Anisotropic pressure and novel first-order phase transition in SU(3) Yang-Mills theory on $\mathbb{T}^2 \times \mathbb{R}^2$

Collaborators: A. Iwanaka (RCNP), M. Kitazawa(YITP), D. Suenaga (Nagoya-U)

Contents

- Introduction
- Model construction
- Results
- Summary

Introduction

Anisotropic pressure system for QCD

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 5 (25)

Thermal Casimir effect

The thermodynamics on $\mathbb{T}^2 \times \mathbb{R}^2$ ~lattice results~

Lattice analysis at high temperature

 \mathbf{u} $\frac{1}{2}$ the scales probed by the run number Elucidate the physics behind the results by a model

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 6 (25

Model construction

Polyakov loop effective model

Polyakov loop Ω_c Oder parameter of deconfinement (Symmetry: Center symmetry)

$$
\Omega_c(x, \mathbf{x}_c^{\perp}) = \frac{1}{N} \text{Tr} \left[\mathcal{P} \exp \left(i \int_0^{L_c} A_c(x_c, \mathbf{x}_c^{\perp}) dx_c \right) \right]
$$
\n
$$
A_c = \frac{1}{L_c} \begin{pmatrix} (\theta_c)_1 & 0 & 0 \\ 0 & (\theta_c)_2 & 0 \\ 0 & 0 & (\theta_c)_3 \end{pmatrix}
$$
\n
$$
x_c = x, \mathbf{x}_c^{\perp} = (x, y, z) \text{ for } c = x
$$

Polyakov loop eigenvalues (Mean field approximation)

Improvement to the Polyakov loop model $\begin{array}{ccc} \hline \end{array}$ provement to the P colors, the transition is of the transition in the transition is parameter or the transition in the transition

- Meisinger's model is simple and qualitatively reproduce the lattice data. P. N. Meisinger et al. (2002) $\bigcap_{i=1}^n A_i$ perturbative gluons in the set of t
- Dumitru et al. extends this model with two parameters and Dumitru's model quantitatively reproduce the lattice data A. Dumitru et al. (2012) Dumitru's model **quantitative Purnicid's model quarititative** [12] give a simple analytic form,

Free energy	Polyakov loop
Free energy	PA. Meisinger et al. (2002)
$f(L_c; P_c) = f_{pert}(L_c; \Omega_c) + f_{pot}(L_c; \Omega_c)$	
Perturbative term	Potential term
Free energy of massless gluon with constant background fields A_r	Potential term
with constant background fields A_r	Based on the Meisinger's model (with two parameters)
$f_{pert}(L_r; \theta_r) = \sum_{n \in \mathbb{Z}} \int \frac{d^3k}{(2\pi)^3} tr_A \ln \left[\left(\frac{2\pi n}{\beta} - A_r \right)^2 + \vec{k}^2 \right]$	By using the Polyakov loop eigenvalues
Construct a Model on T2xR2 based on	

the Finite temperature model

A. Dumitru et al. (2012)

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 12/25

Constraint on free energy

Olnvariant under an exchange of *τ*, *x* Reduce to $\mathbb{S}^1 \times \mathbb{R}^3$ at **Limit** $L_x \to \infty$ $f(L_{\tau}, L_{\tau}; \theta_{\tau}, \theta_{\tau})$ $= f(L_x, L_y; \theta_x, \theta_z)$

Separable extensions from potential term of Finite temp. Polyakov loop model

$$
f_{\text{pot}}^{\mathbb{T}^2 \times \mathbb{R}^2} (L_{\tau}, L_x; \theta_{\tau}, \theta_x) = f_{\text{pot}}^{\mathbb{S}^1 \times \mathbb{R}^3} (L_{\tau}; \theta_{\tau}) + f_{\text{pot}}^{\mathbb{S}^1 \times \mathbb{R}^3} (L_x; \theta_x)
$$

Separable ansatz

$$
f_{\text{pot}}^{\mathbb{T}^2 \times \mathbb{R}^2} (L_{\tau}, L_x; \theta_{\tau}, \theta_x) = f_{\text{pot}}^{\mathbb{S}^1 \times \mathbb{R}^3} (L_{\tau}; \theta_{\tau}) + f_{\text{pot}}^{\mathbb{S}^1 \times \mathbb{R}^3} (L_x; \theta_x)
$$

while the discontinuity of Px does exist at the first-order order order order or \sim

IV. THERMODYNAMICS IN THE

Externally, Does not capture the Lattice rest plane in Fig. 8. As explained above the fig. 8. As explained above the first-order phase re the Lattice results as well line shows the first-order phase transition. Does not capture the Lattice results as well

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 14/25 The results, however, saam commonioned and the nadion oppo Γ \sim C Currichard of the example, and intervals of the theorem introduction of the theorem introduction of the set of the

at several Lx for N ¼ 3.

Cross term

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 15/25

Results

 $\boldsymbol{\mathcal{X}}$

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 17/25

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns

What is the mechanism to reproduce Lattice results ?

Polyakov loops geometry explains Lattice thermodynamics

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns

Polyakov loop of separable pot

Polyakov loop \rightarrow Thermodynamics at high temp. ynamics at nign temp. \mid

boundary condition, a significant anisotropy manifests itself

 $\sum_{i=1}^n$ in Fig. 5, we show the behavior of Eq. (18) as functions of $\sum_{i=1}^n$ \sim of the presente reties thermodynamic properties computed from the lattice at \sim has a rapidly decreasing region. resummed thermal field theory at three or four loops particle shows the massless free scalar theory for the massless free scalar theory for the mass of the The temperature dependence of the pressure ratio

Polyakov loop \rightarrow Thermodynamics at high temp.

• The Rapid change can be understood from the **jump** of the Polyakov loops.

Summary

- Discuss the Anisotropic pressure in YM on $\mathbb{T}^2\times\mathbb{R}^2$
- **Lattice results show the unique behavior**
- Construct Polyakov loop effective model on $\mathbb{T}^2\times\mathbb{R}^2$
- **Cross term** lead to change the behavior of Polyakov loops
- **This change explain the lattice results** and predict the new 1st order phase transition.

Thank you for your attention

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 25/25

Back up

Back up KITAZA MOGLIA CHE DUCIN UP

TABLE I. Simulation parameters $\beta = 6/g_0^2$ and lattice volume $N_x \times N_z^2 \times N_\tau$ for each temperature T. The vacuum subtraction is performed on lattices with N_{vac}^4 .

T/T_c	β	N_{z}	N_τ	$N_{\overline{x}}$	$N_{\rm vac}$
1.12	6.418	72	12	12, 14, 16, 18	64
	6.631	96	16	16, 18, 20, 22, 24	96
1.40	6.582	72	12	12, 14, 16, 18	64
	6.800	96	16	16, 18, 20, 22, 24	128
1.68	6.719	72	12	12, 14, 16, 18, 24	64
	6.719	96	12	14, 18	64
	6.941	96	16	16, 18, 20, 22, 24	96
2.10	6.891	72	12	12, 14, 16, 18, 24	72
	7.117	96	16	16, 18, 20, 22, 24	128
2.69	7.086	72	12	12, 14, 16, 18	
$\simeq 8.1$	8.0	72	12	12, 14, 16, 18	
\simeq 25	9.0	72	12	12, 14, 16, 18	

M. Kitazawa et al. (2019)

Anisotropic Back up \Box

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns /25 extrapolation for N^τ small in isotropic lattices with Ns=N^τ ¼ 4 [2]. All our $\lim_{N \to \infty} \frac{N}{N}$ Califis

│ Modelが持つべき特徴(S¹×ℝ³)│ PTEP 2020 TEP 2020

T. Iritani et al. (2019)

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 29/25 the continuum continuum continuum is almost constant in the constant in the constant in \mathcal{L} and \mathcal{L} \mathcal similar for N ¼ 3, 4 and 6 [11,12]: above T > 1:2Tc, this ðe # 3pÞ=ð8T²T² ^c Þ, from the data of Umeda et al., Ref. [6]; see ratio falls with increasing T. C alis C

Potential term (non-pert.)

Free energy

P. N. Meisinger et al. (2002)

$$
f(L_{\tau}; \theta_{\tau}) = \sum_{n \in \mathbb{Z}} \int \frac{d^3k}{(2\pi)^3} \text{tr}_A \ln \left[\left(\frac{2\pi n}{\beta} - A_{\tau} \right)^2 + \vec{k}^2 + m_g^2 \right] = f_{\text{pert}} + \boxed{m_g^2 F(L_{\tau}, \theta_{\tau})} + \mathcal{O}(m_g^4)
$$

$$
f_{\text{pot}} \sim L_{\tau}^{-2}
$$

Without parameter

A. Dumitru et al. (2012) Two parameter model

$$
f_{\text{pot}} \longrightarrow c_1 F(L_\tau, \theta_\tau) + c_2 F'(L_\tau, \theta_\tau)
$$

 \bullet "Two parameter model" on $\mathbb{S}^1 \times \mathbb{R}^3$ With parameters

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 30/25

Result $\overline{}$

: (91)

"Two parameter model" on $\mathbb{S}^1\times\mathbb{R}^3$ \bigcap if $\prod_{n=1}^{\infty}$ is a sigma of

ðna 1

^LðNÞ ¼ ^eðT^þ

Refs. [5,12] and N ¼ 4, 6, and 8 [9,12]. Datta and Gupta

 $\mathcal{O}(\mathcal{A})=\mathcal{O}(\mathcal{A})$ and the models with zero $\mathcal{O}(\mathcal{A})$ and $\mathcal{O}(\mathcal{A})$

Fig. 3 (color of the international contraction measure). A contraction measure \mathbf{r}_1 $\bm{\epsilon}$ modynamic of lattice near $\bm{\tau}$ Well-explain the thermodynamic of lattice near T_c

various N. Overall, the model appears to reproduce the narameter model on $\mathbb{T}^2\times\mathbb{R}^2$ The panel on the left zooms into the region near Tc, from Extend two parameter model on $\mathbb{T}^2\times\mathbb{R}^2$

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 31/25

$$
\text{Model} \sim \text{Two Polyakov loop} \sim
$$

Polyakov loops along two compactified directions

$$
P_{\tau} = \frac{1}{N_c} \text{Tr} \left[\mathcal{P} \exp \left(i \int_0^{L_{\tau}} A_{\tau} d\tau \right) \right] \qquad P_{x} = \frac{1}{N_c} \text{Tr} \left[\mathcal{P} \exp \left(i \int_0^{L_{x}} A_{x} d\tau \right) \right]
$$

Assumption : Diagonalized background gauge fields

$$
A_{y}, A_{z} = 0
$$

\n
$$
A_{\tau} = \frac{1}{L_{\tau}} \begin{pmatrix} (\theta_{\tau})_{1} & 0 & 0 \\ 0 & (\theta_{\tau})_{2} & 0 \\ 0 & 0 & (\theta_{\tau})_{3} \end{pmatrix} \quad A_{x} = \frac{1}{L_{x}} \begin{pmatrix} (\theta_{x})_{1} & 0 & 0 \\ 0 & (\theta_{x})_{2} & 0 \\ 0 & 0 & (\theta_{x})_{3} \end{pmatrix}
$$

$$
f = f_{\text{pert}}^{\mathbb{T}^2 \times \mathbb{R}^2} (L_{\tau}, L_x; \theta_{\tau}, \theta_x) + f_{\text{pot}}^{\mathbb{T}^2 \times \mathbb{R}^2} (L_{\tau}, L_x; \theta_{\tau}, \theta_x)
$$

P

Cross term

$$
f_{\text{cross}} = \frac{g(L_{\tau}, L_{x})}{g(L_{\tau}, L_{x})} c_{4} \text{Tr}(P_{\tau})^{2} \text{Tr}(P_{x})^{2} + c_{5} \left(\text{Tr}(P_{\tau})^{2} \text{Tr}(P_{x}^{3}) + \text{Tr}(P_{\tau}^{3}) \text{Tr}(P_{x})^{2} \right) + c_{6} \text{Tr}(P_{\tau}^{3}) \text{Tr}(P_{x}^{3})
$$

$$
T_d^{-2n+4}(L_t^2 + L_x^2)^{-n}
$$
\n\nRestriction of *n*\n\n(i) 1.5 < *n* < 2\n\n
$$
\begin{aligned}\n &\text{Restriction of } n \\
&\text{for } n \\
&\text{for } n\n\end{aligned}
$$
\n\n
$$
L_x
$$
\n\n
$$
L_t = L_x \to 0
$$
\n\n
$$
L_t = L_t \to 0
$$
\n\n
$$
L_t = L_x \to 0
$$
\n\n $$

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 33/25

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns / 725

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns / 725

Model \sim One loop free energy \sim

- Usisng the background field methodを用いる
- **Regularization** $+$ the high-temperature expansion

One loop perturbative free energy

$$
f_{\text{pert}}(\vec{\theta}_r, \vec{\theta}_x; L_r, L_x) = -\frac{8\pi^2}{45L_r^4} + \frac{8\phi_r^2(\phi_r - \pi)^2 + \phi_r^2(\phi_r^2 - 2\pi)^2}{6\pi^2 L_r^4} - \frac{8\pi^2}{45L_x^4} + \frac{8\phi_x^2(\phi_x - \pi)^2 + \phi_x^2(\phi_x^2 - 2\pi)^2}{6\pi^2 L_x^4} - \frac{8}{\pi^2} \sum_{l_r,l_x=1}^{\infty} \frac{1 + 2\cos(\phi_r l_r)\cos(\phi_x l_x) + \cos(2\phi_x l_r)\cos(2\phi_x l_x)}{((l_r L_r)^2 + (l_x L_x)^2)^4}
$$

Total free energy

Total free energy

Dominant at deconfined phase

$$
f_{\text{tot}} = f_{\text{pert}}(\vec{\theta}_{\tau}, \vec{\theta}_{\chi}; L_{\tau}, L_{\chi}) + f_{\text{pot}}(\vec{\theta}_{\tau}, \vec{\theta}_{\chi}, ; L_{\tau}, L_{\chi})
$$

Dominant at confined phase

 L_c →∞

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 41/25

これは適宜指摘した方が良い? 少なくとも位置が悪い

Model \sim Potential term \sim

The general properties of the free energy

1. YM theory on $\mathbb{T}^2 \times \mathbb{R}^2$ is **invariant** under $\tau \leftrightarrow x$

 $f_{\text{tot}}(\theta_\tau, \theta_x; L_\tau, L_x) = f_{\text{tot}}(\theta_x, \theta_\tau; L_x, L_\tau)$ ⃗ ⃗ ⃗ ⃗

2. At $L_{\tau} \to \infty$ ($\tau \to 0$), the system is **irrelevant** for the **BC**.

 $P_{\tau} = 0$ (*τ* ↔ *x* symmetry: P_x at $L_x \rightarrow \infty$)

3. For
$$
L_x \to \infty
$$
, $\mathbb{T}^2 \times \mathbb{R}^2 \to \mathbb{S}^1 \times \mathbb{R}^3$

$$
f_{\text{pot}}^{\mathbb{T}^2 \times \mathbb{R}^2} \to f_{\text{pot}}^{\mathbb{S}^1 \times \mathbb{R}^3}
$$

4. For
$$
L_{\tau} = L_{x} \rightarrow 0
$$
 $(T \rightarrow \infty)$, f_{pert}

 J pot

is dominant contribution

$$
f_{\text{pert}} \sim \mathcal{O}(L_{\tau}^{-4}, L_{x}^{-4})
$$

 $Model ~\sim$ One loop free energy \sim

- We use the background field method
- **Regularization** $+$ the high-temperature expansion

One loop perturbative free energy $f_{\text{pert}}(\vec{\theta}_\tau, \vec{\theta}_x; L_\tau, L_x) = -\frac{8\pi^2}{45L^2}$ ⃗ **</u>** 45*L*⁴ *τ* + $2\pi^2$ 3*L*⁴ *τ B*4($\left(\frac{\phi_{\tau}}{2\pi}\right) - \frac{8\pi^2}{45L_{x}^4}$ + $2\pi^2$ 3*L*⁴ *x B*4(*ϕx* $\frac{1}{2\pi}$ $-\frac{8}{4}$ *π*2 ∞ ∑ l_{τ} , l_{χ} =1 *x* $1 + 2\cos(\phi_x l_x)\cos(\phi_x l_x) + \cos(2\phi_x l_x)\cos(2\phi_x l_x)$ $((l_{\tau}L_{\tau})^2 + (l_{x}L_{x})^2)^4$ Total free energy $f_{\text{tot}} = f_{\text{pert}}(\theta_{\tau}, \theta_x; L_{\tau}, L_x) + f_{\text{pot}}(\theta_{\tau}, \theta_x; L_{\tau}, L_x)$ $\overline{}$ ⃗ $\overline{}$ ⃗ *B*4($\boldsymbol{\phi}_{\tau}$ $\left(\frac{7\pi}{2\pi}\right)$ = $8\phi_{\tau}^{2}(\phi_{\tau}-\pi)^{2}+\phi_{\tau}^{2}(\phi_{\tau}^{2}-2\pi)^{2}$ $4\pi^4$ Dominant at deconfined phase 間違いあり

Dominant at confined phase

 $Model$ ~Potential term~ ð1 : (89) - (89) - (89) - (89) - (89) - (89) - (89) - (89) - (89) - (89) - (89) - (89) - (89) - (89) - (89) - (

do not agree, but in both cases, the region in which the

2. Latent heat

"Two parameter model" on $\mathbb{S}^1\times\mathbb{R}^3$ $\overline{}$ **At the temperature for under** $\mathbb{R}^1 \times \mathbb{R}^3$ problems near the critical temperature. For the critical temperature. For the critical temperature. For the critical temperature or more than \mathcal{L}_1

 \Box

| Free energy | $\sqrt{1-\frac{1}{\sqrt{1$

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 44/25 The trace of the trace and the trace of the trace of the trace of the trace of the Z UZ4.08.20. XVIth Quark Confinement and the Hadron Spectrum ω Cairns $44\frac{1}{2}$

$$
\frac{\partial}{\partial \beta} \sum_{l} \ln \left[(\omega_l - \varphi/\beta)^2 + E^2 \right] = n(E, \varphi),
$$

$$
n(E,\varphi)=E\Big(1+\frac{1}{e^{\beta E+i\varphi}-1}+\frac{1}{e^{\beta E-i\varphi}-1}\Big),
$$

$$
p_x^{\text{pert}} = -\frac{\partial (L_x f_{\text{pert}})}{\partial L_x} \bigg|_{\Omega_\tau, \Omega_x} = \frac{2}{L_\tau} \sum_{j,k=1}^3 \left(1 - \frac{\delta_{jk}}{3}\right) \sum_{\ell_\tau} \int \frac{d^2 p_L}{(2\pi)^2} n(\mathcal{E}, (\Delta \theta_x)_{jk})
$$
(3)

$$
\mathcal{E}^2 = (\omega_\tau - (\Delta \theta_\tau)_{jk}/L_\tau)^2 + \mathbf{p}_L^2.
$$
 (6)

$$
p_z^{\text{pert}} = -\frac{\partial}{\partial L_x} (L_x f_{\text{pert}})
$$

= $\frac{2}{L_{\tau}} \sum_{j,k=1}^3 \left(1 - \frac{\delta_{jk}}{3}\right) \sum_{\ell_{\tau}} \int \frac{d^2 p_L}{(2\pi)^2}$
 $\times \ln(1 - e^{-\beta \mathcal{E} + i(\Delta \theta_x)_{jk}})(1 - e^{\beta \mathcal{E} - i(\Delta \theta_x)_{jk}})$

2024.08.20. XVIth Quark Confinement and the Hadron Spectrum @ Cairns 46/25

).