Anisotropic pressure and novel first-order phase transition in SU(3) Yang-Mills theory on $\mathbb{T}^2\times\mathbb{R}^2$

Collaborators: A. Iwanaka (RCNP), M. Kitazawa(YITP), D. Suenaga (Nagoya-U)

Contents

- Introduction
- Model construction
- Results
- Summary

Introduction

Anisotropic pressure system for QCD

Thermal Casimir effect

The thermodynamics on $\mathbb{T}^{\!2}\times\mathbb{R}^2$ ~lattice results~

Lattice analysis at high temperature

Elucidate the physics **behind the results** by **a model**

Model construction

Polyakov loop effective model

Polyakov loop Ω_c Oder parameter of deconfinement (Symmetry : Center symmetry)

$$\Omega_{c}(x, \mathbf{x}_{c}^{\perp}) = \frac{1}{N} \operatorname{Tr} \left[\mathscr{P} \exp \left(i \int_{0}^{L_{c}} A_{c}(x_{c}, \mathbf{x}_{c}^{\perp}) dx_{c} \right) \right] \qquad A_{c} = \frac{1}{L_{c}} \begin{pmatrix} (\theta_{c})_{1} & 0 & 0 \\ 0 & (\theta_{c})_{2} & 0 \\ 0 & 0 & (\theta_{c})_{3} \end{pmatrix} \\ x_{c} = x, \, \mathbf{x}_{c}^{\perp} = (\tau, y, z) \text{ for } c = x \end{cases}$$

Polyakov loop eigenvalues (Mean field approximation)

Improvement to the Polyakov loop model

- Meisinger's model is simple and qualitatively reproduce the lattice data.
 P. N. Meisinger et al. (2002)
- Dumitru et al. extends this model with two parameters and Dumitru's model quantitatively reproduce the lattice data A. Dumitru et al. (2012)

Free energy from Polyakov loop
Free energy
$$\begin{array}{l} P. N. \text{ Meisinger et al. (2002)} \\ \hline A. \text{ Dumitru et al. (2012)} \end{array}$$

$$f(L_c; P_c) = f_{\text{pert}}(L_c; \Omega_c) + f_{\text{pot}}(L_c; \Omega_c)$$

$$\begin{array}{l} Potential term \\ \rightarrow \text{Provoke phase transition} \\ \text{Based on the Meisinger's} \\ \text{model (with two parameters)} \\ \text{By using the Polyakov loop} \\ \text{eigenvalues} \end{array}$$
Construct a Model on T2xR2 based on

the Finite temperature model

A. Dumitru et al. (2012)

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns

Constraint on free energy

• Invariant under an **exchange** of τ, x $f(L_{\tau}, L_{x}; \theta_{\tau}, \theta_{x})$ $= f(L_{x}, L_{\tau}; \theta_{x}, \theta_{\tau})$ • Reduce to $\mathbb{S}^{1} \times \mathbb{R}^{3}$ at **Limit** $L_{x} \to \infty$

Separable extensions from potential term of Finite temp. Polyakov loop model

$$f_{\text{pot}}^{\mathbb{T}^2 \times \mathbb{R}^2}(L_{\tau}, L_x; \theta_{\tau}, \theta_x) = f_{\text{pot}}^{\mathbb{S}^1 \times \mathbb{R}^3}(L_{\tau}; \theta_{\tau}) + f_{\text{pot}}^{\mathbb{S}^1 \times \mathbb{R}^3}(L_x; \theta_x)$$

Separable ansatz

$$f_{\text{pot}}^{\mathbb{T}^2 \times \mathbb{R}^2}(L_{\tau}, L_x; \theta_{\tau}, \theta_x) = f_{\text{pot}}^{\mathbb{S}^1 \times \mathbb{R}^3}(L_{\tau}; \theta_{\tau}) + f_{\text{pot}}^{\mathbb{S}^1 \times \mathbb{R}^3}(L_x; \theta_x)$$

Does not capture the Lattice results as well

Cross term

Results

What is the mechanism to reproduce Lattice results ?

Polyakov loops geometry explains Lattice thermodynamics

Polyakov loop of separable pot

Polyakov loop \rightarrow Thermodynamics at high temp.

The temperature dependence of the pressure ratio has a rapidly decreasing region.

Polyakov loop \rightarrow Thermodynamics at high temp.

The Rapid change can be understood from the jump of the Polyakov loops.

Summary

- Discuss the Anisotropic pressure in YM on $\mathbb{T}^2 \times \mathbb{R}^2$
- Lattice results show the unique behavior
- Construct Polyakov loop effective model on $\mathbb{T}^2 \times \mathbb{R}^2$
- Cross term lead to change the behavior of Polyakov loops
- This change explain the lattice results and predict the new 1st order phase transition.

Thank you for your attention

Back up

Back up

TABLE I. Simulation parameters $\beta = 6/g_0^2$ and lattice volume $N_x \times N_z^2 \times N_\tau$ for each temperature *T*. The vacuum subtraction is performed on lattices with N_{vac}^4 .

T/T_c	β	N_z	$N_{ au}$	N_x	$N_{\rm vac}$
1.12	6.418	72	12	12, 14, 16, 18	64
	6.631	96	16	16, 18, 20, 22, 24	96
1.40	6.582	72	12	12, 14, 16, 18	64
	6.800	96	16	16, 18, 20, 22, 24	128
1.68	6.719	72	12	12, 14, 16, 18, 24	64
	6.719	96	12	14, 18	64
	6.941	96	16	16, 18, 20, 22, 24	96
2.10	6.891	72	12	12, 14, 16, 18, 24	72
	7.117	96	16	16, 18, 20, 22, 24	128
2.69	7.086	72	12	12, 14, 16, 18	•••
≃ 8.1	8.0	72	12	12, 14, 16, 18	•••
<u>~25</u>	9.0	72	12	12, 14, 16, 18	•••

M. Kitazawa et al. (2019)

Back up

Modelが持つべき特徴 (S¹×ℝ³)

T. Iritani et al. (2019)

Potential term (non-pert.)

Free energy

P. N. Meisinger et al. (2002)

$$f(L_{\tau};\theta_{\tau}) = \sum_{n \in \mathbb{Z}} \int \frac{d^{3}k}{(2\pi)^{3}} \operatorname{tr}_{A} \ln\left[\left(\frac{2\pi n}{\beta} - A_{\tau}\right)^{2} + \vec{k}^{2} + m_{g}^{2}\right] = f_{\text{pert}} + \left[m_{g}^{2}F(L_{\tau},\theta_{\tau})\right] + \mathcal{O}(m_{g}^{4})$$
$$f_{\text{pot}} \sim L_{\tau}^{-2}$$

Without parameter

A. Dumitru et al. (2012) → Two parameter model

$$f_{\text{pot}} \longrightarrow c_1 F(L_{\tau}, \theta_{\tau}) + c_2 F'(L_{\tau}, \theta_{\tau})$$

With parameters • "Two parameter model" on $\mathbb{S}^1 \times \mathbb{R}^3$

Result

• "Two parameter model" on $\mathbb{S}^1 \times \mathbb{R}^3$

Well-explain the thermodynamic of lattice near T_c

Extend two parameter model on $\mathbb{T}^2 \times \mathbb{R}^2$

 $Model \sim {\sf Two \ Polyakov \ loop} \sim$

Polyakov loops along two compactified directions

$$P_{\tau} = \frac{1}{N_c} \operatorname{Tr} \left[\mathscr{P} \exp \left(i \int_0^{L_{\tau}} A_{\tau} d\tau \right) \right] \qquad P_x = \frac{1}{N_c} \operatorname{Tr} \left[\mathscr{P} \exp \left(i \int_0^{L_x} A_x dx \right) \right]$$

Assumption : Diagonalized background gauge fields

$$\begin{aligned} A_{y}, A_{z} &= 0 \\ A_{\tau} &= \frac{1}{L_{\tau}} \begin{pmatrix} (\theta_{\tau})_{1} & 0 & 0 \\ 0 & (\theta_{\tau})_{2} & 0 \\ 0 & 0 & (\theta_{\tau})_{3} \end{pmatrix} \quad A_{x} &= \frac{1}{L_{x}} \begin{pmatrix} (\theta_{x})_{1} & 0 & 0 \\ 0 & (\theta_{x})_{2} & 0 \\ 0 & 0 & (\theta_{x})_{3} \end{pmatrix} \end{aligned}$$

$$f = f_{\text{pert}}^{\mathbb{T}^2 \times \mathbb{R}^2} (L_{\tau}, L_x; \theta_{\tau}, \theta_x) + f_{\text{pot}}^{\mathbb{T}^2 \times \mathbb{R}^2} (L_{\tau}, L_x; \theta_{\tau}, \theta_x)$$

Cross term

$$f_{\text{cross}} = g(L_{\tau}, L_{x}) \left[c_{4} \text{Tr}(P_{\tau})^{2} \text{Tr}(P_{x})^{2} + c_{5} \left(\text{Tr}(P_{\tau})^{2} \text{Tr}(P_{x}^{3}) + \text{Tr}(P_{\tau}^{3}) \text{Tr}(P_{x})^{2} \right) + c_{6} \text{Tr}(P_{\tau}^{3}) \text{Tr}(P_{x}^{3}) \right]$$

$$T_{d}^{-2n+4}(L_{\tau}^{2}+L_{x}^{2})^{-n}$$
• Restriction of n
• (i) $1.5 < n < 2$
• $f_{pert} \sim \mathcal{O}(L_{c}^{-4})$
• $f_{port}^{\mathbb{S}^{1} \times \mathbb{R}^{3}} \sim \mathcal{O}(L_{c}^{-2})$
• $\lim_{L_{c} \to \infty} f_{pert} = \mathcal{O}(L_{c}^{-3})$

Model ~One loop free energy~

- Usisng the background field methodを用いる
- **Regularization** + the high-temperature expansion

One loop perturbative free energy

$$f_{\text{pert}}(\vec{\theta}_{\tau},\vec{\theta}_{x};L_{\tau},L_{x}) = -\frac{8\pi^{2}}{45L_{\tau}^{4}} + \frac{8\phi_{\tau}^{2}(\phi_{\tau}-\pi)^{2} + \phi_{\tau}^{2}(\phi_{\tau}^{2}-2\pi)^{2}}{6\pi^{2}L_{\tau}^{4}} \\ -\frac{8\pi^{2}}{45L_{x}^{4}} + \frac{8\phi_{x}^{2}(\phi_{x}-\pi)^{2} + \phi_{x}^{2}(\phi_{x}^{2}-2\pi)^{2}}{6\pi^{2}L_{x}^{4}} \\ -\frac{8}{\pi^{2}}\sum_{l_{\tau},l_{x}=1}^{\infty} \frac{1+2\cos(\phi_{\tau}l_{\tau})\cos(\phi_{x}l_{x}) + \cos(2\phi_{x}l_{\tau})\cos(2\phi_{x}l_{x})}{((l_{\tau}L_{\tau})^{2} + (l_{x}L_{x})^{2})^{4}} \\ \text{Total free energy}$$

Total free energy

Dominant at deconfined phase

$$f_{\text{tot}} = f_{\text{pert}}(\vec{\theta}_{\tau}, \vec{\theta}_{x}; L_{\tau}, L_{x}) + f_{\text{pot}}(\vec{\theta}_{\tau}, \vec{\theta}_{x}; L_{\tau}, L_{x})$$

Dominant at confined phase

これは適宜指摘した方が良い? 少なくとも位置が悪い

Model ~Potential term~

The general properties of the free energy

1. YM theory on $\underline{\mathbb{T}^2 \times \mathbb{R}^2}$ is **invariant** under $\tau \leftrightarrow x$

$$f_{\text{tot}}(\vec{\theta}_{\tau}, \vec{\theta}_{x}; L_{\tau}, L_{x}) = f_{\text{tot}}(\vec{\theta}_{x}, \vec{\theta}_{\tau}; L_{x}, L_{\tau})$$

2. At $L_{\tau} \to \infty$ ($\tau \to 0$), the system is **irrelevant** for the **BC**.

 $P_{\tau} = 0$ ($\tau \leftrightarrow x$ symmetry: P_x at $L_x \to \infty$)

3. For
$$L_x \to \infty$$
, $\mathbb{T}^2 \times \mathbb{R}^2 \to \mathbb{S}^1 \times \mathbb{R}^3$

$$f_{\rm pot}^{\mathbb{T}^2 \times \mathbb{R}^2} \to f_{\rm pot}^{\mathbb{S}^1 \times \mathbb{R}^3}$$

4. For $L_{\tau} = L_x \to 0 \ (T \to \infty), f_{\text{pert}}$

is **dominant** contribution

$$f_{\text{pert}} \sim \mathcal{O}(L_{\tau}^{-4}, L_{x}^{-4})$$

Model ~One loop free energy~

- We use the background field method
- Regularization + the high-temperature expansion

One loop perturbative free energy 間違いあり $f_{\text{pert}}(\vec{\theta}_{\tau},\vec{\theta}_{x};L_{\tau},L_{x}) = -\frac{8\pi^{2}}{45L^{4}} + \frac{2\pi^{2}}{3L^{4}}B_{4}\left(\frac{\phi_{\tau}}{2\pi}\right) - \frac{8\pi^{2}}{45L^{4}} + \frac{2\pi^{2}}{3L^{4}}B_{4}\left(\frac{\phi_{x}}{2\pi}\right)$ $-\frac{8}{\pi^2} \sum_{l=l=1}^{\infty} \frac{1 + 2\cos(\phi_{\tau}l_{\tau})\cos(\phi_{x}l_{x}) + \cos(2\phi_{x}l_{\tau})\cos(2\phi_{x}l_{x})}{((l_{\tau}L_{\tau})^2 + (l_{x}L_{x})^2)^4}$ $B_4\left(\frac{\phi_{\tau}}{2\pi}\right) = \frac{8\phi_{\tau}^2(\phi_{\tau} - \pi)^2 + \phi_{\tau}^2(\phi_{\tau}^2 - 2\pi)^2}{4\pi^4}$ Total free energy Dominant at deconfined phase $f_{\text{tot}} = f_{\text{pert}}(\vec{\theta}_{\tau}, \vec{\theta}_{x}; L_{\tau}, L_{x}) + f_{\text{pot}}(\vec{\theta}_{\tau}, \vec{\theta}_{x}; L_{\tau}, L_{x})$

Dominant at confined phase

Model ~Potential term~

• "Two parameter model" on $\mathbb{S}^1 \times \mathbb{R}^3$

Free energy

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns

$$\frac{\partial}{\partial\beta}\sum_{l}\ln\left[(\omega_{l}-\varphi/\beta)^{2}+E^{2}\right]=n(E,\varphi),$$

$$n(E,\varphi) = E\Big(1 + \frac{1}{e^{\beta E + i\varphi} - 1} + \frac{1}{e^{\beta E - i\varphi} - 1}\Big),$$

$$p_x^{\text{pert}} = -\frac{\partial (L_x f_{\text{pert}})}{\partial L_x} \Big|_{\Omega_\tau, \Omega_x} \\ = \frac{2}{L_\tau} \sum_{j,k=1}^3 \left(1 - \frac{\delta_{jk}}{3} \right) \sum_{\ell_\tau} \int \frac{d^2 p_L}{(2\pi)^2} n(\mathcal{E}, (\Delta \theta_x)_{jk})$$
(5)

$$\mathcal{E}^2 = (\omega_\tau - (\Delta \theta_\tau)_{jk} / L_\tau)^2 + \mathbf{p}_L^2.$$
 (6)

$$p_z^{\text{pert}} = -\frac{\partial}{\partial L_x} (L_x f_{\text{pert}})$$

= $\frac{2}{L_\tau} \sum_{j,k=1}^3 \left(1 - \frac{\delta_{jk}}{3}\right) \sum_{\ell_\tau} \int \frac{d^2 p_L}{(2\pi)^2}$
× $\ln(1 - e^{-\beta \mathcal{E} + i(\Delta \theta_x)_{jk}}) (1 - e^{\beta \mathcal{E} - i(\Delta \theta_x)_{jk}})$

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns

).