q — /TabTab

0y 2 2

@ Can the above results be manifestations of a general pattern?




T T-like deformations

Ferko, SMK, Smith & Tartaglino-Mazzucchelli (2023)
Consider a U(1) duality-invariant theory with Lagrangian L(F). An
observable O(F) is duality invariant if it obeys the equation

00

T G =0,  OsFa = 0Go(F
8Fabb0 oFab = pGap(F)

@ Theorem 1: Any two duality-invariant observables O1(F) and O (F)
prove to be functionally dependent,

T(O01,0,) =0

@ Theorem 2: Every duality-invariant observable O(F) is as a function
of the energy-momentum tensor, O = f(T,p).
o Corollary: Given a one-parameter family of U(1) duality-invariant
theories, L(F,g), Lagrangian obeys T T-like flow equation
0

ol = S(Tan)



T T-like deformations in four dimensions

Consider a one-parameter family of theories L()‘)(F) satisfying the
differential equation and boundary condition

L(F

oL=(F) m( ) .- ON(F)=0(F;n),  LOF)=L(F),

with O (F) being a duality-invariant function,

20 ()
Oy Cob

F)=0
If the Lagrangian L(F) describes a U(1) duality-invariant theory satisfying
Gabgab+FabEab:07

then all theories associated with the Lagrangians L(A)(F) are duality
invariant.



T T-like flows for gauge (2n — 1)-forms in 4n dimensions

@ The Gaillard-Zumino-Gibbons-Rasheed formalism for nonlinear
electrodynamics in d = 4 was extended to d = 4n dimensions,
n>1, in the late 1990s.

Gibbons & Rasheed (1995), Araki & Tanii (1999)

@ In a curved space M*", a self-interacting theory of a gauge p-form
Ay, (for p=2n—1) such that its Lagrangian, L = L(F), is a
function of the field strength F,, ..., = (P + 1)01, Aps...1ip1]-

@ In order for this theory to possess U(1) duality invariance, its
Lagrangian must satisfy the self-duality equation

+ F#l---/tmllE

Hi---Hpt1

Glllu-ﬂp\l&

H1---Hpt1

:O7

with Gr--#e1(F) = (p + 1)1OL(F)/OF,

H1---Hpt1
@ Every solution of the self-duality equation defines a U(1)
duality-invariant theory. Infinitesimal U(1) duality transformation is

o(7)-(5 5)(8) we



T T-like flows for gauge (2n — 1)-forms in 4n dimensions

@ Duality-invariant observable O(F)

00(F) G _0.

H1---Hpt1
aFHLu#pH

@ Such observables generate consistent flows in the space of field
theories describing the dynamics of self-interacting gauge p-forms.
o Let LO)(F) and OM)(F) be two scalar functions that depend on a
real parameter vy and satisfy the following conditions:
O LD and O obey the equations

0

DOM(F)
L) — o) G0 —0.
Oy ’ aFM-»-#pH Hattpi
@ L(F) = LO(F) is a solution of the self-duality equation.
Then LO)(F) is a solution of the self-duality equation V.

In the n > 1 case, we do not yet know whether all flows of self-dual
theories are generated by the energy-momentum tensor.



Deformations of chiral two-form gauge theories in d = 6

@ d = 6 counterparts of U(1) duality-invariant models for nonlinear
electrodynamics are interacting chiral two-form gauge theories.
@ PST formulation for chiral two-forms in six dimensions
Pasti, Sorokin & Tonin (1996, 1997)
o Every deformation of interacting chiral two-form gauge theory is
generated by the energy-momentum tensor.
Ferko, SMK, Lechner, Sorokin & Tartaglino-Mazzucchelli (2024)
Some technical details are provided below.



T T-like flows for chiral 2n-forms in 4n + 2 dimensions

@ PST formulation for chiral p-forms in 4n+ 2 = 2p + 2 dimensions
Pasti, Sorokin & Tonin (1996, 1997)
Buratti, Lechner and Melotti (2019)
° Au(p) = Aj...u, is @ gauge p-form potential on a time orientable
spacetime M9 with metric g,,,, and

FH(P+1) =(p+ 1)8[H1AH2~~H;:+1]

its gauge-invariant field strength.
@ Introduce a normalized timelike vector field v#,

By, o—
vy, =—1.

Its existence is guaranteed on (/\/ld,g,“,).
@ Associate with F, ;1) the electric field

— v g __
Enpy = Fusepprv” Epipp1ov® =0,

and the magnetic field

Bu(p) = Frusenor V" Bus..piprov” =0, F=F



T T-like flows for chiral 2n-forms in 4n + 2 dimensions

@ Action functional
Oua
v—0a-0a

Existence of a scalar field a(x), such that v# is past directed and
timelike, is guaranteed on every globally hyperbolic spacetime.

1
5[A7a]:/ddxv_g [2p!E'B_H(Bu(p)vgﬁw) vV =

@ The scalar function H(B,,(4), 8u) must satisfy a differential
condition in order for S[A, a] to be invariant under PST gauge
transformations (see below). Defining the derivative of H by

1
537‘[(8,8“) = E(SBMWHPHM-.-M ) HHI»--ILP—IVVV =0,

the master equation on H is

B[/llmﬂp B/lpvlmﬂzpl - H[Mlm#p HHP‘Fl"'p‘QP] ’

Analogue of the self-duality equation in 4n dimensions



T T-like flows for gauge 2n-forms in 4n + 2 dimensions

@ PST gauge transformations
6AH(P) = PV[u1¢u2...up] 5 (Sa = O,
e B _
0Au(p) = J—0a0a (Eu(p) Hu(P)) ) da=¢.

a(x) is a Stueckelberg field. Useful gauge condition d,,a = §,,°.

@ Gauge freedom associated with the first transformation allows us to
write the equation of motion for A in the form

Eup) = Hup) =0

Nonlinear self-duality condition



T T-like flows for chiral 2n-forms in 4n + 2 dimensions

Ferko, SMK, Lechner, Sorokin & Tartaglino-Mazzucchelli (2024)

o Invariant observable O(B,,(,), guv) is a scalar function satisfying the
first-order differential equation

Opsscopip Pipr i) = 0

On the mass shell such quantities are v#-field independent and
hence Lorentz (or general coordinate) invariant.
@ Suppose the interaction term depends on a parameter 7,

1
S[A a;9] = /ddX\/% [2P!E' B —H(Bu(p): 87| »

such that H(B,,(p), 8.v;Y) is a solution of the equation
B H

B[#l--'ﬂp Bpitee-pi2p] = H[#lmllp Hpt1---H2p)

for every value of 4. Then
0
O =—%H(B,g;
5, 1(B.&:7)

is an invariant observable.



T T-like flows for chiral 2n-forms in 4n + 2 dimensions

Let HOV(B(p), &uv) and OO)(B (), guv) be two scalar functions that
depend on a real parameter v and satisfy the following conditions:

o H) and OM) obey the equations

0
™) ™) ()
afyH =07 ’ O[Hl -Hp HH;?+1 H2p] T =0;

° H(O)(Bu(p)7gm,) is a solution of

B[ﬂl--'/”pB Hi, .., H,

/‘p41<--,“2p] - “Hp /‘p\lmllz;)]

Then H(V)(B ), &uv) is a solution of the master equation at every value
of the parameter .

Six-dimensional story (n = 1):

@ Any two invariant observables O; and O, are functionally dependent.

o Every invariant observable O proves to be a function of
the energy-momentum tensor, O = f(T,,).

i = = =
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